REFERENCE GUIDE

PMAC Quick Reference

Reference Guide for PMAC Products
3A0-PMACQR-xPRx

December 3, 2004
N

//\\ DELTA TAU

\\‘J—’ Data Systems, Inc.
\\

Single Source Machine Control Power // Flexibility // Ease of Use
21314 Lassen Street Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com

Copyright Information
© 2003 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other
uses are unauthorized without written permission of Delta Tau Data Systems, Inc.
Information contained in this manual may be updated from time-to-time due to product
improvements, etc., and may not conform in every respect to former issues.

To report errors or inconsistencies, call or email:

Delta Tau Data Systems, Inc. Technical Support
Phone: (818) 717-5656

Fax: (818) 998-7807

Email: support@deltatau.com

Website: http://www.deltatau.com

Operating Conditions

All Delta Tau Data Systems, Inc. motion controller products, accessories, and
amplifiers contain static sensitive components that can be damaged by incorrect
handling. When installing or handling Delta Tau Data Systems, Inc. products, avoid
contact with highly insulated materials. Only qualified personnel should be allowed to
handle this equipment.

In the case of industrial applications, we expect our products to be protected from
hazardous or conductive materials and/or environments that could cause harm to the
controller by damaging components or causing electrical shorts. When our products
are used in an industrial environment, install them into an industrial electrical cabinet
or industrial PC to protect them from excessive or corrosive moisture, abnormal
ambient temperatures, and conductive materials. If Delta Tau Data Systems, Inc.
products are directly exposed to hazardous or conductive materials and/or
environments, we cannot guarantee their operation.

mailto:support@deltatau.com
http://www.deltatau.com/

PMAC Quick Reference Guide

Table of Contents

VI 2 (] 1 L] SRS 1
[1=Sor T o) 0] o 1Y N RS 1
LIRS0 1Y O P 2

PMAC PC O PMAC VME FEAIUMNES.......ceiiiitertiitiriieieeie ettt ss e e see s r st sse s e e neseesnesbesnesse s s ennesnennesne e 2
L O TSRS 2
L O I (= SRS 2
PIMAC VIME ...ttt sttt ettt st st e st e be s e e se e be s e e st et e se e st e beseese s be e esesbe e ese et et ebe st eneesesbeneetesteneesesens 2
L O I LSS 2
L O o SRS 3
L 2 S 4
LY @y L1 = 1 (= SR 4
TUPDO PIMAC FAMITY .ttt ettt ettt bt b et et e b b e e e b et eneebe st eneebe st e e eseneenes 4
PMAC ConneCtors and INGICAIONS.uiueiiirieieie ettt sttt st sttt st et st sbe et s te e sennens 5
Display Port OULPULS (JDISP POIL)ecueeeeieiesiesiesie s eseesee e steste st s ese s e e e seesse s e saesseesseseesaessessesnesseesesnsesssssessenns 5
Control-Panel Port 1/0O (JPAN POI)ociiieeieeeere st ae s e e sttt e e e e e aenaesrestesneenae e enseseessesnenns 5
Thumbwheel Multiplexer Port 1/O (JTHW POI)cc.ciiiiieie st et sae et e e e snensesnesnens 5
S S =T o A O] 0= o 1 o ST 5
General-Purpose Digital Inputs and OUtputS (JOPTO POIT)coirieerereererieese s neas 5
ot o T T X 0] 0= o o ST 5
[T g o (o= o] =SOSR 5
WOTKING WITI PIMAC ... ettt e bt ettt e e e bt s b e e bt e h e e Rt e a e e e e e b e e beeEeebesbesaeene e e enbeseesbesaene 6
[EE L0 =TI (o RO 6
S0 1Tz LS LU SRS 6
Programming PIMACot ste ettt et e et e e st e st e s seeaeeseese e teseeebesaeeaeeneeaesteseeabesbesaeeseeneenseseenseseens 7
Y O 1= = SO S 7
S L1 L= 0 = Tox = 1 TS 8
(@000 00101 r= 110 10T =1 £ ST 8
S S Yo 0 o I (S 8
VIME MaiTOX PrOCESSINGvcveueeterteneetesieiet sttt sttt sttt b ettt s et b e e s b b et b b et s b et e e bt st e eb et e e s e e enes 9
REAI-TIME INEEITUDPE TASKS ...ttt sttt sttt ettt et b e st b e et b et b e b et b e b et b b et bbb e 9
2T 10 oo To B = S TSRS 9
L@ a1 AV 110 TSP 10
Priority LEVE! OPLiMIZALIONccueieeeieeieeeie ettt ettt e b e ae s he s st et eseese e beseesbesbeeaeeae e e aneeseesbesaenneas 11

PMAC EXECUTIVE PROGRAM, PEWINoctiiiiititesiet ettt se st sttt sa e ste e tesaenestesaenessensens 13
L0001 To 04T 0T I A 1 S 13
(O TTox S [== U =SS 14
Saving and Retrieving PMAC ParamELErSc.veicierireii s seseceesees e se st ssesres e eaessesses e snesresseesseeessensessessessesns 15
The Watch and POSITION WINAOWScoiieiiieeneesesie sttt ettt se et se bt e e ebesbeseenesbe e 15
Uploading and DOWNIOA0ING FilES........ciiiieiieee et se e e sae e snesne e e enaennenaesnenrenns 15
Using MACRO NameS and INCIUAE FITESc.couiiiiriicirie et 15
Downloading ComMPIlEd PLECCS........ccueiiiieiiiieirieee sttt b et bbb bbb b b 16
PID TUNING ULHTITY «oveeeiiitiee ettt bbbttt b et b bt s bt b e et b 16
(O 1 0TC g s (U =TSRSS USRI 19

INSTALLING AND CONFIGURING PMAC ...ttt ettt ettt sttt et 21
JUIMPEIS SELUPD ...ttt sttt ettt et e ae e bt e bt e s e ea e e eheeeh e e b e e b e e abe e ae e sae e She e aRe e b e e bt embeenbeeabesanesaeesaeesseennan 21
SENTAl CONMNECLIONS......cueitiiieuiete sttt sttt sttt te sttt s be st esesteseebesbe st e bt s be e ebesbe e ebeseeneebesee st ebesaene s be e ebesbe e e besbe e esesbeneebenbens 21
Establishing HOSt COMMUNICALIONSccueiuiieeieriesiesesteste s teeeesaestestestesaeste s e eseeseessestesrestesaeesessesnseseessenseseessenses 22

Terminal Mode COMMUNICALIONS.........c.uiirieririerieiesiereeesteseesesseseesesteesteseeesteseesessessesessessesesseseesessesessessessesessesens 22
Resetting PMAC fOr FIrst TIME USE....cuiiicieiire sttt st ese e e e st stesneene e e enaesnensesnennens 23
(@091 o 0] LS TSP SRPRRON 23
0T o] o 1= 23
Digital POWES SUDPIY ... eeeeitieeiirtireeier ettt b et b bbbt b bbb b n s 23
ANBIOG POWET SUDPIY ..ottt ettt bt b e bt s et b e b s e bt e e e e bt b et e bt b e e e bt b e e eb e b e s ene e e s 23

Table of Contents i

PMAC Quick Reference Guide

Flags Power SUPPIY (OPLIONGAL)oveuiriieirieeieree ettt 24
Overtravel Limitsand HOME SWILCHES.........co.iiioie et 24
Disabling the Overtravel LIMItS FIAgScoo ittt sb et ene s 24
TYPES Of OVEIMIrAVEl LIMITS.......eiuiieeiieieie ettt b et a et e e e b e b e s be e st e se e e anbeseesbenaeeae 24
HOIMIE SIITCNES...... ettt e et b e s bt b e e ae e he e e e e e b e se e besaeebesbeeaeeae e e anteseenbesaenneas 25
PMACPack and PMAC2 FIag INPULSccueiieieiie i sese e aesaete e te e sresae e e sssesasssessestessessssnessssssessensessessens 25
Checking the FIAg INPULS........cciiieie sttt st st st aeebe e e e e e seestesbesreeseeneenseseenteseenreenn 25
MOLOr SIgNAIS CONNECIONSeceeieiiitiseste et et et et e e st besae et e e e e e estesaebeseesbesaeeseeseessesseseeteseesaesaeensenaeseeteseesrennes 26
Incremental ENCOOEr CONNECLIONc.coiriiiiiirieiietisee ettt ettt b s b et be e neneenes 26
Checking the ENCOAEY INPULS.........cciieeeeeeeeceesecs et se e et se e e eneeseestestesneeneeneenseneensesaesrennes 26
Checking the DAC OULPULS........cceeeeieriirieste st eteseeee e e seeseestesseesesseesseaessessessessesseeseessessensesssssesssensessensessessenses 26
DAC OULPUL SIGNAIS ...ttt bbb b bt e e b e e e bt b e b et e b et et et et et ene b 27
Amplifier Enable Sgnal (AENAX/DIRN)......ccii ittt b e se e b b n s e s 27
AmMplifier FAUIt SIGNAI (FAULTN) ..ottt et s b e s ae e e e et e e b e s bt saeebe e e eneeseenbesaesneas 28
General-Purpose Digital Inputs and OULPULS (JOPTO POIL)coiiiieiieeieeeeee e 28
Maching ConNECIONS EXAIMPIE...........o ittt st b e bt bt e e e se e besaesbeenas 29
PROGRAMMING PMAC ...ttt sttt sttt st sa et s te st te s be e ese s be e eseste e esesbe e e besbe e etesbeseetestenensestenensentens 31
L@ 0 1T g =T @e] 010 7= g Lo ST SRS 31
Buffered (Program) COMIMANGScceieiieieiecieeiese e stestesaeeres e eaestessestesaesbessesseessessesseseestessessessesssessessensessessenses 32
LO0 010 01z 0= = (1 =S 32
Y T =1 o =SS 32
P-VAITADIES. ...ttt e R e et Rt b e bRttt be bt 33

L@ A £ T - oSS 33
A £ T = o= ST 34
ATTAY CAPADINTITIESvieceeetireeet bbb bbb s e bt e et b b et b e s et e b e b e e e bt b e e ene e s 35
1001 5= 1(0] =TSSP U PO U URURPR 36
FFUNCEIONS ...ttt ettt h e e bt ae e ae e e e e e m b £e e b e s At e Rt eh e e aeeme e e embeseeebeebeeaeene e e anbeseeabesbenneas 36
COMMIPA BEONS. ... ettt rtee et ettt eaeeete et e et e e be s eesaeesaeesaeeseeae e eaeeeh e e b e enbeeabeeasesaeeSae e sReeee 2 ae e eabebeenbeenbeeabesneesbeeseeeneennas 37
User-Written Phase and User-Written Servo AlgOrithms.........coooeie e 37

Y L 0 LoV Y =" o T PRSP OSTRR 37
USEr BUFEr STOTFAQGE SPACE. ... eviiteiiiteetieieeeeteste s e s e s e saeste e e e e e saesaetesaestesaeeseeseeseesseseenteseestessesseeneensanteseensessensens 38
ENCOTEr CONVErSION TaAIE......c.iiiiieiiitie ettt s b et b et et sttt st 38
CONVErSION TADIE SITUCLUI©.....o.eieee ettt sttt sttt b e s bbbt b ettt be bt 39
FUrtNEr POSITION PrOCESSINGcouiieeiirtiieiiriirieitrt ettt et b bbb bbbt b bt e bt e e b b 39
PMAC POSITION REGISIEIS.....e ittt b bbbttt b bbb et b et et et et e et b 40
HOMING SEAICH IMIOVES.......c.iitiet bbb bbbt bbb bbb et et s b et et b e 41
CommaNd aN0 SENA SEEEEMENTS........cueieiteie ettt ettt e e et e bt b e s beeaeese e e enbeseesbesbeeaeeae e e anbeseesbesaeans 42
MOTION PROGRAMS ...ttt sttt et st st be bbbt b e s bt b e £ et e b et et e b e s be e e be s be e ebesbe e ebenbens 43
HOow PMAC EXECULES 8 MOLION PrOGIaIMcoueiiieieieite sttt sttt s e et b et sb et enae s e beseesbeeaas 43
L0000 10T LISV (= 1 01T 44
F LY B L T g TR 0] TSP 44
AXIS DEfINITION SLBLEMENES......eectiitiietirieseet ettt et ettt ese e b e s b e e e b e st eneese st eneebesbeneebesbensenensenes 45
VAT RN aTo TR WY, o 1T g T oo =0 P 45
L0l g Yo k= WA, Ko 1Ko g T 0o =" 46
SUbroutings and SUBPIOGIAIMS.cceiiieie et e e s se e st e sae e e e s e e e e seeseesaeeneeneeneanseseenrennenns 47
Passing ArgumentS tO SUDFOULINESooueiriirieiriiieerie ettt b et st b et be e 48

G, M, T, and D-Codes (Machine-TOOl StYl€ PrOgrams)ccceeueererierererieesieseee st sse e sne s 48

[T =T o= 10 L= o 1Y 0 Y-S ST 49
L@ a1 S Y 11 o] TSR 50

O (el F=gl Fg 1= o o] K= o] o USSP 54
SPHNEO IMIOVES...... ettt st b et et st e e se e e b e heeheeae e e e beSE e b e e Rt eh e e ae e aeemb e seembesEesbeebeeaeeae e e enbeseesbesaens 56
LY I oo Lo 1Y o Y3 SRS 56
Other Programming FEALUIESccucieieitiie i cteeeeteste s e e ste e s aeere s e e s e teseestesaestesseeaseseessenteseestestesseessensenteseestessens 58
Rotary Motion Program BUFfErS..........ceieeise sttt st e e et e e e enaesnenrennenneas 58
Internal Time Base, the FEaarate OVEITITE.........coi it 58

Table of Contents

PMAC Quick Reference Guide

External Time Base Control (E1ECIroNiC CAIMS)ciirieiriiieiriiieesieeee ettt sb e 59
Position Following (EIECIrONiC GEANNG)eeruirueiririeiriesieesieseees ettt b b 59
Cutter RAAiUS COMPENSALIONouiitiiieitieteeieie sttt eae e e eesteseesbesaesbe st eae e e e as e beseesbesaeebeebeeneanseseanbesaesbenaan 59
Synchronous M-Variabl@ ASSIONMENL . ..ottt sb e b bt ae et e e ene e e e be e sbeenas 60
Synchronizing PMAC t0 Other PIMACS....... oottt e s b e sae e e b ns et e b enas 60

AXIS TranSfOrmMationN IMELICESciirieiiiieereeee ettt sttt s bt s et et e se b eneebe st e neebensenseseneenes 60
Position-Capture and Position-Compare FUNCLIONSccieiiiineieeeseeeeeeseesaesees e sresresre e ssesseesaessessessesnens 60
Learning @ MOLION PrOGIAIM.........ciiuiirieieirieieesieesestesesieste s e te e e besesseste e ssesbe e ssesbenessesbenessessenessesseneasensens 60

L I O o 0 1] =¥ 2N 1Y TSRS 61
L (= aTo = W IO . oo = 62

L IO o 0o = TS {1 o [63
L0 Lol (LIS = 1= 1= 1 £ P 63
100 0T [} (0= IS 1= 1=] £ ST 63
LeVel-Triggered CONUITIONS.........o ittt sttt et b e a et e e e e e se e beseeebesbesaeeae e e anbeseesbesaenneas 63
Edge-Triggered CONTITIONScc.oiiieeieeeiee ettt et b et s he st et e e e se e besaeebesbeeaeeae e e aneeseesbesaenaea 63

LAY T oo o TSRS 64
COMMAND aNd SEND SEABEEMENESueieeeeiieieieiiereeie ettt st st st se b st esbeste e besae e sbesse e ssesbenessensens 64

LI 01= PSPSPRPRSPIN 65
(00 0010 TL L= I O oo = o S 66
TROUBLESHOOTINGoceiitiieiisiesieese ettt stese e ste st sesessessasessessaseesessaseesessessssessassesessensasessassnsessensnsessenes 67
Resetting PMAC t0 FACLOry DEFAUITS.......cciieiecececece sttt sne e ne e e nnenaesnenrenns 67
The Watchdog Timer (REA LED)cceeieiee st eeeseesie s sae st se e e e e e saestesnesneeseeneenseseensessnsnens 67
Establishing COMMUINICELIONS.coueiriiieiriieeesieee sttt b et b et b et b et s b e b e e b b 68

LT 0T S 68

BUS COMMUNICALIONSveeeeeieiesies e see st st eeeeeesee e s e teseesbe s e e e e eesseneeseesbesseeseeseeneenseseenseseesbessesseeneensenseseessessensens 69
SErT@l COMIMUNICALIONS.c.ueeeiee ettt ettt b e bt bt e e e eese e besaeeb e s aeeaeeae e e e beseesbesaesbeebeaneansene e besaesbenais 69
IMIOLOT PAIraIMELEIS ...ttt ettt ettt a e h e e bt e s be e be e eeeae e ehe e ebe e bt e as e easeeaeesheesbeerbeebeenneeaneeneanneanes 69

Y Ko (o gl = oo = 0 01U 70

L I O (00 =1 1 T TP STSPTRTR 71
APPENDIX A —PMAC ERROR CODE SUMMARY ..ottt ste et sa et a s st naens 73
Lo o= = oo o 1Yo [TSRS 73
APPENDIX B —=PMAC [-VARIABLES SUMMARY ...ttt ettt ssens 75
APPENDIX C—PMAC ON-LINE (IMMEDIATE) COMMANDS.......cocoeitrirteisenieesesieesesaee e et 81
APPENDIX D —PMAC PROGRAM COMMAND SPECIFICATIONS.......cciit ettt e 87
APPENDIX E-MOTOR SUGGESTED M-VARIABLE DEFINITIONS......cccoeotiiirireriese e 91
APPENDIX F —1/0 SUGGESTED M-VARIABLE DEFINITIONS.......ccoiiiitrtreeese e 95
APPENDIX G — ACC-8D/8P PINOUT DESCRIPTIONS.......occeririeirinieiresie sttt 99

Table of Contents i

PMAC Quick Reference Guide

Table of Contents

PMAC Quick Reference Guide

INTRODUCTION

Description of PMAC

PMAC, pronounced Pe' -MAC, stands for Programmable Multi-Axis Controller. It isafamily of high-
performance servo motion controllers capable of commanding up to eight axes of motion simultaneously
with ahigh level of sophistication.

