
Rako Studios » Media » Suffering-with-software » The toaster, the king, and the
programmer

The toaster, the king, and the programmer
Programmers will make a general solution to
a specific problem. Insane complexity is the result.

Once upon a time, in a kingdom not far from
here, a king summoned two of his advisers for
a test. He showed them both a shiny metal box
with two slots in the top, a control knob, and a
lever. "What do you think this is?" the King
asked.

One adviser, an electrical engineer, answered
first. "It is a toaster," he said. The king asked,
"How would you design an embedded

computer for it?" The electrical engineer
replied "Using a four-bit microcontroller, I
would write a simple program that reads the
darkness knob and quantifies its position to
one of 16 shades of darkness, from snow white
to coal black.

The program would use that darkness level as
the index to a 16-element table of initial timer
values. Then it would turn on the heating

The toaster, the king, and the programmer - Media Rako.com/Media 1 of 2

1 of 2 10/2/2018 10:02 PM 1 of 2

elements and start the timer with the initial
value selected from the table. At the end of the
time delay, it would turn off the heat and pop up
the toast. Come back next week, and I'll show
you a working prototype."

The second adviser, a software developer,
immediately recognized the danger of such
short-sighted thinking. He said, "Toasters don't
just turn bread into toast, they are also used to
warm frozen waffles. What you see before you
is really a breakfast food cooker. As the
subjects of your kingdom become more
sophisticated, they will demand more
capabilities. They will need a breakfast food
cooker that can also cook sausage, fry bacon,
and make scrambled eggs.

A toaster that only makes toast will soon be
obsolete. If we don't look to the future, we will
have to completely redesign the toaster in just a
few years.

With this in mind, we can formulate a more
intelligent solution to the problem. First, create
a class of breakfast foods. Specialize this class
into subclasses: grains, pork, and poultry. The
specialization process should be repeated with
grains divided into toast, muffins, pancakes,
and waffles; pork divided into sausage, links,
and bacon; and poultry divided into scrambled
eggs, hard-boiled eggs, poached eggs, fried
eggs, and various omelet classes.

The ham and cheese omelet class is worth
special attention because it must inherit
characteristics from the pork, dairy, and poultry
classes. Thus, we see that the problem cannot
be properly solved without multiple inheritance.
At run time, the program must create the proper
object and send a message to the object that
says, 'Cook yourself.'

The semantics of this message depend, of
course, on the kind of object, so they have a
different meaning to a piece of toast than to
scrambled eggs. Reviewing the process so far,
we see that the analysis phase has revealed that
the primary requirement is to cook any kind of
breakfast food.

In the design phase, we have discovered some
derived requirements. Specifically, we need an
object-oriented language with multiple
inheritance. Of course, users don't want the
eggs to get cold while the bacon is frying, so
concurrent processing is required, too. We
must not forget the user interface. The lever that
lowers the food lacks versatility, and the
darkness knob is confusing.

Users won't buy the product unless it has a
user-friendly, graphical interface. When the
breakfast cooker is plugged in, users should see
a cowboy boot on the screen. Users click on it,
and the message 'Booting WindowsXX' appears
on the screen.(WindowsXX should be out by
the time the product gets to the market.) Users
can pull down a menu and click on the foods
they want to cook.

Having made the wise decision of specifying
the software first in the design phase, all that
remains is to pick an adequate hardware
platform for the implementation phase. An Intel
Pentium with 2GB of memory, a 120GB hard
disk, and a SVGA monitor should be sufficient.
If you select a multitasking, object oriented
language that supports multiple inheritance and
has a built-in GUI, writing the program will be
a snap."

The king wisely had the software developer
beheaded, and they all lived happily ever after.

The toaster, the king, and the programmer - Media Rako.com/Media 2 of 2

2 of 2 10/2/2018 10:02 PM 2 of 2