Flags 8-12 \l)] Flags 1-4
DACS 9-12 Gale Array G Rors Gale Array |[*+T—* DACS 1-4
Encodars 9-12 J \ I /' Encoders 1-4

s -] Motorola
Flags 13-16 - w 56002 Flags 5-8
e | Gate Array || B | oy Gale Array DACS 5-8
Encoders 13-16 J {Option 1} {Option 1) Encodars 5-8
Memory

ACC-24 (optional)

PMAC

There are five hardware versions of PMAC: the PMAC PC, the PMAC Lite, the PMAC VME, the PMAC
STD and the PMAC Mini. These cards differ from each other in their form factor, the nature of the bus

interface, and in the availability of certain 1/O ports.

e Motorola s Digital Signal Processor (DSP) DSP56k is the CPU for PMAC and it handles al the
calculations for all eight axes.

e Theregistersin PMAC' s DSPGATE Gate-Array |Cs are mapped into the memory space of PMAC's
processor. Each DSPGATE contains four consecutively numbered channels; there may be up to four
DSPGATEsin aPMAC system, for up to 16 channels.

e Therearetwo types of servo DSPGATE Gate-Array ICs. The PMAC type that allows only the
control of analog amplifiers with +10V command signals and the PMAC2 type that is capable also of
digital direct PWM or stepper command signals.

o Each PMAC channel provided by aPMAC DSPGATE has one DAC output, one encoder input and
four dedicated flag inputs: two end-of-travel limits, one home input and one amplifier fault input.

e Any PMAC can control up to eight motors or axis as long as enough channels are provided. Every
PMAC contains one DSPGATE, which has channels 1 through 4 (PMAC Mini has only two
channels). If Option 1 isordered (not available on PMAC Lite or PMAC Mini), a second DSPGATE
is provided, which has channels 5 through 8. If Acc-24 is ordered (not available on PMAC STD), a
third DSPGATE is provided which has channels 9 through 12. If Acc-24 Option 1isordered as well
(not available on PMAC STD), afourth DSPGATE is provided, which has channels 13 through 16.

e PMAC hasits own memory and microprocessor. Therefore, any version of PMAC may run asa
standalone controller or a host computer may command it either over a serial port or a bus port.

Introduction

PMAC Quick Reference Guide

Types of PMAC

PMAC PC or PMAC VME Features

Standard Features

Motorola DSP 56k digital signal processor

Linear and circular interpolation

Four output digital-to-analog (DAC) converters

256 motion programs capacity

Four full encoder channels

Asynchronous PL C program capability

16 genera purpose I/0, OPTO-22 compatible

Rotating buffer for large programs

Multiplexer port for expanded 1/0

36-hit position range (+/- 64 hillion counts)

Overtravel limit, home, amplifier fault/enable flags

16-hit DAC output resolution

Display port for LCD and VFD displays

S-curve acceleration and deceleration

Bus and/or RS-422 control

Cubic trgjectory calculations, splines

Stand-al one operation

Electronic gearing

G-code command processing for CNC

Advanced PID servo motion algorithms

Optional Features

Up to 16 digitd-to-and og (DAC) converters outputs

Y askawa absolute encoders inputs

Up to 16 full encoder channels

Analog feedback inputs

8Kx16 dual-ported RAM

MLDTSs feedback inputs

Flash memory (no battery)

Parallel binary feedback

40, 60 or 80 MHz CPU

Optically isolated encoder inputs

Extended (pole-placement) servo algorithm

RS-232 or RS-422 serid communication converters

Super-high accuracy clock crystal (<10 ppm)

Analog-to-digital converted inputs

V oltage-to-frequency (V/F) converters

On-board voltage to frequency converter

12-bit resolver-to-digital converter inputs

Up to atotal of 2048 multiplexed I/O points

Sinusoidal encoder feedback inputs

Up to 100 meters remote /O operation

PMAC PC

Recommended for applications with more than four channel requirements in either a PC based or stand
alone environment. More than four channels can be used for more than four motors operation, dual-
feedback axis (two encoder input each) or commutated motors (two DACs each). For three or four
channels applications, the PMAC Lite board is suggested instead.

PMAC Lite

The PMAC Liteis recommended for applications with three or four channel requirementsin either aPC
based or stand aone environment. The term Lite stands for the limitation of only one DSPGATE Gate-
Array IC on board. The number of channels can always be expanded from 4 to 12 through the use of an
Acc-24P. The PMAC Lite board is provided also in a stand-alone box, the PMAC Pack, complete with
power supplies and connectors. For one or two channels applications, the PMAC Mini board is suggested
instead.

PMAC VME

With the same features as the PMAC PC, the PMAC VME isthe only option for VME based
applications. The PMAC VME can be ordered with either four or maybe axes (Option 1). The dual-
ported RAM optioninaPMAC VME is on-board.

PMAC STD

With the same features as the PMAC PC, the PMAC STD isthe only option for STD based applications.
The dual-ported RAM option is not available for the PMAC STD and it is limited to eight channels, no
Acc-24 isavailablefor it.

2 I ntroduction

PMAC Quick Reference Guide

PMAC STD

PMACVME

Turbo PMAC PC

Turbo PMAC2 3U

UMAC Turbo System

Turbo PMAC2 PC Ultralite
Turbo PMAC2 PC

PMAC Mini

The PMAC Mini isrecommended for applications with one or two channel requirementsin either aPC
based or stand alone environment.

The dual-ported RAM option in aPMAC Mini ison-board. Two extrafull encoder channels (for atotal
of four on-board) can be used for dual feedback applications or with the two optional voltage-to-
frequency (V/F) converters, for stepper drivers or hybrid amplifiers control. Thereis no control panel
port or bus interrupt in the PMAC Mini board. The PMAC Mini board is provided also in a stand-alone
box, the Mini Pack, complete with power supplies and connectors.

Introduction 3

PMAC Quick Reference Guide

PMAC2

PMAC?2 isavailablein either PC, PCI, or VME formats. It is suggested for applications that require a
digital amplifier control (direct PWM signals) or applications with a combination of analog and digital
axis. PMAC?2 isrecommended also for the use of its built-in features that are optional in PMAC (1):
pulse and direction outputs, MLDT inputs, optional 12-bits analog to digital inputs, two extra encoder
inputs, improved position compare/capture feature and one channel of parallel feedback.

The PMAC2 is available with four or eight axes, with only four axes asthe PMAC2 Lite and with only
two axes as the PMAC2 Mini.

PMAC2 Ultralite

~ ~

o _/
The term Ultralite stands for no DSPGATE Gate-Array 1Cs on board of thiskind of PMAC2. The ASICs
are located in a different set of boards, usually remotely located from PMAC2, referred as MACRO
stations. In fact, the PMAC2 Ultralite in combination with the MACRO station can be seen asa PMAC2

divided in two halves: the central processing portion that contains the DSP processor and the distributed
circuitry that connects to motors, amplifiers and different 1/O points.

The PMAC2 Ultralite and the MACRO (Motion And Control Ring Optical) stations are linked with a
fiber optic or twisted pair connection. This clever distribution of components brings many benefits:
drastic reduction of wiring complexity, elimination of interference by electromagnetic noise and long
distance connections (3000 m, ~2 miles with glass fiber).

Turbo PMAC Family

The Turbo PMAC is based in the 56300 Motorola DSP processor. Its power and speed allows handling
up to 32 axesin up to 16 different coordinate systems. Compared with other PMACs, the Turbo PMAC
has a highly improved |ookahead feature that allows tighter control of acceleration and more accurate
cornering profiles.

Motion programs and PL Cs developed for other versions of PMAC are compatible with Turbo PMAC.
The main difference in the setup is the increased number of variables necessary to control up to 32 axes.
The main Turbo PMAC board has the necessary hardware to connect up to eight channels. The number
of channels could be expanded from 8 to 40 by means of either the Acc-24P or Acc-24P2 for PMAC style
or PMAC2 respectively. The Turbo PMAC2 isaso provided in a3U format and it isthe main
component of the UMAC (Universal Motion and Automation Controller) products.

4 I ntroduction

PMAC Quick Reference Guide

PMAC Connectors and Indicators

Display Port Outputs (JDISP Port)

The JDISP connector (J1) connects the PMAC to the Acc-12 or Acc-12A liquid crystal displays, or of the
Acc-12C vacuum fluorescent display. Both text and variable values may be shown on these displays
through the use of the DISPLAY command, executing in either motion or PLC programs.

Control-Panel Port 1/0 (JPAN Port)

The JPAN connector (J2 on PMAC PC, Lite, VME, and top board of PMAC STD) is a 26-pin connector
with dedicated control inputs, dedicated indicator outputs, a quadrature encoder input, and an analog
input. The control inputs are low true with internal pull-up resistors. They have predefined functions
unless the Control Panel Disable I-Variable (12) has been set to 1. If thisisthe case, they may be used as
general-purpose inputs by assigning an M-V ariable to their corresponding memory-map locations (bits of
Y address $FFCO).

Thumbwheel Multiplexer Port I/O (JTHW Port)

The Thumbwheel Multiplexer Port, or Multiplexer Port, on the JTHW (J3) connector has eight input lines
and eight output lines. The output lines can be used to multiplex large numbers of inputs and outputs on
the port, and Delta Tau provides accessory boards and software structures (special M-Variable
definitions) to capitalize on this feature. Up to 32 of the multiplexed I/O boards may be daisy-chained on
the port, in any combination.

Serial Port Connection

For serial communications, use a serial cable to connect the PC's COM port to PMAC' s serial port
connector (M4 on PMAC PC, Lite, and VME; J1 on PMAC STD’s bottom board). Delta Tau provides
cablesfor this purpose: Acc-3D connects PMAC PC or VME to a DB-25 connector; Acc-3L connects
PMAC Liteto a DB-9 connector; and Acc-3S connects PMAC STD to a DB-25 connector. Standard DB-
9-to-DB-25 or DB-25-t0-DB-9 adapters may be needed for a particular setup.

General-Purpose Digital Inputs and Outputs (JOPTO Port)

PMAC's JOPTO connector (J5 on PMAC PC, Lite, and VME) provides eight general-purpose digital
inputs and eight general-purpose digital outputs. Each input and each output has its own corresponding
ground pin in the opposite row. The 34-pin connector was designed for easy interface to OPTO-22 or
equivalent optically isolated I/O modules. Delta Tau’'s Acc-21F isasix-foot cable for this purpose. The
PMAC STD has a different form of this connector from the other versions of PMAC. Its JOPT connector
(J4 on the base board) has 24 1/0, individually selectable in software as inputs or outputs.

Machine Connectors

The primary machine interface connector is IMACH1 (J8 on PMAC PC, J11 on PMAC Lite, P2 on
PMAC VME, J4 on PMAC STD top board). It contains the pins for four channels of machine I/O: analog
outputs, incremental encoder inputs, and associated input and output flags, plus power-supply
connections. The next machine interface connector is IMACH2 (J7 on PMAC PC, P2A on PMAC VME,
J4 on the middle board of an 8-channel PMAC STD, not available on aPMAC Lite). Essentidly itis
identical to the IMACH1 connector for one to four more axes. It is present only if the PMAC card has
been fully populated to handle eight axes (Option 1), because it interfaces the optional extra components.

LED Indicators

PMACs with the Option CPU have three LED indicators: red, yellow, and green. The red and green
LEDs have the same meaning as with the standard CPU: when the green LED islit, thisindicates that
power is applied to the +5V input; when the red LED islit, this indicates that the watchdog timer has
tripped and shut down the PMAC.

Introduction 5

PMAC Quick Reference Guide

The new yellow LED located beside the red and green LEDs, when lit, indicates that the phase-locked
loop that multiplies the CPU clock frequency from the crystal frequency on the Option CPU is
operational and stable. Thisindicator isfor diagnostic purposes only; it may not be present on al boards.

Working with PMAC

When used for the first time, the card must be configured for a specific application, using both hardware
and software features, in order to run that application properly. PMAC is shipped from the factory with
defaults set in hardware and software set up to be satisfactory for the most common application types.
Working with PMAC is very simple and its ease of use and power is based in the following features:

e A clever interrupt-driven scheme allows every task, each motion program and PLC, to run
independently of each other.

e Pointer M-Variables allow monitoring virtually any register in PMAC's memory from different
sources: motion programs, PLCs or the host computer.

e Communications are activated continuously. At any moment, any variable or status command could
be interrogated.

e Upto eight axes could be either synchronized together, controlled individually or in any combination
in between.

o Datagathering and reporting functions allows saving data such as motion tragjectories, velocity
profiles or any set of variablesfor later analysis and plot.

Hardware Setup

On the PMAC, there are many jumpers (pairs of metal prongs), called E-points (on the bottom board of the
PMAC STD they are called W-points). Some have been shorted together; others have been left open.
These jumpers customize the hardware features of the board for a given application. Check each jumper
configuration using the appropriate hardware reference for the particular PMAC being set. Further
instructions for the jumper setup can be found in the PMAC User manual. After al the jumpers have been
properly set, PMAC can beinstalled either inside the host computer or linked with a serial cableto it.

Software Setup

PMAC has alarge set of Initialization parameters (I-Variables) that determine the personality of the card
for a specific application. Many of these are used to configure a motor properly. Once setup, these
variables may be stored in non-volatile EAROM memory (using the SAVE command) so thecard is
always configured properly (PMAC loads the EAROM |-Variable valuesinto RAM on power-up).

The easiest way to program, setup and troubleshoot PMAC is by using the PMAC Executive Program
PEWIN and its related add-on packages P1Setup and PMACPIot. PEWIN has the following main tools
and features:

The terminal window is the main channel of communication between the user and PMAC

Watch window for real-time system information and debugging

Position window for displaying the position, velocity and following error of all motors on the system
Severa ways to tune PMAC systems

e Interface for data gathering and plotting

In PEWIN, the value of an I-Variable may be queried smply by typing in the name of the I-Variable. For
instance, typing 1900<CR> causes the value of the 1900 to be returned. Change the value by typing in
the name, an equals sign, and the new value (e.g. 1900=3<CR>). Remember that if any |-Variables are
changed during this setup, use the SAVE command before powering down or reset the card, or the
changes that have been made will be lost.

6 I ntroduction

PMAC Quick Reference Guide

Programming PMAC

Motion or PLCs programs are entered in any text file and then downloaded with PEWIN to PMAC.
PEWIN provides a built-in text editor for this purpose but any other text editor could be used
conveniently. Most PMAC commands can be issued from any terminal window communicating with
PMAC. Online commands allow, for example, to jog motors, change variables, report variables values,
start and stop programs, query for status information and even write short programs and PLCs. In fact, the
downloading processis just a sequence of valid PMAC commands sent line by line by PEWIN from a
particular text file.

PMAC Tasks

Asan example, a40 MHz PMAC could perform the following tasks with the estimated percentage of the
total computational power as indicated:

40 MHz PMAC
440 psec per Servo Cycla

Background 8 Motors
Cycle Servo Cycle

Real Time 8 Motors
Intarrupt Phase Cycle

Lower Priority Interrupted by ————* Interruptad by — ar Interrupted by ———™ Higher Priority
Background Cycle Real Time Interrput Serve Cycle Phase Cycle

Time left over from other tasks

Rate set by 18 in servo cycles

Rate set by jumpers and Ixg0

Rate set by jumpers

1% enabled PLC

1% enabled PLCC

2nd enabled PLCC

Last enabled PLCC

Host command
response
[
Safety checks and
watchdog register set

2Znd enabled PLC

15t enabled PLCC

2nd enabled PLCC

Last enabled PLCC

Host command
response
I
Safaty checks and
watchdog register set

Coordinate Systermn &1
move planning
|
Coordinate System &2
move planning

|
Coordinate Systerm &3
move planning

|
Coordinate Sysiem &4
move planning

|
Coordinate System &5
move planning
|
Coordinate Systermn &6
move planning

Coordinate System &7
move planning

|
Coordinate System &8
move planning

enabled PLCO

enabled PLCCO

walchdog register
decrement

Encoder Conversion
Table Execution

| servo Updalte Motor #1 |
| servo Updalte Motor #2 |
| servo Updalte Motor #3 |
| servo Updalte Motor #4 |
| servo Updalte Motor #5 |
| servo Updalte Motor #6 |
| servo Updalte Motor #7 |
| servo Updalte Motor #8 |

|
Enabled data gathering
and reporting functions

Commutation Update
Mator #1

Commutation Update
Mator #2

Commutation Update
Motor #3

Commutation Update
Mator #4

Commutation Update
Motar #5

Commutation Update
Motor #6

Commutation Update
Mator #7

Commutation Update
Motor #8

Introduction

PMAC Quick Reference Guide

Single Character 1/0

Bringing in asingle character from, or sending out a single character to, the serial port or host port (PC or
STD) isthe highest priority in PMAC. Thistask takes only 200 nsec per character, but having it at this
high priority ensures that the host cannot outrun PMAC on a character-by-character basis. Thistask is
never asignificant portion of PMAC’ stotal calculation time. Note that this task does not include
processing afull command; that happens at alower priority (see the Background Tasks section).

Input buffer
[=]w]al [P]e[sf{7] -

N
so= ?**.--'-';!{-":"
L L[] []=]-

S
Qutput buffer — &

Commutation Update
The commutation (phasing) update is the second highest priority on PMAC. In a20 MHz PMAC, this
task takes 3 psec per update cycle for each motor commutated by PMAC (1x01=1). The master clock
frequency and jumpers E98, E29-E33, determines the frequency of thistask. The default update
frequency is 9 kHz (110 usec cycle). At the default, the commutation of each motor takes approximately
3% of PMAC’s computational power.

A4

Commutation [i u = ‘ | d
Algorithm Lis—— *\\ . I |
Vs =

DAC 2

ﬁGI‘Id Bedazad)
Encoder Amplifier

Servo Update

The servo update — computing the new commanded position, reading the new actual position, and
computing a command output based on the difference between the two — is the third highest priority on
PMAC. Ina20 MHz PMAC, thistask takes 30 psec per update cycle for each activated motor (1x00=1)
plus about 30 psec for general servo tasks such as the encoder conversion table. The master clock
frequency and jumpers E98, E29-E33, E3-E6 determine the frequency of thistask. The default update
frequency is 2.26 kHz (442 psec cycle). At the default, the servo update of each motor takes
approximately 7% of PMAC’ s computational power.

Actual
Fosition _
2 l 1]
DAC i | ’_g!_‘
+ Bodacoo .-l I |
Comm_a_nded AGind T ,
Position
Amplifier

8 I ntroduction

PMAC Quick Reference Guide

VME Mailbox Processing

Reading or writing a block of up to sixteen characters through the VME mailbox registersisthe fourth
highest priority in PMAC. The host controls the rate at which this happens. This never takes a significant

portion of PMAC’s computational power.

Real-Time Interrupt Tasks

Thereal-time interrupt (RTI) tasks are the fifth highest
priority on PMAC. They occur immediate after the servo
update tasks at arate controlled by parameter 18 (every
18+1 servo update cycles). There are two significant tasks
occurring at this priority level: PLC 0/ PLCCO and
motion program move planning.

PMAC will scan the lines of each program running in the
different coordinate systems and will calculate the
necessary humber of move commands.

The number of move commands of pre-calculation can
either be zero, one or two and depending on the type of
motion commands and the mode in which the program is
being executed.

Non-move commands are executed immediately as they
are found. The scan of any given motion program will
stop as the necessary number of movesis calculated. It
resumes when previous move commands are compl eted
and more move-planning calculations are required.

In the execution of amotion program, if PMAC finds two
jumps backward (toward the top) in the program while
looking for the next move command, PMAC will pause
execution of the program and not try to blend the moves
together. It will go on to other tasks and resume
execution of the motion program on alater scan. Two
statements can cause such ajump back: ENDWHILE and
GOTO (RETURN does naot count).

Background Tasks

In the time not taken by any of the higher-priority tasks, PMAC
will be executing background tasks. There are three basic
background tasks: command processing, PLC programs 1-31,
and housekeeping. The frequency of these background tasksis
controlled by the computational load on PMAC: the more high-
priority tasks are executed, the slower the background tasks will
cycle through; and the more background tasks there are, the
slower they will cycle through.

Each PL C program executes one scan (to the end or to an
ENDWH ILE statement) uninterrupted by any other background
task (although it can be interrupted by higher priority tasks). In
between each PLC program, PMAC will do its general
housekeeping, and respond to a host command, if any.

Al
CsS.
programs
checked?

Yes

Enabled
PLCO

Enabled
PLCCO

No No

CS.
program
running?

No
\ 4

Next coordinate

4——No
system

Y

move
calculations
needed?

Yes

v

)

decrement the

| AN watchdog register

by 8

End of Interrupt

Read next line of

the motion program

line
contains move
commands?

No
v

end of program?

perform safety checks:
end of travel limits
amplifier faults
following error

command response
(communications)

All PLCCs
checked?

Introduction

PMAC Quick Reference Guide

All enabled PLCC programs execute one scan (to the end or to an ENDWH I LE statement) starting from lowest
numbered to highest uninterrupted by any other background task (although it can be interrupted by higher
priority tasks). At power-on\reset, PLCC programs run after the first PLC program runs.

The receipt of acontrol character from any port isasignal to PMAC that it must respond to acommand. The
most common control character is the carriage return (<CR>), which tells PMAC to treat all the preceding
alphanumeric characters as acommand line. Other control characters have their own meanings, independent of
any aphanumeric characters received. Here PMAC will take the appropriate action to the command, or if itisan
illegal command, it will report an error to the host.

Between each scan through each background PLC program, PMAC performs its housekeeping duties to keep
itself properly updated. The most important of these are the safety limit checks (following error, overtravel limit,
fault, watchdog, etc.) Although this happens at alow priority, a minimum frequency is ensured because the
watchdog timer will trip, shutting down the card, if this frequency gets too low.

Observations

PMAC has an on-board watchdog timer circuit whose job it is to detect a number of conditions that could
result in dangerous malfunction. At the default settings, if the RTI frequency were to drop below about 50
Hz, or the background cycle is not performed at least every 512 RTI cycles the timer would trip. The
purpose of thistwo-part control of the timer isto make sure all aspects of the PMAC software are being
executed, both in foreground (interrupt-driven) and background. If anything keeps either type of routine
from executing, the watchdog will fail quickly.

PLCO or PLCCO are meant to be used for only avery few tasks (usually a single task) that must be done
at ahigher frequency than the other PLC tasks. The PLC 0 will execute every real-time interrupt as long
as the tasks from the previous RTI have been completed. PLC 0 is potentially the most dangerous task on
PMAC asfar as disturbing the scheduling of tasksis concerned. If itistoo long, it will starve the
background tasks for time. The first thing to notice is that communications and background PL C tasks
will become sluggish. In the worst case, the watchdog timer will trip, shutting down the card, because the
housekeeping task in background did not have the time to keep it updated.

Although it is very rare for amotion program to cause a watchdog failure, this does happen on occasion.
If there is an empty (no-motion) loop, the motion program acts much like a PLC 0 during this period.
These empty loops, which are used usually to wait for a certain condition, provide fast response to the
change in condition, but their fast repetition occupies alot of CPU time, and can starve the background
tasksfor time. Particularly if several coordinate systems are executing empty loops at the same time,
serious background time limitations can be created which can be severe enough to trip the watchdog
timer.

If there are a huge number of lines of intensive calculations (e.g. 100) before any move or dwell is
encountered, there can be such along time before background cal culations are resumed (more than 512
RTI cycles) it is possible to trip the watchdog timer. 1f this problem occurs, the calculations should be
split apart with short DWELL commands to give other tasks time to execute.

It is possible to use compiled PLCC programs for faster execution. The faster execution of the compiled
PL Cs comes from two factors: first, from the elimination of interpretation time, and second, from the
capability of the compiled PLC programs to execute integer arithmetic. The space dedicated to store up
to 32 compiled PLC programs, however, is limited to 15K (15,360) 24-bit words of PMAC memory; or
14K (14,336) wordsif there is a user-written servo as well.

In between each scan of each individual background interpreted PLC program, PMAC will execute one
scan of al active background compiled PLCs. This means that the background compiled PL Cs execute at
a higher scan rate than the background interpreted PLCs. For example, if there are seven active
background interpreted PL Cs, each background compiled PLC will execute seven scans for each scan of a
background interpreted PLC.

10 I ntroduction

PMAC Quick Reference Guide

Most of the housekeeping functions are safety checks such as following error limits and overtravel limits.
Since compiled PLCCs are executed at the same rate as the housekeeping functions, code to complement
or replace these functions could be placed in acompiled PLCC. If, for example, an extrainput flag is
wanted for position capturing purposes either the end-of-travel limit inputs or the amplifier fault input
could be used. The automatic check of the input flag could be disabled by an appropriate setting of the
corresponding 1x25 variable and replaced by a PLCC code that will check a general purpose input where
the amplifier fault or end-of-travel limit would be connected instead.

On power-up\reset, PLC programs are executed sequentialy from 1 to 31. This makes PLC1, the first
code executed, the ideal place to perform initialization commands like other PL Cs disabling, motors
phasing and motion programs start. After its execution, PLC1 could disable itself with the command DIS
PLC1, running only once on power-up\reset.

Bits of the first word returned from the global status bits request command, ??7? :

Bit 22 Real-Time Interrupt Re-entry: Thisbit is 1 if areal-time interrupt task has taken long enough so
that it was still executing when the next real-time interrupt came (18+1 servo cycleslater). It staysat 1
until the card isreset, or until thisbit is changed manually to 0. If motion program calculations cause

this, it isnot aserious problem. If PLC 0 causes this (no motion programs running) it could be serious.

Bit 20 Servo Error: Thisbitis 1 if PMAC could not complete its servo routines properly. Thisisa serious
error condition. ItisOif the servo operations have been completed properly.

Priority Level Optimization

Usually, PMAC will have enough speed and calculation power to perform al of the tasks asked of it
without worry. Some applications will put alarge demand on a certain priority level and to make PMAC
run more efficiently. When PMAC begins to run out of time, problems such as sluggish communications,
slow PLC/PLCC scan rates, run-time errors, and even tripping the watchdog timer can occur.

The active part of the Encoder Conversion Table is ended by the first Y word that is equal to al zeros. For
an application with less than eight encoders (the default table converts the eight incremental encoder
registers on the base PMAC), alast entry with all zerosin the Y word could be defined as necessary.

Check to seeif everything performed in the Real Time Interrupt (RTI) is necessary or if some of it could
be moved to alower priority or slowed down. PLCO could be done as PLCC1, or the RTI could be done
every fourth or fifth servo cycle setting 18=3 or higher.

Large PLC programs can be split into afew shorter PLC programs. This increases the frequency of
housekeeping and communications by giving more breaks in PLC scans.

Motion progran WHILE (condition)WAIT statements can be done as follows:

WHILE (condition)
DWELL20
ENDWHILE

Thiswill give more timeto other RTI jobs such as Move Planning and PL C/PLCCO.

If routines of lower priority than the servo loop are not executing fast enough, consider slowing down the
servo update rate (increasing the update time). The PMAC may be updating faster than is required for the
dynamic performance needed. If so, processor time is being wasted on needless extra updates. For
example, doubling the servo update time from 442 usec to 885 usec, virtually doubles the time available
for motion and PL C program execution, allowing much faster motion block rates and PLC scan rates.
This frequency change could be executed either by jumpers or individually per motor by means of the
IX60 variable.

Introduction 11

PMAC Quick Reference Guide

A faster than 20 MHz PMAC will perform calculations faster, in proportion to the corresponding clock
rate increase. In general, aclock rate increase is used to increase the real time interrupt (RTI1) share of the
total computational time available. These cases include applications where large move calculations are
involved (small-moves contouring), maintaining the same servo-loop rate and therefore the same control
performance.

20 MHz PMAC,
8 commutated
servo-motors

20 MHz PMAC, Servo Cycle
8 non-commutated
servo-motors

|

Phase Cycle

Real-Time
Interrupt
40 MHz PMAC,
8 commutated

servo-motors

40 MHz PMAC,
8 non-commutated
servo-motors

Background
Cycle

12 I ntroduction

PMAC Quick Reference Guide

PMAC EXECUTIVE PROGRAM, PEWIN

With PEWIN, PMAC can be configured and controlled. PEWIN is designed as a development tool for
creating and managing PMAC implementations. It provides aterminal interface to the PMAC and atext
editor for writing and editing PMAC motion programs and PLC programs. Additionally, PEWIN
contains a suite of tools for configuring and working with PMAC and its accessories including interfaces
for jogging motors, extensive system utilities, screens for viewing various PMAC variables and status
registers.

Configuring PEWIN
1. Define anew device using the MOTIONEXE.EXE application provided.

Motion Controls Ed |

Mation control devices:

F'mau:1 SER: COMZ, Baudrate EIEF'arlty Nane

MC Setup... |
Add... | Remove... | Setup... | Help I

2. Open PEWIN and select the Open Terminal menu. Select the device created in the previous step.

[ﬁm!(h}’llﬂ B Qpora Eachip [ooh ‘wieds s
i : & :

File save commands
PROG and PLC uploads

Vary useful online help fila for
PMAC commands and
connactors

PID Tuning tools /
Wariables setting tools

PEWIM
configuration

P1 Setup and P2 Setup
installed separately

1o Py Motion and PLC status
el Motors and connectors status PMAC’s memory backup,
————— save and restore functions

Terminal O

PLOT Functions o

Watch Window | o
Position Window

3. Thecolors and different options can be set through the Prefer ences command present in the Options
menu. Disable the automatic status-reporting feature by un-checking the Enable Terminal Status
Bar from the Terminal preferences.

PMAC Executive Program, PEWIN 13

PMAC Quick Reference Guide

Quick Plot Feature

To run the quick plot feature:
1. PressALT+P and press Enter.

2. Select the motors and the feature to gather.
3. Select what to plot from the possible choices and then press Add to left or Add toright.
4. Pressthe Define Gather Buffer button.
5. Pressthe Begin Gathering button.
6. Click on the terminal part of the screen and run the motion program or Jog command.
7. Pressthe End Gathering button when the motion is completed.
8. First pressthe Upload Data button and then the Plot Data button.
x CEES : 2 ¥ 4 5 & T ®
Dl W S e =
= e 15" BASE FHLC “-D:
Plot bithe: m] Mwll Gthes Paict [0 |

Ledt Plot Asis: Paozsible Chosces:
M T Act Velocity Witr 1 Act Acceloration S5 Motors 1o Gather.. +
Mt 1 Cmd Velocily M 1 Act Jerk 2
Mir 1 Following Error Mt 1 Act Position
Mir 1 Cmd Acceleration D efine Gathes Buffer
Mir 1 Coed Joake 4
I E Remove lam >] Mtr 1 Cmdd Position M aeta B i I 1__‘_-"
Ewm.ﬁﬁt Erd xathenng I‘_____-“" 5
3 Gallver Time: | 0 ms
7
| E H:rru}\lclh:m 33 I % ulﬂﬂ'ﬂ"}‘ﬂ
E{[t-‘.Mdlu Left I 8
Vﬁnm dl | ?H* l@ «¢ Add 1o Right I Plat Data
Horizontal Axis : | Time (sec)

You are nov talking to FHAC

_*’J_J
The Plot feature relies on the PMAC gathering functions. It is useful for analyzing motion profiles and

trajectories. Simulating an X-Y plot graphically can be an important aid in understanding the set of
parametersinvolved in acircular interpolation move.

14 PMAC Executive Program, PEWIN

PMAC Quick Reference Guide

Saving and Retrieving PMAC Parameters

It isimportant to save the complete set of PMAC parameters in the host computer periodically. In case of
afailure or replacement, asingle file created thisway will allow restoring al the variables and programs
necessary for the particular application. To activate this function click on the terminal window, press
CTRL+B for the Backup menu, select Save Configuration and Global Configuration. Select anameto
be saved as. Usually, the dateisincluded as part of the file name for later identification. For example,
PMACO112 has four digits for the application identifier and four digits for the date.

After thefile is saved, verify it with the feature part of the same pull-down menu. This will make sure
PMAC's memory matches the recently saved file and therefore that it is avalid restoring file.

To restore a configuration simply select Restor e from the same Backup menu. Verify PMAC' s memory
after the restore function as well.

The Watch and Position Windows

The position window is accessed through the POSITION command of the View menu, or ALT+V and P
from the terminal window. It isaconvenient way to check PMAC parameters continuously, such as
position velocity and following error. Right clicking on this window allows the items selections as well
asitsformat and update period.

The Watch window of the same View menu performs asimilar function. Instead of the motion-related
parameters, any variable value in PMAC can be displayed constantly. Right clicking on this window
allows selecting the display format from hexadecimal, decimal and binary reporting values.

Uploading and Downloading Files

These functions are accessible through the File menu. The uploading function is of great importance.
With these functions, it is possible to open atext editor with the contents of the requested PLC, Motion
Program, M-V ariables definitions or values, |-Variables values, etc. With this function, what commands
or values PMAC hasin memory can be checked and IF conditions and WHILE |oops are indented,
making the program flow better. The File menu also activates a more interactive and complete editor
utility, providing away (also by the communication functions) to compile PLCs and download files
including MACRO names.

Using MACRO Names and Include Files

PEWIN allows using custom names in place of the common names for variables and functions that
PMAC expects (P, Q, M, 1):

Example:
File downloaded Uploaded translated PMAC code
#define PUMP P1 OPEN PLC 1 CLEAR
P1=1
OPEN PLC1 CLEAR
PUMP=1 DISPLC1

DISABLE PLC1 CLOSE

CLOSE

Make sure the Support MACROSPL CCs option is checked before downloading. The MACRO must be
defined before it can be used. In general, MACRO definitions are at the beginning of the text file.
MACROs must be up to 255 valid ASCII characters and cannot have spaces in between (the underscore

“ " issuggested in place of a space).

The MACRO definitions or any PMAC code can be placed in a separate file and be included with asingle
lineinthetext file. The file name must include afull path in order for PEWIN to find it.

Example: #include "c:\deltatau\files\any.pmc"

PMAC Executive Program, PEWIN 15

PMAC Quick Reference Guide

Downloading Compiled PLCCs

PLCCs are compiled by PEWIN in the downloading process. Only the compiled code gets downloaded
to PMAC. Therefore, save the ASCII source code in the host computer separately since it cannot be
retrieved from PMAC. Compiled PLCs are firmware dependent and must be recompiled when the
firmware is changed in PMAC.

If more than one PLCC is programmed, all the PLCC code must belong to the same ASCI| text file.
PEWIN will compile all the PLCC code present on the file and place it in the appropriate buffer in
PMAC. If asingle PLCC code is downloaded, all the other PLCCs that might have been present in
memory will be erased, remaining only the last compiled code.

The multiple-file download feature of the PEWIN File menu allows the PLCC codes to be in different
files. They will be combined by PEWIN in the downloading process.

PID Tuning Utility

Thisfunction is accessible from the terminal window by pressing AL T+C from the Configure menu and
T for Tuning. The Autotuning feature finds the PID parameters with virtually no effort. 1n most cases,
the parameters are very close to optimal, and in some cases require further fine-tuning.

In this screen, press the Page-Up or Page-Down keys on the keyboard to select the motor number.

Step Parabob: ‘what to Plot
2
Step Size [ctz] I'IIII:I Mowve Size [chs) Iﬂmﬂ g US::ET;
3 ——— = Step Time [ms} I5[I1J Move Time [ms) |'5|J1:| r Eccderatm
™ Eollowing Eires
Doasten | /Unﬁfaraboh | [DA Dutput
. Gain I?I:HIIII - Ganiry Auto Tuning [Cual Motor)
1231 Dasivative Gan Imf hctivate [Secm'ndiul
4 I2R2Velocly FFGan [0
1233 Indegral Gain [0 Oes oo BAes
1234 Integration Mode |1 Augto Ture. . «— 1
FF Gai |EI -
2 1235 Accel FF Gain ke G
1223 DAC Oiffset |u =
1263 DAL Limit ETE Qﬂwh Lt
1260 Serva Cycle Per Ext. [0 N |
1268 Frichon FF Gain IEI
1. Select the Auto Tunefeature. Thisisthefirst interaction to find a starting bandwidth parameter.
Ampliier Type Audlo-Tune Parameters
@ CunentLocp C Velocity Loop | | Max exchation magnitude” (%] 55—
c) - " Exercise caution! - see marwal
Design Goals Excitation Time (ms}: [50
Bandwidth [Hz]: IB Mumber of Iberations: |2 +— a
Damping B atio: |‘I] b asdimuam motor avel (cts) |4nm

— 1280: 0

¥ futo-select Bandwndih
[T Autoeselect Sample Pediod

™ Inchude Low Pass Filter

—— Optional ltems to Auto-Tune

™ Welocky Feed Formard
[T Acceleration Feed Fonward

L Integral Action

* Mone © Soft ¢ Had

r Gantry Auto Tuning [Dual Motor]

Miriirriim motor eavel [chs): |4IZII]

[T Pause between lterations
[T Don'tjog back to onginal pasition

™ Activate Second Motor

DAC Calibration... |

Begin PID Auto-Tuning

Helo I Done |

16

PMAC Executive Program, PEWIN

PMAC Quick Reference Guide

Q@ +~0PQ0TQ

Make sure to read the PEWIN manual section related to the safety issues of this procedure.
Perform aDAC calibration if necessary.

Select the type of amplifier being tuned.

L et the Auto Tune select the bandwidth by checking Auto Select bandwidth.

Do not activate any feed forward parametersin thisfirst pass.

Do not activate the integral action component in thisfirst pass.

Start the first Auto Tuning interaction. Most likely the motor will move after Begin is clicked.

Second Interaction

[—

Drmsagn Gkt Excitation Tires [mi] [5:3_
Bandwackh [Hz} |34 Musrkese of Beestiorst [
Dampirsg F st IE— M apavn s fresdid bl [2i4] [F
h L = 120 0 Mo rotod kel et} [000
B auboveiect Barcwdtn [Paee bebveer [Inmtan:
T Auto-pelect Sl Eeid I Dot jog back b atxprsl poston
I Ireshades Lows Pass Fiber Gy fusto Turing [Dusl Mabor)

C M
Diptucarial Bivres B Sb- T I Activahe Socond Mol

I Valocity Feed Fomwad |

I iscosterstion Faed Fonwad WoElE T K
-
J ':Gd;‘:..:hm Eingn PID Auke-Turang I
& Horw € Sot © Hwd Heles | Doew |

The calculated bandwidth can be increased up to three times. Uncheck the Auto Select
Bandwidth thistime.

Add the feed forward parameters as necessary.

Add theintegral actions function as necessary.

Perform the second pass of the Auto Tuning. After it is completed, select Implement Now to
activate the selected parameters.

2. After the Auto Tuning is completed, the PID parameters can be changed for afinal fine-tuning if

necessary.
3. Perform a step response and use the following guidelines for the selection of the appropriate |-
Variables:
i
|
Ideal Case Position Offset
The motor closdly follows the commanded position Cause: friction or constant force / system limitation

Fix: Increase K, (1x33) and maybe use more Kp(1x30)

PMAC Executive Program, PEWIN 17

PMAC Quick Reference Guide

Sluggish Response Overshoot and Oscillation
Cause: Too much damping or too little proportional gain Cause: Too little damping or too much proportional gain
Fix: Increase Kp (1x30) or decrease K (1x31) Fix: Decrease Kp (1x30) or increase K (1x31)

4. Perform a parabolic move and use the following guidelines for the selection of the appropriate |-
Variables:

AR
n
ikl ")

Ideal Case High vel \ FE correlation High vel \ FE correlation
The following error is reduced at Cause: damping Cause: friction
minimum and is concentrated in the Fix: Increase Kg (1X32) Fix: Increase Integral gain (I1x33) or
center, evenly along the move Friction Feedforward (1x68)

High acc\ FE correlation High acc\ FE correlation Negative vel \ FE correlation
Cause: Integral lag Cause: Physical system limitations Cause: Too much velocity FF
Fix: Increase K 4 (1X35) Fix: Use less sudden acceleration Fix: Decrease K,y (1x32)

High vel \ FE correlation High acc\ FE correlation High vel\FE and acc\FEcorrelation
Cause: damping and friction Cause: Too much acc FF Cause: Integral lag and friction
Fix: Increase Kg (1x32) Fix: Decrease K 4 (1x35) Fix: Increase K 4 (1x35)

18 PMAC Executive Program, PEWIN

PMAC Quick Reference Guide

Other Features

Setup of the PMAC encoder conversion table

Setup of the Notch and Low Pass Filter parameters

Coordinate systems configurations

Access to P1Setup and P2Setup (packages provided separately). These setup utilities provide a user-
friendly approach for setting up and tuning PMAC (1), with P1Setup, or PMAC2 using P2Setup
Online PMAC Software and Hardware help files

Jog Ribbon and connector status

Screens to display, organize or changel, P, Q and M variables

Firmware downloading (through MOTIONEXE) for PMACs with flash memory.

PMAC Executive Program, PEWIN 19

PMAC Quick Reference Guide

20

PMAC Executive Program, PEWIN

PMAC Quick Reference Guide

INSTALLING AND CONFIGURING PMAC

Jumpers Setup

On the PMAC, there are many jumpers (pairs of metal prongs), called E-points (on the bottom board of
the PMAC STD they are called W-points). Some have been shorted together; others have been left open.
These jumpers customize the hardware features of the board for a given application. Each jumper
configuration should be checked using the appropriate hardware reference for the particular PMAC being
set. Further instructions for the jumper setup can be found in the PMAC User manual. After al the
jumpers have been properly set, PMAC can be installed either inside the host computer or linked with a
serial cabletoit.

Serial Connections

For serial communications, use a serial cable to connect the PC's COM port to the PMAC’ s seria port
connector (M4 on PMAC PC, Lite, and VME; J1 on PMAC STD’s bottom board). Delta Tau provides
cablesfor this purpose: Acc-3D connects PMAC PC or VME to a DB-25 connector; Acc-3L connects
PMAC Liteto a DB-9 connector; and Acc-3S connects PMAC STD to a DB-25 connector. Standard DB-
9-to-DB-25 or DB-25-t0-DB-9 adapters may be needed for a particular setup.

If using the Acc-26 Serial Communications converter, connect from the PC COM port to Acc-26 with a
standard DB-9 or DB-25 cable and from Acc-26 to PMAC using the cable provided with Acc-26. Since
the serial ports on PMAC PC and PMAC VME are RS-422, this accessory can be useful to provide the
level conversion between RS-232 and RS-422 (communications is possible without this conversion, but at
reduced noise margin). Because the conversion is optically isolated, the accessory aso helps prevent
noise and ground loop problems.

If a cable must be made, the easiest approach isto use aflat cable prepared with flat-cable type connectors
asindicated in the following diagrams:

DB-9
Female IDC-10
1 1
Do not connect
wire #10
DB-25

Female IDC-26

1 1

Do not connect
wire #26

Installing and Configuring PMAC 21

PMAC Quick Reference Guide

Establishing Host Communications

Either the Executive or Setup program can be used to establish initial communications with the card.
Both programs have menus that tell the PC where to expect to find the PMAC and how to communicate
with it at that location. If telling it to look for PMAC on the bus, also tell it PMAC' s base address on the
bus (this was set up with jumpers on PMAC). If telling it to look for PMAC on a COM port, tell it the
baud rate (this was set up with jumpers or switches on the PMAC). Once the program knows where and
how to communicate with PMAC, it will attempt to find PMAC at that address by sending a query
command and waiting for the response. If it gets the expected type of response, it will report that it has
found PMAC. If it does not get the expected type of response after several attempts, it will report that it
has not found PMAC.

Terminal Mode Communications

Once the program reports that it has found PMAC, the program should be in terminal emulation mode, so

that the PC is acting as a dumb terminal to PMAC. Check to seeif aresponseis received by typing

110<CR>. (<CR> means carriage return — the Enter or Return key). PMAC should respond with a

six or seven digit number. If the expected results are not received, check the following:

1. Make surethe green LED (power indicator) on PMAC's CPU board isON. If itisnot, find out why
PMAC isnot getting a +5V voltage supply.

2. Makesurethered LED (watchdog timer indicator) on PMAC’s CPU board isOFF. If itis ON, make
sure PMAC is getting very close to 5V supply — at less than 4.75V, or the watchdog timer will trip,
shutting down the card. The voltage can be probed at pins 1 and 3 of the J8 connector (A1 and A2 on
the PMAC VME). If the voltage is satisfactory, follow these steps:

e Turn off PMAC or the Host computer where it is plugged into.

o Place the Jumper E51 (the hardware re-initialization jumper) and turn PMAC back on.

o If PMAC isin bootstrap mode, send a<CONTROL-R> character to PMAC to bypass the
firmware download.

o If communications are successful type $$$*** and SAVE in the terminal window.

e Turn off PMAC, remove the jumper E51 and try communications again.

Bus Communications

3. Make sure that the bus address jumpers (E91-E92, E66-E71) set the same address as the bus address
on the Executive program.

4. If there is something else on the bus at the same address, try changing the bus address to see if
communications can be established at a new address. Usually, address 768 (300 hex) is open.

Serial Communications

5. Verify that the proper port on the PC is being used. Make sure that the Executive program is
addressing the COM1 port, which is cabled out of the COM1 connector.

6. Thebaud rate specified in the Executive program should match the baud rate setting of the E44-E47
jumpers on PMAC.

7. With abreakout box or oscilloscope, make sure there is action on the transmit lines from the PC as
while typing into the Executive program. If not, there is a problem on the PC end.

8. Probe the return communication line while giving PMAC a command that requires a response (e.g.
<CONTROL-F>). If thereis no action, change jumpers E9-E16 on PMAC to exchange the send and
receive lines. If thereis action, but the host program does not receive characters, RS-232 might be
receiving circuitry that does not respond at all to PMAC s RS-422 levels. If thereis another model of

PC available, try using it as atest (most models accept RS-422 levels quite well). If the computer still
will not accept the signals, try alevel-conversion device, such as Acc-26.

22 Installing and Configuring PMAC

PMAC Quick Reference Guide

Resetting PMAC for First Time Use
Once communi cations have been established, type the following commands in the terminal window:

$$*** ;:Global Reset

PO..1023=0 ;Reset P-variables values

Q0..1023=0 ;Reset Q-variables values

MO..1023->* MO..1023=0 ;Reset M-variables definitions and values
UNDEFINE ALL ;Undefine Coordinate Systems

SAVE ;Save this initial, “clean”configuration

Connections

Typically, the user connections are made to aterminal block that is attached to the IMACH connector by
aflat cable (Acc-8D or 8P). The pinout numbers on the terminal block are the same as those on the
JMACH connector for PMAC PC. While the numbering scheme for the pins on machine connectors on
PMAC VME isdifferent from that for PMAC PC, the physical arrangement is the same, and PMAC

VME users can use the same terminal numbers on the terminal block board in following the instructions
given below.

Note:

Make sure PMAC is not powered while the connections are being made. Leave
any loads disconnected from the motor at this point.

Power Supplies

Digital Power Supply
1.5A @+5V (+/ -5% (7.5W
(Ei ght -channel configuration, with a typical |oad of encoders)

The host computer provides the 5V power supply if the PMAC isinstalled initsinternal bus.

With the board plugged into the bus, it will pull +5V power from the bus automatically and it cannot be
disconnected. In this case, there must be no external +5V supply, or the two supplies will fight each
other, possibly causing damage. This voltage could be measured between pins 1 and 3 of the terminal
block.

In a stand-alone configuration, when PMAC is not plugged in a computer bus, it will need an external 5V
supply to power itsdigital circuits. The +5V line from the supply should be connected to pin 1 or 2 of the
JMACH connector (usually through the terminal block), and the digital ground to pin 3 or 4.

Analog Power Supply

0.3A @+12 to +15V (4.5W

0.25A @-12 to -15V (3.8W

(Ei ght -channel configuration)
The analog output circuitry on PMAC is optically isolated from the digital computation circuitry, and so
requires a separate power supply. Thisis brought in on the IMACH connector. The positive supply —
+12 to +15V — should be brought in on the A+15V line on pin 59. The negative supply —-12to -15V —
should be brought in on the A-15V line on pin 60. The analog common should be brought in on AGND
line on pin 58.

Typically, this supply can come from the servo amplifier; many commercial amplifiers provide such a
supply. If thisisnot the case, an external supply may be used. Even with an external supply, the AGND
line should be tied to the amplifier common. It is possible to get the power for the analog circuits from the
bus, but doing so defeats optical isolation. In this case, no new connections need to be made. However,
you should be sure jumpers E85, E87, E88, E89, and EQ0 are set up for this circumstance. (Thecardis
not shipped from the factory in this configuration.)

Installing and Configuring PMAC 23

PMAC Quick Reference Guide

Flags Power Supply (Optional)

Each channel of PMAC has four dedicated digital inputs on the machine connector: +LIMn, -LIMn
(overtravel limits), HMFLn (home flag), and FAULTn (amplifier fault). In most PMACs, these inputs
can be kept isolated from other circuits. A power supply from 12 to 24V can be used to power the
corresponding opto-isolators related to these inputs. This feature is not available in PMAC PC without
Option 1, PMAC VME or the PMAC STD board.

Overtravel Limits and Home Switches

When assigned for the dedicated uses, these signal s provide important safety and accuracy functions.
+LIMn and -LIMn are direction-sensitive overtravel limits that must be actively held low (sourcing
current from the pins to ground) to permit motion in their direction. The direction sense of +LIMn and -
LIMnisasfollows: +LI1Mn should be placed at the negative end of travel, and -LIMn should be placed at
the positive end of travel.

Disabling the Overtravel Limits Flags

If no overtravel limits are used, they must be disabled through a change to variable Ix25. On the terminal
window, the following commands will disable the limits functions for all eight motors. Select the motor
numbers as appropriate.

The OR (|) bit-by-bit function used hereis accessible by pressing shift + "\ ” in the computer’s

keyboard.

1125=1125]$20000 ;Motor #1
1225=1225]$20000 ;Motor #2
1325=1325]$20000 ;Motor #3
1425=1425]$20000 ;Motor #4
1525=1525]$20000 ;Motor #5
1625=1625]$20000 ;Motor #6
1725=1725]$20000 ;Motor #7
1825=1825]$20000 ;Motor #8

Types of Overtravel Limits
PMAC expects a closed-to-ground connection for the limits to not be considered on fault. This
arrangement provides afailsafe condition and therefore it cannot be reconfigured differently in PMAC.
Usually, a passive normally closed switchisused. If aproximity switch is needed instead, the following
type is recommended:
Normally Closed

NPN (Sinking)

+

o 1215V DC —™
) Brown
+ - Blue |
Black
JMACH1 JMACH1 JMACH!1
+Lim
51 | PC option 1: JMACHZ, PIN 59

Lite: JEGL, PIN 9

Mini: JAUX, PIN 13
51 +Lim . +15V

58
12-24V
3
AGnd i
58 Gn 58 AGnd 51 | fLim

Dry Contact 12-15 Volts proximity 15-24 Volts proximity

Related PMAC jumpers must be configured appropriately, following the corresponding PMAC Hardware
Reference manual.

24 Installing and Configuring PMAC

PMAC Quick Reference Guide

Home Switches

While normally closed-to-ground switches are required for the overtravel limits inputs, the home switches
could be either normally closed or normally open types. The polarity is determined by the home sequence
setup, through the I-Variables

1902, 1907, ... 1977. However, for the following reasons, the same type of switches used for overtravel

limits are recommended:

o Normally closed switches are proven to have greater electrical noise rejection than normally open
types.

e Using the same type of switches for every input flag simplifies maintenance stock and replacements.

PMACPack and PMAC2 Flag Inputs
The PMAC Pack and PMAC2 interface accessories include a bipolar opto-isolating circuitry (chip PS-
2705-4NEC) for flag and amplifier fault connections:
/7 //‘
- -

Pt »r

Flag
Return

Flag

Signal
Return

Signal

Gnd Sourcing Signal

(*+V)

+V Sinking Signal
(Gnd)

Examples:
+V

FLAGRTN J

NEGLIM

FLAGRTN 1 W

NEGLIM

Flag Input In A Sinking Configuration

Checking the Flag Inputs
In the PEWIN terminal window, define the following M-V ariables for the flags of the motors under
consideration:

Flag Input in Sourcing Configuration

Flag Type

Motor #1

Motor #2

Motor #3

Motor #4

HMFL input status

M120->X:$C000,20,1

M220->X:$C004,20,1

M320->X:$C008,20,1

M420->X:$C00C,20,1

-LIM input status

M121->X:$C000,21,1

M221->X:$C004,21,1

M321->X:$C008,21,1

M421->X:$C00C,21,1

+LIM input status

M122->X:$C000,22,1

M222->X:$C004,22,1

M322->X:$C008,22,1

M422->X:$C00C,22,1

Flag Type

Motor #5

M otor #6

M otor #7

M otor #8

HMFL input status

M520->X:$C010,20,1

M620->X:$C014,20,1

M720->X:$C018,20,1

M820->X:$C01C,20,1

-LIM input status

M521->X:$C010,21,1

M621->X:$C014,21,1

M721->X:$C018,21,1

M821->X:$C01C,21,1

+LIM input status

M522->X:$C010,22,1

M622->X:$C014,22,1

M722->X:$C018,22,1

M822->X:$C01C,22,1

Open aWatch Window and press Insert to enter the M-V ariable number to watch. Interacting with the
switch or sensor, monitor the change in the corresponding M-Variable. A value of zero indicates that the
flag is closed to ground and therefore the limit is not in fault, the motor will be able to runin that

direction (See I1x25). If thevalueis 1, theflag is open instead.

Installing and Configuring PMAC

PMAC Quick Reference Guide

Motor Signals Connections

Incremental Encoder Connection

Each JIMACH connector provides two +5V outputs and two logic grounds for powering encoders and
other devices. The +5V outputs are on pins 1 and 2; the grounds are on pins 3 and 4. The encoder signal
pins are grouped by number: all those numbered 1 (CHA1, CHA1/, CHB1, CHC1, etc.) belong to encoder
#1. The encoder number does not have to match the motor number, but usually does. If the PMAC is not
plugged into a bus and drawing its +5V and GND from the bus, use these pinsto bring in +5V and GND
from the power supply.

Connect the A and B (quadrature) encoder channels to the appropriate terminal block pins. For encoder
1, the CHAlispin 25, CHBlispin 21. If using asingle-ended signal, leave the complementary signal
pins floating -- do not ground them.

However, if single-ended encoders are used, check the settings of the jumpers E18 to E21 and E24 to E27.

For adifferential encoder, connect the complementary signal lines-- CHAL/ is pin 27, and CHB1/ ispin
23. Thethird channel (index pulse) is optional; for encoder 1, CHCL1 ispin 17, and CHCL/ ispin 19.

Checking the Encoder Inputs
Once the encoders have been properly wired, it isimportant to check its functionality and its polarity.

Note:

Make sure the motor is not powered while performing this test.

In the PEWIN, open a Position window by pressing Alt+V and P from the terminal window. Rotate the
encoder to monitor the corresponding position value of the motor in the Position window. Make sure that
arotation in the positive direction increments the position values. Also, make sure that the number of
counts per revolution of the encoder matches the number read by PMAC when a complete revolution of
the motor has been rotated. If necessary, for troubleshooting purposes, place an oscilloscopein the
encoder inputs to check the appropriate signals provided by the encoder:

Examplefor Encoder #1. (s) CEEE =
e Channel A inpin 25 of IMACH1 (Acc-8D or Acc-8P) S iOiEo
e Channel B inpin 21 of IMACH1 (Acc-8D or Acc-8P) 30 2o
e Groundinpin3or 4 of IMACHL (Acc-8D or Acc-8P) <“— oo —= — —
T | LOUOIR R
Checking the DAC Outputs — —

Before connecting the DAC outputs to the amplifier, it is opportune to check the DAC outputs operation.

Note:

Make sure the amplifier is not connected while performing this test.

In the PEWIN terminal window, define the following M-Variables for the DACs of the motors under
consideration:

Motor #1 Motor #2 Motor #3 Motor #4
DAC output M102->Y:$C003,8,16,S |M202->Y:$C002,8,16,S |M302->Y:$C00B,8,16,S |M402->Y:$C00A,8,16,S

Motor #5 Motor #6 Motor #7 Motor #8
DAC output M502->Y:$C013,8,16,S |M602->Y:$C012,8,16,S |M702->Y:$C01B,8,16,S |M802->Y:$C01A,8,16,S

26 Installing and Configuring PMAC

PMAC Quick Reference Guide

Examplefor DAC #1:

Type the following in the terminal window:

M102->Y:$C003,8,16,S

1100=0

M102=16383

<measure 5V between pins 43 and 58 of IMACHL1, (Acc-8D or Acc-8P)>
MLO2=- 16383

<measure -5V between pins 43 and 58 of IMACH1, (Acc-8D or Acc-8P)>
1100=1

DAC Output Signals

If PMAC is not performing the commutation for the motor, only one analog output channel is required to
command the motor. This output channel can be either single-ended or differential, depending on what
the amplifier is expecting.

For a single-ended command using PMAC channel 1, connect DAC1 (pin 43) to the command input on
the amplifier. Connect the amplifier’'s command signal return line to PMAC' s AGND line (pin 58). In
this setup, leave the DAC1/ pin floating; do not ground it.

For adifferential command using PMAC channel 1, connect DAC1 (pin 43) to the Plus Command input
on the amplifier. Connect DACYL/ (pin 45) to the minus-command input on the amplifier. PMAC's
AGND should be still connected to the amplifier common.

If the amplifier is expecting separate sign and magnitude signals, connect DACL (pin 43) to the
magnitude input. Connect AENA1/DIR1 (pin 47) to the sign (direction input). Amplifier signal returns
should be connected to AGND (pin 58). This format requires some parameter changes on PMAC; (See
IX02 and 1x25.). Jumper E17 controls the polarity of the direction output; this may have to be changed
during the polarity test. This magnitude-and-direction mode is suited for driving servo amplifiers that
expect this type of input, and for driving voltage-to-frequency (V/F) converters, such as PMAC's Acc-8D
Option 2 board, for running stepper motor drivers.

If using PMAC to commutate the motor, use two analog output channels for the motor. Each output may
be single-ended or differential, just as for the DC motor. The two channels must be numbered
consecutively, with the lower-numbered channel having an odd number (e.g. use DAC1 and DAC2 for a
motor, or DAC3 and DAC4, but not DAC2 and DAC3, or DAC2 and DAC4). For motor #1 example,
connect DAC1 (pin 43) and DAC2 (pin 45) to the analog inputs of the amplifier. If using the
complements as well, connect DACL/ (pin 45) and DAC2/ (pin 46) the minus-command inputs; otherwise
|eave the complementary signal outputs floating. To limit the range of each signal to +/- 5V, use
parameter 1169.

Amplifier Enable Signal (AENAX/DIRnN)

Most amplifiers have an enable/disable input that permits complete shutdown of the amplifier regardiess
of the voltage of the command signal. PMAC’s AENA line is meant for this purpose. If not using a
direction and magnitude amplifier or voltage-to-frequency converter, use this pin to enable and disable
the amplifier (wired to the enable line). AENAL/DIR1ispin47. Thissignal isan open-collector output
and requires apull up resistor to A+15V. For early tests, thisamplifier signal should be under manual
control. Jumper E17 controls the polarity of the signal. The default is low-true (conducting) enable. For
any other kind of amplifier enable signal, a dry contact of arelay or a solid-state relay can be used:

Installing and Configuring PMAC 27

PMAC Quick Reference Guide

JMACH1 JMACH1
+15V
59 "
+1 [

s | 1% —
. ¥ / To the amplmer
To the amplifier T / L] enable signal

47 | AENAT f enable signal 47| AENA1 ————

In addition, the amplifier enable signal can be controlled manually by setting 1x00=0 and using the
properly defined Mx14 variable.

Amplifier Fault Signal (FAULTnN)

Thisinput can take asignal from the amplifier so PMAC knows when the amplifier is having problems,
and can shut down action. The polarity is programmable with I-Variable 1x25 (1125 for motor #1) and the
return signal isanalog ground (AGND). FAULT1 ispin 49. With the default setup, this signal must be
actively pulled low for afault condition. In this setup, if nothing iswired into thisinput, PMAC will
consider the motor not to be in afault condition. The amplifier fault signal can be monitored using the
properly defined Mx23 variable.

General-Purpose Digital Inputs and Outputs (JOPTO Port)

PMAC' s JOPTO connector (J5 on PMAC PC, Lite, and VME) provides eight general-purpose digital
inputs and eight general-purpose digital outputs. Each input and each output has its own corresponding
ground pin in the opposite row. The 34-pin connector was designed for easy interface to OPTO-22 or
equivalent optically isolated 1/O modules. Acc-21F isasix-foot cable for this purpose. Typicaly, these
inputs and outputs are accessed in software through the use of M-Variables. In the suggested set of M-
Variable definitions, variables M1 through M8 are used to access outputs 1 through 8, respectively, and
M11 through M 18 to access inputs 1 through 8, respectively. This port mapsinto PMAC’s memory space
at'Y address $FFC2.

e TheAcc-21Sisan I/O simulator for the PMAC JOPTO port; it provides eight switch inputs and eight
LED outputs.

e TheAcc-21Sisagood tool for 1/0O simulation and troubleshooting of the JOPTO port in PMAC.

28 Installing and Configuring PMAC

PMAC Quick Reference Guide

Machine Connections Example

Amplifier
Motor Load
+15 Volts Power Supply] o [1
—
; Flags
Encoder Acc-8D or Acc-8P
P?nl# P?tnz# P?n3# P?:# SYMBOL
53 54 39 40 -LIMn
55 56 41 42 HMFLn
51 52 37 38 +LIMn
58 58 58 58 AGND
1 2 1 2 +5V
3 4 3 4 GND
17 18 5 6 CHCn
) 19 20 7 8 CHCn/
N\ 21 22 9 10 CHBn
23 24 11 12 CHBn/
25 26 13 14 CHAn
27 28 15 16 CHAn/
> 43 44 29 30 DACn
45 46 31 32 DACn/
) 47 48 33 34 AENAN/DIRN
) 49 50 35 36 FAULTn
58 58 58 58 AGND
. 58 AGND
59 A+15VIOPT+V
~ 60 A-15V
el -
- . = ””””
O Sy
PMAC installed in adesktop PC Acc-8D

Thisdiagramis just an example of one of the many variations of the machine connections. PMAC jumpers must be
set appropriately following both the appropriate PMAC Hardware Reference and the PMAC User manuals.

Installing and Configuring PMAC 29

PMAC Quick Reference Guide

Software Setup
PMAC has alarge set of initialization parameters (1-Variables) that determine the personality of the card
for a specific application. Many of these are used to configure a motor properly. Using PEWIN, follow

these steps for Software Setup:
1. Fully reset PMAC to ensure a clean memory configuration before start:
$EF*** ;Global Reset

PO..1023=0 QO..1023=0
MO..1023->* MO..1023=0

;Reset P-variables and Q-variables values
;Reset M-variables definitions and values

UNDEFINE ALL ;Undefine Coordinate Systems

SAVE ;Save this initial, clean configuration
2. Definethe safety 1-Variables appropriately (x stands for the motor number, 1 through 8):

Motor Safety [-Variables Range Default Units

IXO0 |Motor x Activate 0.1 0 (1 for Motor 1) |none

IxX11 |Motor x Fatal Following Error Limit |0 .. 8,388,607 32000 1/16 Count

Ix12 |Motor x Warning Following Error 0.. 8,388,607 16000 1/16 Count
Limit

Ix13 [Motor x + Software Position Limit |+/- 2% 0 (Disabled) Encoder Counts

Ix14 [Motor x - Software Position Limit |+/- 2% 0 (Disabled) Encoder Counts

Ix15 |Motor x Abort/Lim Decel Rate Positive floating point |0.25 Counts/msec’

IX16 |Motor x Maximum Velocity Positive floating point |32 Counts/msec

Ix17 |Motor x Maximum Acceleration Positive floating point |0.015625 Counts/msec’

Ix19 |Motor x Maximum Jog Acceleration |Positive floating point |0.015625 Counts/msec’

IXx25 |Motor x Flag Address PMAC X addresses see|x25table |Extended legal PMAC X

addresses

For dual feedback systems:

Number of countsof the position encoder
Unitsof Distanceof the position encoder

_ Number of countsof the velocity encoder

Ix08
Unitsof Distanceof thevelocity encoder

3. Leaveany loads disconnected from the motor at this point.
Test the polarity and functioning of the motor by means of open loop commands. For the open [oop
command to work the overtravel limits must be either disabled (See 1x25) or properly connected.
Type the following in the terminal:
#1010 ; “Pound one, “0” ten” will output 10% of the DAC on motor #1. It
; Is about 0.6V on default settings
; <Observe the motor turning in the positive direction; the position
; window should indicate motor #1 counting up>
#10-10 ; “Pound one, “0” negative ten” will output a negative 10% of the
; DAC on motor #1, about -0.6V
<Observe the motor turning In the negative direction; the position
; window should indicate motor #1 decreasing>
If no motion is observed, slowly increase the percentage of the output command issued. If after 50% no
reaction of the motor occurred, check the DAC outputs following the guidelinesin the previous sections.
4. Perform atuning procedure as described in the PEWIN chapter.
5. After the tuning process has been completed satisfactory, check it by means of the following online
commands:
SAVE ;Save this setup
#1J+ ;Jog Motor #1 continuously in the positive direction
#1J- ;Jog Motor #1 continuously in the negative direction
#1J=2000 ;Jog Motor #1 to a known location
6. Create a PMAC memory backup file as described in the PEWIN chapter.
30 Installing and Configuring PMAC

PMAC Quick Reference Guide

PROGRAMMING PMAC

Programming PMAC is very simple; the ease of use and power is based in the following features:

e A clever interrupt-driven scheme alows every task, each motion program and PLC, to run
independently of each other.

e Pointer M-Variables allow monitoring virtually any register in PMAC's memory from different
sources. motion programs, PLCs or the host computer.

o Communications are activated continuously. At any moment, any variable or status command could
be interrogated.

o Upto eight Axes can be either synchronized together, controlled individually or in any combination
in between.

o Datagathering and reporting functions allows saving data such as motion trajectories, velocity
profiles or any set of variables for later analysis and plot.

PMAC is fundamentally a command-driven device. PMAC performs by issuing it ASCIl command text
strings and generally, PMAC providesinformation to the host in ASCII text strings.

When PMAC receives an a phanumeric text character over one of its ports, it does nothing but place the
character in its command queue. It requires a control character (ASCII vaue 1 to 31) to causeit to take
action. The most common control character used is the carriage return (<CR>; ASCII vaue 13), which
tells PMAC to interpret the preceding set of alphanumeric characters as a command and to take the
appropriate action.

Online Commands

Many of the commands given to PMAC are on-line commands; that is, they are executed immediately by
PMAC to cause some action, change some variable, or report some information back to the host.

Some commands, such as P1=1, are executed immediately if there is no open program buffer, but are

stored in the buffer if oneisopen. Other commands, such as X1000 Y1000, cannot be on-line

commands; there must be an open buffer — even if it isa special buffer for immediate execution. These

commands will be rejected by PMAC (reporting an ERROO5S if 16 isset to 1 or 3) if thereis no buffer

open. Still other commands, such as J+, are on-line commands only and cannot be entered into a

program buffer (unlessin the form of CMD**J+"*, for instance).

There are three basic classes of on-line commands:

1. Motor-specific commands, which affect only the motor that is currently addressed by the host

2. Coordinate-system-specific commands, which affect only the coordinate system that is currently
addressed by the host

3. Globa commands, which affect the card regardless of any addressing modes.

A motor is addressed by a#n command, where n is the number of the motor, with arange of 1 to 8,

inclusive. This motor isthe one addressed until another #n isreceived by the card. For instance, the

command line #1J+#2J- tells Motor 1 to jog in the positive direction, and Motor 2 to jog in the

negative direction. There are only afew types of motor-specific commands. These include the jogging

commands, a homing command, an open loop command, and requests for motor position, velocity,
following error, and status.

Programming PMAC 31

PMAC Quick Reference Guide

A coordinate system is addressed by a &n command, where n is the number of the coordinate system,
with arange of 1to 8, inclusive. This coordinate system stays the one addressed until another &n
command is received by the card. For instance, the command line &1B6R&2B8R tells Coordinate
System 1 to run Motion Program 6 and Coordinate System 2 to run Motion Program 8. Therearea
variety of types of coordinate-system-specific commands. Axis definition statements act on the addressed
coordinate system, because motors are matched to an axisin a particular coordinate system. Sinceitisa
coordinate system that runs a motion control program, all program control commands act on the
addressed coordinate system. Q-Variable assignment and query commands are also coordinate system
commands, because the Q-V ariables themsel ves belong to a coordinate system.

Some on-line commands do not depend on which motor or coordinate system is addressed. For instance,
the command P1=1 setsthe value of P1 to 1 regardless of what isaddressed. Among these global on-line
commands are the buffer management commands. PMAC has multiple buffers, one of which can be open
at atime. When abuffer is open, commands can be entered into the buffer for later execution.

Control character commands (those with ASCII values 0 - 31D) are always global commands. Those that do
not require a data response act on all cards on a serial daisychain. These charactersinclude carriage return
<CR>, backspace <BS>, and severa special-purpose characters. This allows, for instance, commands to be
given to several locations on the card in asingle line, and have them take effect simultaneoudly at the <CR> at
the end of the line (&1R&2R<CR> causes both Coordinate Systems 1 and 2 to run).

Buffered (Program) Commands

Astheir name implies, buffered commands are not acted on immediately, but held for later execution.
PMAC has many program buffers — 256 regular motion program buffers, eight rotary motion program
buffers (1 for each coordinate system), and 32 PLC program buffers. Before commands can be entered
into a buffer, that buffer must be opened (e.g. OPEN PROG 3, OPEN PLC 7). Each program command is
added onto the end of the list of commands in the open buffer; to replace the existing buffer, use the
CLEAR command immediately after opening to erase the existing contents before entering the new ones.
After finishing entering the program statements, use the CLOSE command to close the opened buffer.

Computational Features

I-Variables

I-Variables (initialization, or setup variables) determines the personality of the card for a given
application. They are at fixed locations in memory and have pre-defined meanings. Most are integer
values, and their range varies depending on the particular variable. There are 1024 |-Variables, from 10 to
11023, and they are organized as follows:

10 -- 179: General card setup

180 -- 199: Ceared Resol ver setup
1100 -- 1184: Mot or #1 setup

1185 -- 1199: Coordi nate System 1 setup
1200 -- 1284: Mot or #2 setup

1285 -- 1299: Coordi nate System 2 setup
1 800 -- 1884: Mot or #8 setup

| 885 -- 1899: Coordi nate System 8 setup
1900 -- 1979: Encoder 1 - 16 setup

1980 -- 11023: Reserved for future use

Vaues assigned to an I-Variable may be either a constant or an expression. The commands to do this are
on-line (immediate) if no buffer is open when sent, or buffered program commands if a buffer is open.
Examples:

1120 = 45
1120 = (1120+P25*3)

32 Programming PMAC

PMAC Quick Reference Guide

For I-Variables with limited range, an attempt to assign an out-of-range value does not cause an error.
Thevalueisrolled over automatically to within the range by modulo arithmetic (truncation). For
example, 13 hasarange of 0to 3 (4 possible values). The command 13=5 would actually assign avalue
of 5modulo 4 = 1 to the variable.

On PMACs with battery-backed RAM, most of the |-Variable values can be stored in a2K x 8 EEPROM
IC with the SAVE command. These values are safe here even in the event of a battery-backed RAM
failure, so the basic setup of the board is not lost. After anew valueis given to one of these I-Variables,
the SAVE command must be issued in order for this value to survive a power-down or reset.

The I-Variables that are not saved to EEPROM are held in battery-backed RAM. These variables do not
require a SAVE command to be held through a power-down or reset, and the previous value is not
retained anywhere. These variables are: 119-144, 1x13, 1x14.

On PMACs with flash memory backup (those with Option 4A, 5A, or 5B), al of the |-Variable values can
be stored in the flash memory with the SAVE command. If thereisan EEPROM IC on the board, it is not
used. After anew valueisgivento any I-Variable, the SAVE command must be issued in order for this
value to survive a power-down or reset.

Default valuesfor all I-Variables are contained in the manufacturer-supplied firmware. They can be used
individualy with the 1{constant}=* command, or in arange with the 1 {constant}. .
{constant}=* command. Upon board re-initialization by the $$$*** command or by areset with
E51 in the non-default setting, all default settings are copied from the firmware into active memory. The
last saved values are not lost; they are just not used.

P-Variables

P-Variables are general-purpose user variables. They are 48-bit floating-point variables at fixed locations
in PMAC’s memory, but with no pre-defined use. There are 1024 P-Variables, from PO to P1023. A
given P-Variable means the same thing from any context within the card; all coordinate systems have
access to all P-Variables (contrast Q-Variables, which are coupled to a given coordinate system). This
alows for useful information passing between different coordinate systems. P-Variables can be used in
programs for any purpose desired: positions, distances, velocities, times, modes, angles, intermediate
calculations, etc.

If acommand consisting simply of a constant value is sent to PMAC, PMAC assigns that value to
variable PO. For example, if the command 342<CR> is sent to PMAC, it will interpret it as
P0=342<CR>. This capability isintended to facilitate simple operator terminal interfaces. It does mean,
however, that it is not agood ideato use PO for other purposes, because it is easy to change this
accidentally.

Q-Variables

Q-Variables, like P-Variables, are general -purpose user variables: 48-hit floating-point variables at fixed
locations in memory, with no pre-defined use. However, the meaning of a given Q-Variable (and hence
the value contained in it) is dependent on which coordinate system is utilizing it. This alows several
coordinate systems to use the same program (for instance, containing the line X(Q1+25) Y (Q2), but to do
have different values in their own Q-Variables (which in this case, means different destination points).
Several Q-variables have special uses. The ATAN2 (two-argument arctangent) function uses QO
automatically asits second argument (the cosine argument). The READ command places the values it
reads following letters A through Z in Q101 to Q126, respectively, and a mask word denoting which
variables have been read in Q100. The S (spindle) statement in a motion program places the value
following it into Q127.

Based on that and since atotal of 1024 Q-Variables are shared between potentially eight Coordinate
Systems (128 variables each), the practical range of the Q-Variablesto be used safely in motion programs
istherefore Q1 to Q99.

Programming PMAC 33

PMAC Quick Reference Guide

The set of Q-Variables working within a command depends on the type of command. When accessing a
Q-Variable from an on-line (immediate) command from the host, it is the Q-variable for the currently
host-addressed coordinate system (with the &n command). When accessing a Q-Variable from amotion
program statement, it is the Q-Variable belonging to the coordinate system running the program. If a
different coordinate system runs the same motion program, it will use different Q-variables.

When accessing a Q-Variable from a PLC program statement, it is the Q-Variable for the coordinate
system that has been addressed by that PLC program with the ADDRESS command. Each PLC program
can address a particular coordinate system independent of other PLC programs and independent of the
host addressing. 1f no ADDRESS command is used in the PLC program, the program uses the Q-
Variables for Coordinate System 1.

M-Variables

To permit easy accessto PMAC’'s memory and 1/0O space, M-V ariables are provided. Generally, a
definition must be made only once with an on-line command. On PMACs with battery backup, the
definition is held automatically. On PMACs with flash backup, the SAVE command must be used to
retain the definition through a power-down or reset. The user defines an M-variable by assigning it to a
location and defining the size and format of the valuein thislocation. An M-variable can be a bit, a
nibble (4 bits), abyte (8 bits), 1-1/2 bytes (12 bits), a double-byte (16 hits), 2-1/2 bytes (20 bits), a 24-hit
word, a 48-hit fixed-point double word, a 48-hit floating-point double word, or special formats for dual-
ported RAM and for the thumbwheel multiplexer port.

There are 1,024 M-V ariables (M0 to M1023), and as with other variable types, the number of the M-
variable may be specified with either a constant or an expression: M576 or M (P1+20) when read from;
the number must be specified by a constant when written to.

The definition of an M-Variable is done using the defines arrow (->) composed of the minus sign and
greater than symbols. An M-Variable may take one of the following types, as specified by the address
prefix in the definition:

X: 1 to 24 bits fixed-point in X-memory

Y: 1 to 24 bits fixed-point In Y-memory

D: 48 bits Fixed-point across both X- and Y-memory

L: 48 bits floating-point across both X- and Y-memory

DP: 32 bits fixed-point (low 16 bits of X and Y) (for use in dual-ported RAM)

F: 32 bits floating-point (low 16 bits of X and Y) (for use in dual-ported RAM)

TWD: Multiplexed BCD decoding from Thumbwheel port

TWB: Multiplexed binary decoding from Thumbwheel port

TWS: Multiplexed serial 1/0 decoding from Thumbwheel port

TWR: Multiplexed serial resolver decoding from Thumbwheel port

*: No address definition; uses part of the definition word as general-
purpose variable

If an X or Y type of M-Variable is defined, the starting bit to use, the number of bits, and the format
(decoding method) must be defined also.

Typical M-Variable definition statements are:
M1->Y:$FFC2,8,1
M102->Y:49155,8,16,
M103->X:$C003,0,24,
M161->D:$002B
M191->L:$0822
M50->DP:$D201
M51->F:$D7FF
M100->TWD:4,0.8.3,U

S
S

34 Programming PMAC

PMAC Quick Reference Guide

The M-Variable definitions are stored as 24-bit codes at PMAC addresses Y:$BCO00 (for M0) to Y :$BFFF
(for M1023). For al but the thumbwheel multiplexer port M-Variables, the low 16 bits of this code
contains the address of the register pointed to by the M-Variable (the high 8-bits tell what part of the
addressis used and how it is interpreted).

x Y
#0000
Format Address
o [ofoJoJoTJo
Specified by S$FFFF
assignment PMAC's memory

If another M-V ariable pointsto this part of the definition, it can be used to change the subject register.
The main use of this techniqueisto create arrays of P- and Q-Variables or arraysin dual-ported RAM or
in user buffers (see on-line command DEF INE UBUFFER).

Many M-Variables have a more limited range than PMAC’ s full computational range. If avalue outside
of the range of an M-Variable is placed to that M-Variable, PMAC rolls over the value automatically to
within that range and does not report any errors. For example, with asingle bit M-Variable, any odd
number written to the variable ends up as 1, any even number ends up as 0. If anon-integer valueis
placed in an integer M-Variable, PMAC rounds to the nearest integer automatically.

Once defined, an M-V ariable may be used in programs just as any other variable — through expressions.
When the expression is evaluated, PMAC reads the defined memory location, calculates a value based on
the defined size and format, and utilizes it in the expression.

Care should be exercised in using M-Variablesin expressions. If an M-Variable is something that can be
changed by a servo routine (such as instantaneous commanded position), which operates at a higher
priority the background expression evaluation, there is no guarantee that the value will not change in the
middle of the evaluation. For instance, if in the expression (M16- M17)* (M16+M 17) the M-V ariables
are instantaneous servo variables, the user cannot be sure that M16 or M17 will have the same value both
places in the expression, or that the values for M16 and M 17 will come from the same servo cycle. The
first problem can be overcome by setting P1=M 16 and P2=M 17 right above this, but there is no general
solution to the second problem.

Array Capabilities
Itis possible to use aset of P-Variablesasan array. To read or assign values from the array, simply
replace the constant specifying the variable number with an expression in parentheses.

Example:
P1=10 ; Array index variable
P3=P(P1) ; Same as P3=P10

To write to the array, M-V ariables must be used. An M-Variable defined to the corresponding P-Variable
address will allow changing any P-Variable and therefore the contents of the array.

Example: Vaues 31 to 40 will be assigned to variables P1 through P10

M34->L:$1001 ; Address location of P1
M35->Y:$BC22,0,16 ; Definition word of M34
OPEN PLC 15 CLEAR
P100=31
WHILE (P100!>40) ; From 31 to 40
M34=P100 ; Value is written to the array
P100=P100+1 ; Next value
M35=M35+1 ; Next Array position (next P-variable)
ENDWHILE
DISABLEPLC15 ; This PLC runs only once

Programming PMAC 35

PMAC Quick Reference Guide

CLOSE
ena PLC15 ; Enable the PLC (15 must be 2 or 3)
P1..10 ; List the values of P1 to P10

The same concept applies for Q-Variables and M-Variables arrays, although the address range for them is
different.

Operators

PMAC operators work like those in any computer language: they combine values to produce new values.
PMAC uses the four standard arithmetic operators. +, -, *, and /. The standard algebraic precedence
rules are used: multiply and divide are executed before add and subtract, operations of equal precedence
are executed | eft to right, and operations inside parentheses are executed first.

PMAC aso has the % modulo operator, which produces the resulting remainder when the value in front of
the operator is divided by the value after the operator. Values may be integer or floating point. This
operator is useful particularly for dealing with counters and timers that roll over.

When the modul o operation is done by a positive value X, the results can range from 0 to X (not including
X itself). When the modulo operation is done by a negative value -X, the results can range from -X to X
(not including X itself). This negative modulo operation is useful when aregister can roll over in either
direction.

PMAC hasthree logical operators that do bit-by-bit operations: & (bit-by-bit AND), | (bit-by-bit OR),
and ~ (bit-by- bit EXCLUSIVE OR). If floating-point numbers are used, the operation works on the
fractional aswell astheinteger bits. & has the same precedenceas ™ and /; | and ” have the same
precedence as + and -. Use of parentheses can override the default precedence.

Functions
These perform mathematical operations on constants or expressions to yield new values. The genera
format is:

{function name} ({expression})

The available functions are SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2, SQRT, LN, EXP, ABS, and INT.
The global I-Variable 115 controls whether the units for the trigonometric functions are degrees or radians.

SIN Thisisthe standard trigonometric sine function.
COS Thisisthe standard trigonometric cosine function.
TAN Thisisthe standard trigonometric tangent function.

ASIN Thisistheinverse sine (arc-sine) function with its range reduced to +/-90 degrees.

ACOS Thisistheinverse cosine (arc-cosine) function with its range reduced to 0 -- 180 degrees.

ATAN Thisisthe standard inverse tangent (arc-tangent) function.

ATAN2 |Thisisan expanded arctangent function, which returns the angle whose sine is the expression in
parentheses and whose cosine is the value of QO for that coordinate system.

If doing the calculation in a PLC program, make sure that the proper coordinate system has been addressed
in that PLC program. (Actually, it isonly the ratio of the magnitudes of the two values, and their signs,
that matter in this function). It isdistinguished from the standard ATAN function by the use of two
arguments. The advantage of this function isthat it has afull 360-degree range, rather than the 180-degree
range of the single-argument ATAN function.

LN Thisisthe natural logarithm function (log base €).

EXP Thisisthe exponentiation function (€°).
Note: To implement the y* function, use &' instead. A sample PMAC expression would be
EXP(P2* LN(P1)) to implement the function P1™.

SQRT Thisisthe square root function.

ABS This s the absolute value function.

INT Thisisatruncation function, which returns the greatest integer less than or equal to the argument
(INT(2.5)=2, INT(-2.5)=-3).

36 Programming PMAC

PMAC Quick Reference Guide

Functions and operators can be used either in Mation Programs, PLCs, or as online commands. For
example, the following commands can be typed in aterminal window:

P1=SIN (45) P1 ; Reports the sine value of a 45° angle
1130=1130/2 ; Lower the proportional gain of Motor #1 by half
1125=1125]$20000 ; Disable the end-of-travel limits of Motor #1
Comparators

A comparator evaluates the relationship between two values (constants or expressions). It isused to
determine the truth of a condition in amotion or PLC program. The valid comparators for PMAC are:
(equal to)

(not equal to)

1
> (greater than)

1> (not greater than; less than or equal to)
<

!

(less than)
< (not less than; greater than or equal to)
~ (approximately equal to -- within one)
1~ (not approximately equal to -- at least one apart)
Note that <= and >= are not valid PMAC comparators. The comparators !> and <, respectively, should
be used in their place.

User-Written Phase and User-Written Servo Algorithms

For the sophisticated user with unusual and/or difficult commutation needs, PMAC provides the hooks for
custom user-written commutation (phasing) or servo agorithms. These routines must be writtenin
Motorola 56000 assembly language code, usually on a PC or compatible and cross assembled for the 56000.

Memory Map

PMAC' s processor is the Motorola 56001 DSP. The 56001 has dual data buses, each 24-bits wide, so that
both operands in a calculation may be brought in simultaneously. Each bus has access to a 16-bit address
space (0000hex to FFFFhex), which provides 65,536 24-bit words. One bus and address spaceis called
X, and the other iscalled Y. Therefore, when specifying a single-word memory location, one must use X:
or Y: with the 16-bit address. PMAC’sinput and output is mapped into the same address space with the
memory.

PMAC uses double-word memory for both extended fixed-point values and for floating-point values
(single words are always fixed point). The fixed-point double word locations are specified by aD:
(double), and the floating-point double word locations are specified by an L: (long). This matches the
syntax of M-Variable declarations for these registers.

PMAC addresses may be specified with either decimal or hexadecimal values; the hex values must be
preceded by a$ to be interpreted as hex. For example, Y - $FFCO is the hexadecimal specification, and
Y 265472 isthe decimal specification of the same word address.

M-Variables are defined by providing the word address, the offset, the width, and the format (irrelevant
for bits). Several M-V ariables were defined at the factory to match to inputs and outputs. For instance,
M11 thru M18 were assigned to Machine Inputs 1 thru 8 (M11-M18), and M1 to M8 were assigned to
Machine Outputs 1 thru 8 (MO1-MO8).

The PMAC architecture is very open, allowing the user to examine and use many internal registers.
Usually thisis done through the use of M-V ariables, which point to locations in the memory-1/O space of
the PMAC processor. Once defined to point to the proper location, an M-V ariable can be treated as any
other variable for reading and writing.

Programming PMAC 37

PMAC Quick Reference Guide

Warning:

Certain registers that are under PMAC' s automatic control, particularly those used
in the servo calculations, can cause problemsiif written to them directly.

Range X-Memory Y-Memory Type

$0000 - $00FF Fixed-Use calculation Registers Fixed-Use calculation Registers | Internal DSP
Memory

$0100 - $17FF Fixed-Use calculation Registers Fixed-Use calculation Registers | External Static RAM
(Battery Backed)

$1800 - $BBFF | User Buffer Storage Space User Buffer Storage Space External Static RAM
(Battery Backed)

$BCOO - $BFFF | User-Written Servo Storage M-Variable Definitions External Static RAM
(Battery Backed)

$C000 - $CO3F DSP-Gate Registers

$D000 - $DFFF | Bits0to 15 Bits0to 15 Dual-Ported RAM

$EO000 - $FO00 | VME Setup Registers (bits0to 7) | Mailbox Registers (bits0to 7) VME bus registers

$FO00- $FFFF | N/ A | / O Registers

User Buffer Storage Space

e 256 Motion Programs can be held. All programs must be stopped before any can be opened.

o All programs must be stopped before any can run.

e A PLC program can be opened while others are running.

o Buffers must be defined from end of memory toward beginning. Buffers must be deleted from
beginning of memory to end.

£1800 | PROGmM
PRCHn
A i
PROGE
PLCO
DELETE P
PLC3|
GATHER
&IROTARY

LSROTARY
TRUF
#IBLCOMP

4SBLCOMP
SITCOMP

SETCOMP
L1COMP
DEFINE

4RCOMP
Y $oFFE | UBUFFER

Encoder Conversion Table

PMAC uses a multiple-step process to work with its feedback and master position information, and with
external time-base sources, to provide maximum power and flexibility. For most PMAC users with
quadrature encoders, this process can be virtually transparent, with no need to worry about the details.
However, some users will need to understand this conversion process in some detail to make the changes
necessary to use other types of feedback, to optimize their system, or to perform specia functions. The
PMAC Executive Program for PC-compatible computers has a special editing screen for the conversion
table that makes viewing it and changing it very easy.

38 Programming PMAC

PMAC Quick Reference Guide

Conversion Table Structure

The Encoder Conversion Table has two columns, one in the X memory space of the processor, and onein
the Y memory space. The X-column holds the converted data, while the Y -column holds the addresses of
the source registers, and the conversion methods used on the data in each of those source registers.
Basically, the tableis set up by writing to the Y -column, and PMAC uses the Y -column datato fill up the
X-column each servo cycle.

¥
0720 X

— NN
;:| ’—‘ I_‘ I_I gﬁ;rsgnﬂf;f;; Result value for
. —_—
PMAC's usage

method

Feedback Device

$073F

Servo Algorithms

PMAC's Conversion Table

The encoder conversion table starts at address $720 (1824 decimal) in PMAC’s memory. It can continue
through address $73F (1855 decimal). The active part of the table is ended by thefirst Y word that is all
zeros. The encoder table as shipped from the factory converts the eight incremental encoder registers on
the base PMAC board in locations $720 through $727 (1824 to 1831). Locations $728 and $729 create
time base information from the converted Encoder 4 register ($723). Y:$72A is zero, ending the active
part of the table.

Some conversion types need more than one entry; the other Y -words are further setup parameters for the
conversion. The conversion result is placed in the last (highest address) X-word, and the other X-words
hold intermediate data.

Example:

$728 (1832) $400723 Time-base from converted Enc. 4
$729(1833) $000295 Time-base scae factor for above

The result of thistime base value based on encoder #4 is placed in register X:$0729, the second and last
entry for this conversion.

Further Position Processing

Once the position feedback signals have been processed by the Encoder Conversion Table (which
happens at the beginning of each servo cycle), the datais ready for use by the servo loop. For each
activated motor, PMAC takes the position information in the 24-bit register pointed to by 1x03 and
extends it in software to a 48-bit register that holds the actual motor position. Several other features are
available for conditioning the feedback signal as needed:

e AxisPosition Scaling: in the coordinate system axis definition a scale factor determines the
relationship between encoder counts and user units to be used in motion programs.

e Leadscrew Compensation: a compensation table containing corrective values for errors due to the
leadscrew imperfections can be created for each motor.

e Backlash Compensation: On reversal of the direction of the commanded vel ocity, a pre-programmed
backlash distance is added to or subtracted from the commanded position.

e Torgue Compensation Tables: The table belonging to a motor provides a torque correction to that
motor as a function of that motor’ s position.

Programming PMAC 39

PMAC Quick Reference Guide

PMAC Position Registers

The PMAC Executive position window or the online command P reports the value of the actual position
register plus the position bias register plus the compensation correction register and if bit 16 of Ix05is 1
(handwheel offset mode) minus the master position register:

M175->X:$002A,16,1 ; Bit 16 of 1105
M162->D:$002B ; #1 Actual position (1/[1x08*32] cts)
M164->D:$0813 ; #1 Position bias (1/[1x08*32] cts)
M167->D:$002D ; #1 Present master ((handwheel) pos (1/[1x07*32] cts

; of master or (1/[1x08*32] cts of slaved motor)
M169->D:$0046 ; #1 Compensation correction

(M162 + M164 + M169 — M175* M167)
P100=
1108* 32

P100 will report the same value as the online command P or the position window in the PMAC Executive
program.

The addresses given are for Motor #1. For the registers for another motor x add (x-1)*$3C — (x-1)*60 —

to the appropriate motor #1 address.)

M161->D:$0028 ; #1 Commanded position (1/[Ix08*32] cts)

The motor commanded position registers contain the value in counts where the motor is commanded to

move. It isset through JOG online commands or axis move commands (X10) inside motion programs.

To read thisregister in counts: P161 = ML61 / (1108*32)

M162->D:$002B ; #1 Actual position (1/[1x08*32] cts)

The actual position register contains the information read from the feedback sensor after it has been

converted properly through the encoder conversion table and extended from a 24-bits register to a 48-bits

register.

To read thisregister in counts: P162 = M162 / (1108*32)

M163->D:$080B ; #1 Target (end) position (1/[1x08*32] cts)

This register contains the most recent programmed position and it is called the target position register. If

113>0, PMAC isin segmentation mode and the value of M 163 corresponds to the last interpolated point

calculated.

To read thisregister in counts: P163 = ML63 / (1108*32)

M164->D:$0813 ; #1 Position bias (1/[1x08*32] cts)

o Thisregister contains the offset specified in the axis definition command #1->X + <offset>.

e Theonline command {axis}={constant}or the motion program command PSET adds the
specified offset to the existing M164 offset: M164 = M164 + <new_offset>.

To read thisregister in counts: P164 = ML64 / (1108*32)

M165->L :$081F ; &1 X-axis target position (engineering units)

M 165 contains the programmed axis position through a motion program, X10 for example, in engineering

units. It also gets updated by the online command “{axis}={constant}” or the motion program

command PSET.

M166->X:$0033,0,24,S ; #1 Actual velocity (1/[1x09*32] cts/cyc)

M166 is the actual velocity register. For display purposes use the Motor filtered actual velocity, M174.

To read this register in ctsYmsec: P166 = M166 * 8388608 / (1109 * 32 * 110 * (1160+1))
M167->D:$002D ; #1 Present master ((handwheel) pos (1/[I1x07*32] cts

; of master or (1/[1x08*32] cts of slaved motor)

40 Programming PMAC

PMAC Quick Reference Guide

M167 isrelated to the master/dave relationship set through 1x05 and 1x06. It contains the present number
of counts the master. To read thisregister in counts: P167 = M167 / (1108*32)

or P167 = M167 / (1107*32)
M169->D:$0046 ; #1 Compensation correction

Calculated leadscrew compensation correction according to actual position (M162) and the leadscrew
compensation table set through the define comp command.

To read thisregister in counts:
M172->L:$082B

Example: M172=2000
M173->Y:$0815,0,24,S

J=*

P169 = M169 / (1108*32)
; #1 Variable jog position/distance (counts)

Contains the distance for the J=* command.

;Jog to position 2000 encoder counts

; #1 Encoder home capture offset (counts)

Contains the home offset from the reset/power-on position. Thisisimportant for the capture/compare

features.

Example:

If (ML17=1)
P103=M103-M173

endif

M174->Y:$082A,24

; Captured position minus offset

; #1 Filtered actual velocity (1/[1x09*32]
; cts/servo cycle)

These registers contain the actual velocities averaged over the previous 80 real-time interrupt periods
(80*[18+1] servo cycles); thisis useful for display purposes.

To read thisregister in ctsYmsec: P174 = M174 * 8388608 / (1109 * 32 * 110 * (1160+1))
M175->D:$0840 ; #1 following error (1/[1x08*32] cts)

Following error is the difference between motor desired and measured position at any instant. When the
motor is open loop (killed or enabled), following error does not exist and PMAC reports avalue of 0.

M161-M162+ M164 + M169 - M175* M167
1108* 32

P176 = M175 / (1108*32)

P176 =

To read this register in counts:
Homing Search Moves

If PMAC is not using an absolute feedback sensor that will keep a point of reference on the machine, the
axis should be homed before running a motion program or JOG commands. If a home search procedureis
not performed after power-up\reset, PMAC will consider the power-up\reset position as the zero point
reference.

I-Variable Description I-Variable Description
Ix03 Motor x Position Address 1x26 Motor x Home Offset
1x20 Motor x Jog/Home Acceleration Time | 1902, 1907,.. |Encoder 0 Capture Control (PMAC 1 only)
Ix21 Motor x Jog/Home S-Curve Time 1903, 1908,.. |Encoder 0 Flag Select (PMAC 1 only)
Ix23 Motor x Homing Speed & Direction Ix25 Motor x Flag Address

The flag channel used by 1x25 must match the position feedback channel used by 1x03 (indirectly from
the conversion table).

Description M-Variable Description M-Variable
ENC capture/compare position register Mx03 Fault input status Mx23
ENC 3rd channel input status Mx19 Desired-vel ocity-zero bit Mx33
HMFL input status Mx20 In-position bit Mx40
-LIM input status Mx21 Home-complete bit Mx45
+LIM input status Mx22 Encoder home capture offset (counts) Mx73

Programming PMAC 41

PMAC Quick Reference Guide

Home commands can be issued on the terminal window, a Motion Program or a PLC Program:

HOME1. .8 ;Home axis 1 to 8 iIn a Motion Program. Program is halted
;until home is completed.

#1HM ;Online command for homing motor #1 from the terminal window.

CMD”*#1HM” ;Online command for homing motor #1 from a PLC program.

while (.) ;1T a command statement is used in a PLC, the lines after
;must have a while
endwhile ;loop waiting for the home procedure to complete (see main
;PMAC manual for details).
HOMEZ is similar to these HOME commands but no motion will result in this kind of home search. PMAC
will determine the zero reference home position in the place where the axes are found when HOMEZ is
issued.

Command and Send Statements

Using the COMMAND or CMD statement, online commands could be issued from a PLC or Motion program
having the same result asif they were issued from a host computer or aterminal window. Certain online
commands might not be valid when issued from a running program. For example, aJOG command to a
motor part of a coordinate system running a motion program will beinvalid. It isagood ideato have 16
not set to 2 in early development so it will be known when PMAC has rejected such acommand. Setting
16 to 2 in the actual application can prevent program hang up from afull response queue or from
disturbing the normal host communications protocol.

M essages to a host computer or terminal window can be issued using the SEND command.

If there is no host on the port to which the message is sent, or the host is not ready to read the message,
the message is|eft in the queue. |f several messages back up in the queue this way, the program issuing
the messages will halt execution until the messages are read. Thisis a common mistake when the SEND
command is used outside of an Edge-Triggered condition in a PLC program. On the serial port, it is
possible to send messages to a non-existent host by disabling the port handshaking with [1=1.

If aprogram, particularly a PLC program, sends messages immediately on power-up/reset, it can confuse
a host-computer program (such as the PMAC Executive Program) that is trying to find PMAC by
guerying it and looking for a particular response.

It ispossible, particularly in PLC programs, to order the sending of messages or command statements
faster than the port can handle them. Usually, thiswill happen if the same SEND or CMD command is
executed every scan through the PLC. For thisreason, it is good practice to have at |east one of the
conditions that causes the SEND or CMD command to execute to be set false immediately to prevent
execution of this SEND or CMD command on subsequent scans of the PLC.

42 Programming PMAC

PMAC Quick Reference Guide

MOTION PROGRAMS

PMAC can hold up to 256 motion programs at one time. Any coordinate system can run any of these
programs at any time, even if another coordinate system is already executing the same program. PMAC
can run as many motion programs simultaneously as there are coordinate systems defined on the card (up
to eight). A motion program can call any other motion program as a subprogram, with or without
arguments.

PMAC’s motion program language is perhaps best described as a cross between a high-level computer
language like BASIC or Pascal, and G-Code (RS-274) machine tool language. In fact, it can accept
straight G-Code programs directly (provided it has been set up properly). It hasthe calculational and
logical constructs of a computer language and move specification constructs similar to machine tool
languages. Numerical values in the program can be specified as constants or expressions.

Motion or PLCs programs are entered in any text file to be downloaded afterwards to PMAC. PEWIN
provides a built-in text editor for this purpose but any other text editor could be used conveniently. Once
the code has been written, it can be downloaded to PMAC using PEWIN.

All PMAC commands can be issued from any terminal window communicating with PMAC. Online
commands allow, for example, to jog motors, change variables, report variables values, start and stop
programs, query for status information and even write short programs and PLCs. In fact, the downloading
processis just a sequence of valid PMAC commands sent line by line from a particular text file.

How PMAC Executes a Motion Program

Basically, aPMAC program exists to pass data to the trgjectory generator routines that compute the series
of commanded positions for the motors every servo cycle. The motion program must be working ahead
of the actual commanded move to keep the trajectory generators fed with data.

PMAC processes program lines either in zero, one, or two moves (including DWELLs and DELAYS)

ahead. Calculating one move ahead is necessary in order to be able to blend moves together; calculating a
second move ahead is necessary if proper acceleration and velocity limiting is to be done, or a three-point
splineisto be calculated (SPLINE mode). For linear blended moves with 113 (move segmentation time)
equal to zero (disabled), PMAC calculates two moves ahead, because the velocity and acceleration limits
are enabled here. In all other cases, PMAC is calculating one move ahead.

No M oves Ahead Two Moves Ahead One Move Ahead
Rapid Linear with 113=0 Linear with 113>0
Home Spline 1 Circle
Dwell PVT

bls (step through the program)

Ix92=1 (blending disabled)
When a RUN command is given and every time the actual execution of programmed moves progresses
into anew move, aflagis set saying it istime to do more calculations in the motion program for that
coordinate system. At the next RTI, if thisflag is set, PMAC will start working through the motion
program processing each command encountered. This can include multiple modal statements, calculation
statements, and logical control statements. Program calculations will continue (which means no
background tasks will be executed) until one of the following conditions occurs:

1. Thenext move, aDWELL command or aPSET statement is found and cal cul ated.
2. End of, or halt to the program (e.g. STOP) is encountered.

3. Two jumps backward in the program (from ENDWHILE or GOTO) are performed.
4. A WAIT statement is encountered (usually in aWH I LE loop).

Motion Programs 43

PMAC Quick Reference Guide

If calculations stop on condition 1 or 2, the calculation flag is cleared and will not be set again until actual
motion progresses into the next move (1) or anew RUN command is given (2). If calculations stop on
conditions 3 or 4, the flag remains set, so calculations will resume at the next RTI. Inthese casesthereis
an empty (no-motion) loop, the motion program acts much like a PLC 0 during this period.

If PMAC cannot finish calculating the trajectory for a move by the time execution of that move should
begin, PMAC will abort the program, showing a run-time error in its status word.

Coordinate Systems

A coordinate system in PMAC is agrouping of one or more motors for the purpose of synchronizing
movements. A coordinate system (even with only one motor) can run a motion program; a motor cannot.
PMAC can have up to eight coordinate systems, addressed as& 1 to & 8, in aflexible fashion (e.g. eight
coordinate systems of one motor each, one coordinate system of eight motors, four coordinate systems of
two motors each, etc.).

In general, if certain motors should move in a coordinated fashion, put them in the same coordinate
system. To move them independently of each other, put them in separate coordinate systems. Different
coordinate systems can run separate programs at different times (including overlapping times), or even
run the same program at different (or overlapping) times.

A coordinate system must be established first by assigning axes to motorsin axis definition statements. A
coordinate system must have at |east one motor assigned to an axis within that system, or it cannot run a
motion program, even non-motion parts of it. When a program is written for a coordinate system, if
simultaneous motions are wanted of multiple motors, their move commands are simply put on the same
line and the moves will be coordinated.

Axis Definitions

An axisis an element of a coordinate system. It issimilar to amotor, but not the same thing. An axisis
referred to by letter. There can be up to eight axesin a coordinate system, selected from X, Y, Z, A, B, C,
U, V,and W. Anaxisisdefined by assigning it to amotor with a scaling factor and an offset (X, Y, and
Z may be defined as linear combinations of three motors, as may U, V, and W). The variables associated
with an axis are scaled floating-point values.

In the vast majority of cases, there will be a one-to-one correspondence between motors and axes. That
is, asingle motor is assigned to asingle axisin a coordinate system. Even when thisis the case, however,
the matching motor and axis are not completely synonymous. The axisis scaled into engineering units,
and deals only with commanded positions. Except for the PMATCH function, calculations go only from
axis commanded positions to motor commanded positions, not the other way around.

More than one motor may be assigned to the same axis in a coordinate system. Thisis common in gantry
systems, where motors on opposite ends of the crosspiece are always trying to do the same movement.

By assigning multiple motors to the same axis, a single programmed axis move in a program causes
identical commanded moves in multiple motors. Commonly, thisis done with two motors, but up to eight
motors can be used in this manner with PMAC. Remember that the motors still have independent servo
loops, and that the actual motor positions will not necessarily be exactly the same.

An axisin acoordinate system can have no motors attached to it (a phantom axis), in which case
programmed moves for that axis cause no movement, although the fact that a move was programmed for
that axis can affect the moves of other axes and motors. For instance, if sinusoidal profiles are desired on
asingle axis, the easiest way to do thisisto have a second, phantom axis and program circularly

interpol ated moves.

44 Motion Programs

PMAC Quick Reference Guide

Axis Definition Statements
A coordinate system is established by using axis definition statements. An axisis defined by matching a
motor (which is numbered) to one or more axes (which are specified by letter).

The simplest axis definition statement is something like #1->X. This simply assigns motor #1 to the X
axis of the currently addressed coordinate system. When an X axis move is executed in this coordinate
system, motor #1 will make the move. In addition, the axis definition statement defines the scaling of the
axis user units. For instance, #1->10000X also matches motor #1 to the X axis, but this statement sets
10,000 encoder counts to one X-axis user unit (e.g. inches or centimeters). Usually, this scaling feature is
universally used. Once the scaling has been defined in this statement, the axis can be programed in
engineering units without ever needing to deal with the scaling again.

Permitted Axis Names: X,Y,Z,U,V,W,A B,C

X,Y,Z: Traditionally Main Linear Axes A,B,C: Traditionally Rotary Axes

e Matrix Axis Definition (A rotates about X, B about Y, C about Z)

e Matrix Axis Transformation e Position Rollover (1x27)

e Circular Interpolation U,V,W: Traditionally Secondary Linear Axes
e Cutter Radius Compensation e Matrix Axis Definition

Writing a Motion Program

1. Open aprogram buffer with OPEN PROG {constant} where {constant} isan integer from 1
to 32767 representing the motion program to be opened.

2. Motion Programs 1000, 1001, 1002 and 1003 can contain G-codes, M-codes, T-codes and D-codes
for machine tool G-codes or RS-274 programming method. These buffers can be used for general
PMAC code programming as long as G-codes programming is not needed in PMAC.

3. PMAC can hold up to 256 motion programs at one time. For continuous execution of programs
larger than PMAC’ s memory space, a specia PROGO, the rotary motion program buffers, allow for
the downloading of program lines during the execution of the program and for the overwriting of
aready executed program lines.

4. The CLEAR command empties the currently opened program, PLC, rotary, etc. buffer.

5. Many of the statementsin PMAC motion programs are modal in nature. These include move modes,
which specify what type of trgjectory a move command will generate; this category includes
LINEAR, RAPID, CIRCLE, PVT, and SPLINE.

6. Moves can be specified either incrementally (distance) or absolutely (location) —individually
selectable by axis—with the INC and ABS commands. Movetimes (TA, TS, and TM) and/or speeds
(F), areimplemented in modal commands. Moda commands can precede the move commands they
are to affect, or they can be on the same line as the first of these move commands.

7. The move commands themselves consist of a one-letter axis-specifier followed by one or two values
(constant or expression). All axes specified on the same line will move simultaneously in a
coordinated fashion on execution of the line; consecutive lines execute sequentially (with or without
stops in between, as determined by the mode). Depending on the modes in effect, the specified
values can mean destination, distance, and/or velocity.

8. If themovetimes (TA, TS, and TM) and/or speeds (F) are not declared specifically in the motion
program the default parameters from the I-variables 1x87, 1x88 and 1x89 will be used instead.

Note:

Do not rely on these parameters to declare the move times in the program. This
will keep the move parameters with the move commands, lessening the chances of
future errors, and making debugging easier.

Motion Programs 45

PMAC Quick Reference Guide

9. Inamotion program, PMAC hasWHILE loopsand I F. . ELSE branchesthat control program flow.
These constructs can be nested indefinitely. In addition, there are GOTO statements, with either
constant or variable arguments (the variable GOTO can perform the same function as a CASE
statement). GOSUB statements (constant or variable destination) allow subroutines to be executed
within aprogram. CALL statements permit other programs to be entered as subprograms. Entry to
the subprogram does not have to be at the beginning -- the statement CALL 20.15000 causes entry
into Program 20 at line N15000. GOSUBs and CALLSs can be nested only 15 deep.

10. The CLOSE statement closes the currently opened buffer. This should be used immediately after the
entry of amotion, PLC, rotary, etc. buffer. If the buffer isleft open, subsequent statements that are
intended as on-line commands (e.g. P1=0) will get entered into the buffer instead. It isgood practice
to have close at the beginning and end of any file to be downloaded to PMAC. When PMAC receives
a CLOSE command, it appends a RETURN statement to the end of the open program buffer
automatically. If any program or PLC in PMAC is structured improperly (e.g. no ENDIF or
ENDWHILE to match an IF or WHILE), PMAC will report an ERR003 at the CLOSE command for
any buffer until the problem isfixed.

Example:

close ; Close any buffer opened

delete gather ; Erase unwanted gathered data

undefine all ; Erase coordinate definitions in all coordinate systems

#1->2000X ; Motor #1 is defined as axes X

OPEN PROG 1 CLEAR ; Open buffer to be written

LINEAR ; Linear interpolation

INC ; Incremental mode

TA100 ; Acceleration time is 100 msec

TSO ; No S-curve acceleration component

F50 ; Feedrate is 50 Units per 1x90 msec

X1 ; One unit of distance, 2000 encoder counts

CLOSE ; Close written buffer, program one

Running a Motion Program

1. Select the coordinate system where the motion program will be running. Thisis done by issuing the
& command followed by the coordinate system number, e.g., & 1 for the coordinate system one.

2. Select the program that to run with the B{constant} command, where the {constant}
represents the number of the motion program buffer. Use the B command to change motion
programs, and after any motion program buffer has been opened. It isnot necessary to useit if
running the same motion program repeatedly without modification; when PMAC finishes executing a
motion program, the program counter for the coordinate system is set automatically to point to the
beginning of that program, ready to run it again.

3. Onceitis pointing to the motion program to run, issue the command to start execution of the
program. For continuous execution of the program, use the R command (<CTRL-R> for all
coordinate systems simultaneously). The program will execute all the way through unless stopped by
command or an error condition.

4. To execute just one move or asmall section of the program, use the S command (<CTRL-S> for all
coordinate systems simultaneously). The program will execute to the first move DWELL, DELAY, or
if it first encounters aBLOCKSTART command, it will execute to the BLOCKSTOP command.

46 Motion Programs

PMAC Quick Reference Guide

10.

11.

12.

When aRUN or STEP command isissued, PMAC checks the coordinate system to make sureitisin
proper working order. If it finds anything in the coordinate system is not set up properly, it will

reject the command, sending a<BELL> command back to the host. If I6issetto 1 or 3, it will report
an error number as well telling the reason the command was rejected. PMAC will reject aRUN or
STEP command for any of the following reasons:

A motor in the coordinate system has both overtravel limits tripped (ERRO10)

A motor in the coordinate system is currently executing a move (ERRO011)

A motor in the coordinate system is not in closed-loop control (ERR012)

A motor in the coordinate system in not activated { 1x00=0} (ERR013)

There are no motors assigned to the coordinate system (ERR014)

A fixed (non-rotary) motion program buffer is open (ERR015)

No mation program has been pointed to (ERR016)

After a/ or \ stop command, a motor in the coordinate system is not at the stop point (ERR017)

Before starting the program, issue a CTRL+A command to PMAC to ensure that all the motors will
be potentially in closed loop and that all previous motions are aborted. Also, if in doubt, the
functioning of each motor can be checked individually prior to running a program by means of JOG
commands. For example, #1J72000 will make motor #1 move 2000 encoder counts and that would
confirm if the motors are able to run motion programs or not.

All motorsin the addressed coordinate system have to be ready to run a motion program. Depending
on Ix25, even if one motor defined in the coordinate system is not closing the loop, all motorsin the
coordinate system could be brought down to impede the running of any motion program.

Sometimes the feedrate override for the current addressed coordinate system is set at zero and no
motion will occur asaresult of this. Check the feedrate override parameter by issuing a &1%
command on the terminal window (replace 1 for the appropriate coordinate system number). If itis
zero or too low, set it to an appropriate value. The &1%100 command will set it to 100 %.

For troubleshooting purposes, change the feedrate override to lower than 100% value. If the program
isrun for the first time, a preceding %10 command could be issued to run the motion program in slow
motion. Running the program slowly will allow observing the programmed path more clearly, it will
demand less calculation time from PMAC and it will prevent damages due to potentially wrong

accel eration and/or feedrate parameters.

A motion program can be stopped by sending &1a or, for simplicity, a CTRL+A command which will
stop any motion.

If the motion of any axis becomes uncontrollable and it should be stopped, issue a CTRL+K command
to kill all the motorsin PMAC (disabling the amplifier enable line if connected). However, the motor
might come to a stop in an uncontrollable way and proceed to move due to its own inertia.

A motion program can be stopped also by issuing a CTRL+Q command. The last programmed moves

in the buffer will be completed before the program quits execution. It can be resumed by issuing an
R command alone, without first pointing to the beginning of the buffer by the B command.

Subroutines and Subprograms

It is possible to create subroutines and subprograms in PMAC motion programs to create well-structured
modular programs with re-usable subroutines. The GOSUBx command in a motion program causes a
jump to line label Nx of the same motion program. Program execution will jump back to the command
immediately following the GOSUB when aRETURN command is encountered. This creates a subroutine.

Motion Programs 47

PMAC Quick Reference Guide

The CALLX command in a motion program causes a jump to PROG x, with a jump back to the command
immediately following the CALL when aRETURN command is encountered. If x isan integer, the jump
isto the beginning of PROG x; if thereisafractional component to x, the jump isto line label
N(y*100,000), wherey isthe fractional part of x. This structure permits the creation of special
subprograms, either as a single subroutine, or as a collection of subroutines, that can be called from other
motion programs.

The PRELUDE command allows creating an automatic subprogram call before each move command or
other |etter-number command in a motion program.

Passing Arguments to Subroutines

These subprogram calls are made more powerful by use of the READ statement. The READ statement in
the subprogram can go back up to the calling line and pick off values (associated with other letters) to be
used as arguments in the subprogram. The value after an A would be placed in variable Q101 for the
coordinate system executing the program, the value after aB would be placed in Q102, and so on (Z
value goesin Q126). Letters N or O cannot be passed.

This structure is useful particularly for creating machine tool style programs in which the syntax must
consist solely of letter number combinations in the parts program. Since PMAC treatsthe G, M, T, and D
codes as specia subroutine calls, the READ statement can be used to let the subroutine access values on
the part-program line after the code.

The READ statement also provides the capability of seeing what arguments have actually been passed.
The bits of Q100 for the coordinate system are used to note whether arguments have been passed
successfully; bit Ois 1if an A argument has been passed, bit 1is1if aB argument has been passed, and
so on, with bit 25 set to 1 if aZ argument has been passed. The corresponding bit for any argument not
passed in the latest subroutine or subprogram call is set to 0.

Example:

close delete gather undefine all

#1->2000X

open progl clear
LINEAR INC TA100 TSO F50 ;Mode and timing parameters

gosub 100 H10 ;Subroutine call passing parameter H with value 10
return ;End of the main program section (execution ends)
n100 ;Subroutines section. First subroutine labeled 100
read(h) ;Read the H parameter value passed
IF (Q100 & $80 > 0) ;1T the H parameter has been passed ..

X(Q108) ;Use the H parameter value contained in Q108
endif
return ;End of the subroutine labeled 100
close ;End of the motion program code

G, M, T, and D-Codes (Machine-Tool Style Programs)

PMAC permits the execution of machine tool style RS-274 (G-Code) programs by treating G, M, T, and
D codes as subroutine calls. This permits the machine tool manufacturer to customize the codes for their
own machine, but it requires the manufacturer to do the actual implementation of the subroutines that will
execute the desired actions.

When PMAC encounters the letter G with avalue in amotion program, it treats the command as acall to
motion program 10n0, where n is the hundreds’ digit of the value. The value without the hundreds’ digit
(modulo 100 in mathematical terms) controls the line label within program 10n0 to which operation will
jump —thisvalue is multiplied by 1000 to specify the number of the line label. When areturn statement
is encountered, it will jump back to the calling program.

48 Motion Programs

PMAC Quick Reference Guide

For example: G17 will cause ajump to N17000 of PROG 1000; G117 will cause ajump to N17000 of
PROG 1010; G973.1 will cause ajump to N73100 of PROG 1090.

M-codes are the same, except they use PROG 10n1; T-codes use PROG 10n2; D-codes use PROG 10n3.

Most of the time, these codes have numbers within the range 0 to 99, so only PROGs 1000, 1001, 1002,
and 1003 are required to execute them. For those who want to extend code numbers past 100, PROGs
1010, 1011, etc. will be required to execute them.

Linear Blended Moves

The movetimeis set directly by TM or indirectly based on the the distances and feedrate (F) parameters set:
TM100 or FRAX(X,Y)

X3 Y4
1190-3% + 4% 5000

X3 Y4 F50 ; TM
50 50

o If the move time above calculated isless than the TA time set, the move time used will bethe TA
timeinstead. In this case, the programmed TA (or 2* TS if TA<2* TS) results in the minimum move
time of alinearly interpolated move.

e |f the TA programmed results to be less than twice the TS programmed, TA<2* TS, the TA time used
will be 2* TS instead.

e Theacceleration time TA of ablended move cannot be longer than two times the previous TM minus
the previous TA, otherwise the value 2* (TM- % TA) will be used as the current TA instead.

e The safety variables Ix16 and 1x17 will override these parameters if they are found to violate the
programmed limits.
e If TM < TA, TM = TA
e IFf TA < 2*TS, TA = 2*TS
o IF TAj1 > 2*(TMi- L TA;), TAj = 2*(TM; - %2 TAY)

Example:

=100 msec

N\

-
12 TA ™ 12 TA

Toillustrate how PMAC blends linear moves, a series of velocity Vs time profiles will be shown. The
moves are defined with zero S-curve components. The concepts described here could be used for non-
zero S-curve linear moves.

1. Consider the following motion program code:

close
delete gather
undefine all

time

&1
#1->2000x
OPEN PROG 1 CLEAR
LINEAR ; Linear mode
INC ; Incremental mode
TA100 ; The acceleration time is 100 msec, TA;

Motion Programs 49

PMAC Quick Reference Guide

TSO ; No S-curve component

TM250 ; Move time is 250 msec, TM;

X10 ; Move distance is 10 units, 20000 counts

TA250 ; Acceleration \ deceleration of the blended move is
250 msec , TA,

X40 ; Move distance is 40 units, 80000 counts
CLOSE

2. Thetwo move commands are plotted without blending, placing a DWELLO command in between the

fwo moves:

Twa mowes, no blending
350000

300000

250000

200000

150000

100000

0000

1]

-50000

0.0 0.1 0.z 0. 0.4 0.4 0. o7 (] 0.4 1.0
Time (sec)

3. Thetwo moves are now plotted with the blending mode activated. To find out the blending point,
trace straight lines through the middle point of each acceleration lines of both velocity profiles:

Two blended mowes
50000
300000 P b
250000 22 \
200000 - 2 » \\
150000 {/"' |

4
100000 e !
0000 / oy 1
" .
50000
oo 0.1 0 03 04 05 0.6 0.7 0.3
Time (sec)

Observations

o A TA,
1. Thetotal movetimeisgiven by: T+TM1+TM2+T:5O+250+ 250+125=675 msec

2. Theacceleration of the second blended move can be extended only up to a certain limit, 2* (TM- %2TA):

50 Motion Programs

PMAC Quick Reference Guide

Twa blended moves
50000

200000

250000

200000

1an0on

100000

0000

1]

50000

o.o 0.1 (13 0.z 0.4 0.4 0.6 0.7 0.8
Time (zec)

PMAC looks two moves ahead of actual move execution to perform its acceleration limit and can
recalcul ate these two moves to keep the accel erations under the Ix17 limit. However, there are cases
where more than two moves, some much more than two, would have to be recalculated in order to
keep the accelerations under the limit. In these cases, PMAC will limit the accelerations as much as it
can, but because the earlier moves have been executed aready, they cannot be undone and therefore,
the acceleration limit will be exceeded.

3. When performing a blended move that involves a change of direction, the end point might not be
reached.

Example:

TA100

TM250

100.10 _

X10 ; This would reach only to position = 10-———=
4.250

X-10

Bact and Pk

fiom)

on k| 0z 0 0L 03 0& oz
Tima i nac)

Motion Programs 51

PMAC Quick Reference Guide

In order to reach the desired position, since the move involves a change in direction and stop, smply
place a DWELLO command between moves. This command will disable blending for that particular
move:

TA100
TM250
X10
DWELLO
X-10

4. Sincethevalue of TA determines the minimum time in which a programmed move can be executed,
it could limit the maximum move velocity and therefore the programmed feedrate might not be
reached. Thisis seenin triangular velocity profile moves types, especially when a sequence of short
distance movesis programmed.

Example:

close

delete gather
undefine all

&1
#1->2000X
1190=1000
OPEN PROG 1 CLEAR
LINEAR ; Linear mode
INC ; Incremental mode
TA100 ; Acceleration time is 100 msec, TA;
TSO ; No S-curve component
F40 ; Feedrate is 40 length_units / second
X3 ;™M =—3'Ilgo =@=75msec
40
CLOSE

Since the calculated TM for the given feedrate is 75 msec and the programmed TA for thismoveis 100
msec, the TM used will be 100 msec instead. Thisyields the following feedrate value instead of the
programmed one:

~3.1190 3000 _ unitsof distance

F 30
100 100 second
120000
00000
He—] Programmed
000 feedrate
Vel 000

reached

000 /'K. \\ \ Maximum feedrate

00 L 02
Tima (3ac)

52 Motion Programs

PMAC Quick Reference Guide

To be able to reach the desired velocity, alonger move can be performed split into two sections. The first
move will be executed using a suitable TA to get the motor to move from rest. The second move will
have alower acceleration time TA in order to decrease the move time TM and so reach the programmed
feedrate.

8ﬁE§RPROG 1 e Programmed

LINEAR o 4.-—-—'—""'_._._._._ feedrate
INC e
TSO oo
F40 S0 kY
TA100 40008 .
X3 20000 ,
TA75 — ’
X3 - / k
CLOSE : \

=000

00 Lol LA [} 013 020 0z
Tima [zac]

5. All the previous analysis was performed assuming a zero S curve component. A move executed with
an S curve component will be similar in shape but with rounded sections at the beginning and end of
the acceleration lines.

000
w [T 2
s f':f \\ f .II'\
20000 : /,-‘(% £ ("
— / \ Fi |
N .
a r]
S
i o o 015 0P (o35 [o0ad 035 0w 0us 00
Thea (vec)
T T
T ot T e
.] - -

Motion Programs 53

PMAC Quick Reference Guide

Circular Interpolation

PMAC allowscircular interpolation on the X, Y, and Z-axes in a coordinate system. Aswith linear
blended moves, TA and TS control the acceleration to and from a stop, and between moves. Circular
blended moves can be feedrate-specified (F) or time-specified (TM), just as with linear moves. Itis
possible to change back and forth between linear and circular moves without stopping. When linear
interpolation is needed, enter the LINEAR command and Circlel or Circle2 for circular interpolation.

L Starting point L Starting point ’/ End point

Y Y A
— i z
L 7/

j(inC) X (inc) Y
i (inc)) i /'
| v
0,04 ey
X i (abs) X

X (abs)

1. PMAC performs arc moves by segmenting the arc and performing the best cubic fit on each segment.
I-Variable 113 determines the time for each segment. 113 must be set greater than zero to put PMAC
into this segmentation mode in order for arc movesto be done. If 113 is set to zero, circular arc
moves will be donein linear fashion.

The practical range of 113 for the circular interpolation modeis 5-10 msec. A value of 10 msecis
recommended for most applications, alower than 10 msec 113 value will improve the accuracy of the
interpolation (calculating points of the curve more often) but will also consume more of PMAC's
total computational power.

2. When PMAC is segmenting moves (113 > 0) automatically, which is required for Circular
Interpolation. The Ix17 accelerations limits and the 1x16 velocity limits are not observed.

3. Any axesused in the circular interpolation are automatically feedrate axes for circular moves, even if
they were not so specified in an FRAX command. Other axes may or may not be feedrate axes. Any
non-feedrate axes commanded to move in the same move command will be linearly interpolated so as
to finish in the sametime. This permits easy helical interpolation.

4. The planefor the circular arc must have been defined by the NORMAL command (the default --
NORMAL K-1 -- definesthe XY plane). This command can define only planesin XY Z-space, which
means that only the X, Y, and Z axes can be used for circular interpolation. Other axes specified in
the same move command will be interpolated linearly to finish in the same time. The most commonly
used planes are:

NORMAL K-1 ; XY plane -- equivalent to G17
NORMAL J-1 ; ZX plane -- equivalent to G18
NORMAL 1-1 ; YZ plane -- equivalent to G19

5. To put the program in circular mode, use the CIRCLE1 program command for clockwise arcs (G02
equivalent) or CIRCLEZ2 for counterclockwise arcs (GO3 equivalent). L INEAR will restore PMAC to
linear blended moves. Oncein circular mode, a circular move is specified with a move command
specifying the move endpoint and either the vector to the arc center or the distance (radius) to the
center. The endpoint may be specified either as a position or as a distance from the starting point,
depending on whether the axes are in absolute (ABS) or incremental (INC) mode (individually
specifiable).

X{Data} Y{Data} R{Data} ;Radius of the circle is given
X{Data} Y{Data} I{Data} J{Data} ;Center coordinates of the circle are given

54 Motion Programs

PMAC Quick Reference Guide

6. If thevector method of locating the arc center is used, the vector is specified by its1, J, and K
components (I specifies the component parallel to the X axis, Jto the Y axis, and K to the Z axis).
This vector can be specified as a distance from the starting point (i.e. incrementally), or from the
XYZ origin (i.e. absolutely). The choiceis made by specifying Rinan ABSor INC statement (e.g.
ABS (R) or INC (R)). Thisaffectsl, J, and K specifierstogether. (ABS and INC without
arguments affect all axes, but leave the vectors unchanged). The default is for incremental vector

specification.

7. PMAC'sconvention isto take the short arc path if the R value is positive and the long arc path if Ris

negative:

o If thevalue of R ispositive, the arc to the move endpoint is the short route (<=180 degrees)
o If thevalue of R isnegative, the arc to the move endpoint is the long route (>=180 degrees)

Example 4
circle 1
X290 Y10 E-10

xZz0o

Example 2
circle 1

Ylo R-10

L

| End point (20,10) |

Example 3
circle 2

X20 Y10 B-10

Stariing point {(10,0) |

R=10

Example 1
circle 2
X20 Y10

R-1D0

8. When performing acircular interpolation, the individual axes describe a position Vstime profile close
to asine and cosine shape. Thisistrue also for their velocity and acceleration profiles. Therefore,
circular interpolation makes an ideal feature to described trigonometric profiles. Further, the period
(and so frequency) of the sine or cosine waves can be set by the total move time given by TA+TM.

Cirzular Interpolation

o.o

I k'll.r2CrndD-u:-|:-:l.s-! I

oz o4 06 08 1D 12x 14 16

Time (sec)

1.8

2.0

I Mir 2 Cmd val I

22 24 16

close

delete gather

undefine all

&1

#2->2000Y ;X 1Is phantom
open progl clear

inc

inc (r)
ta300

tsO

tm1000
i113=10
normal k-1
circlel

x0 yO 110
close
&1blr

;TA+TM is period

;X=-Y plane
;clockwise
;complete circle

Motion Programs

55

PMAC Quick Reference Guide

Example:

113=10 ;Move Segmentation Time

NORMAL K-1 ;XY plane Center (10,0}
INC ;Incremental End Point definition

INC (R) ;Incremental Center Vector

definition ! ' &
CIRCLE 1 ;Clockwise circle

X20 YO 110 JO :Arc move
Splined Moves

PMAC can perform cubic splines (cubic in terms of the position vs. time equations) to blend together a
series of pointson an axis. Splining is suited particularly to odd (non-Cartesian) geometries, such as
radial tables and rotary-axis robots, where there are odd axis profile shapes even for regular tip
movements.

In SPLINE1 mode, along moveis split into equal-time segments, each of TA time. Each axisisgivena
destination position in the maotion program for each segment with a normal move command line like
X1000Y2000. Looking at the move command before this and the move command after this, PMAC
creates a cubic position-vs.-time curve for each axis so that there is no sudden change of either velocity or
acceleration at the segment boundaries. The commanded position at the segment boundary may be
relaxed dlightly to meet the velocity and acceleration constraints.

PMAC can work only with integer (millisecond) values for the TA segment times. If a non-integer value
is specified for the TA time, PMAC will round it to the nearest integer automatically. It will not report an
error. Thisrounding will change the speeds and times for the trgjectory.

At the beginning and end of a series of splined moves, PMAC adds a zero-distance segment of TA time
for each axis automatically, and performs the spline between this segment and the adjacent one. This
resultsin a S-curve acceleration to and from a stop.

PMAC's SPLINE2 mode isvery similar to the SPLINEL mode, except that the requirement that the TA
spline segment time remain constant is removed.

PVT-Mode Moves

For the user who desires more direct control over the trajectory profile, PMAC offers Position-Velocity-
Time (PVT) mode moves. In these moves, the axis states are specified directly at the transitions between
moves (unlike in blended moves). This requires more calculation by the host, but allows tighter control
of the profile shape. For each piece of amove, the end position or distance, the end velocity, and the
piece time are specified.

PMAC is put in this mode with the program statement PVT{data}, where {data} is aconstant,
variable, or expression, representing the piece time in milliseconds. This value should be an integer; if it
isnot, PMAC will round it to the nearest integer. The piece time may be changed between pieces, either
with another PVT{data} statement, or with a TA{data} statement. The program istaken out of this
mode with another move mode statement (e.g. LINEAR, RAPID, CIRCLE, SPLINE).

A PVT mode moveis specified for each axis to be moved with a statement of the form
{axis}{data}:{data}, where {axis} isaletter specifying the axis, thefirst {data} isavalue
specifying the end position or the piece distance, depending on whether the axisisin absolute or
incremental mode, respectively, and the second {data} is avalue representing the ending velocity.

56 Motion Programs

PMAC Quick Reference Guide

The units for position or distance are the user length or angle units for the axis, as set in the Axis
Definition statement. The units for velocity are defined as length units divided by time units, where the
length units are the same as those for position or distance, and the time units are defined by variable x90
for the coordinate system (feedrate time units). The velocity specified for an axisis asigned quantity.

From the specified parameters for the move piece, and the beginning position and velocity (from the end
of the previous piece), PMAC computes the only third-order position trajectory path to meet the
constraints. Thisresultsin linearly changing acceleration, a parabolic velocity profile, and a cubic
position profile for the piece.

Since a non-zero end velocity for the move can be specified (directly or indirectly), it isnot agood ideato
step through a program of transition-point moves, and great care must be exercised in downloading these
movesin rea time. With the use of the BLOCKSTART and BLOCKSTOP statements surrounding a series
of PVT moves, the last of which has a zero end velocity, it is possible to use a STEP command to execute
only part of a program.

The PVT modeisthe most useful for creating arbitrary trajectory profiles. It provides a building block
approach to putting together parabolic velocity segments to create whatever overall profileis desired.
The following diagram shows common vel ocity segment profiles. PVT mode can create any profile that
any other move mode can.

PVT mode provides excellent contouring capability, because it takes the interpolated commanded path
exactly through the programmed points. It creates a path known as a Hermite Spline. L INEAR and
SPLINE modes are second and third order B-splines, respectively, which pass to the inside of
programmed points. Compared to PMAC’ s SPLINE mode, PVT produces a more accurate profile.

Mode changer < P Time tin msec A
vel
Axis Letter MOOJ v
X550
- P=—o
Distance P in user end velocity V in 1190
units, calculated < »| user_units per R
from this page 1190 msec . Tl
veld vel4 veld
v Vv
V-t
P=
oVt 3.1190
2-1190
—> —>
t Time Time
veld
> >
t Time Time

Motion Programs 57

PMAC Quick Reference Guide

7y |A A
b 5.V-t ve 5.v.t Vel
v P = Y P =
/'/ 2 61190 2 6190 Vs
\ V-t 4 V-t Vi (/+V)t
L p = P = 12
K/ 1 6.1190 x(1 6.1190 P=—2 -
t 2t Time t 2t Time t Time

Replace 1190 for the appropriate | x90 variable accor ding to coor dinate system x.

Example:
close delete gather undefine all PYT Wove
&1 #1->2000X% 120000
OPEN PROG 1 CLEAR oo
| NC 20000
PVT300 ;Time is 300 msec per section 60000
50 its 300 15000 40000

X5:50 p o U units SRS _ — Suser_units

1190 msec 3 3000 20000

i 1]

X5-0 p- 50 user_unlts. 300 msec _ 15000 — Suser_units

1190 msee 3 3000 e o.o 0.z 0.4 0.6 0.g 1.0 1.2 1.4 1.6
CLOSE Time tsecj

Other Programming Features

Rotary Motion Program Buffers

PMAC has alimited memory space shared for motion programs, PLCs, compensation tables and
gathering buffers. The rotary motion program buffers allow running motion programs larger than the
available space in PMAC's memory.

Motion Program

in a Text File PMAC's Memory
fr——
f i |
J : [} }
—
il:.‘.‘....r .i_‘__ ;;/ .__l
Portion of the ‘f;'-“-"-';'.-‘r e
program Host reads the file - 'E?: " Codeis sentto T $ } Rotary buffer
4' from the hard drive PMAC's buifer

Communication routines provided by Delta Tau have the necessary code to implement this featurein a
host computer.

Internal Time Base, the Feedrate Override
Each coordinate system has its own time base that helps control the speed of interpolated movesin that
coordinate system.

If Ix93 is set at default, this parameter could be changed by different means:

e 06N, where0 < n <100 Online or CMD command that runs all motion commands in slow motion.

e %N, wherel00 < n< 225 Online or CMD command that runs all motion commands proportionally
" faster.
e %0 Online or CMD command that freezes all motions and timing in that C.S.

58 Motion Programs

PMAC Quick Reference Guide

e 9100

e MI197=110

The variable 1x94 controls the rate at which the time base changes: 1x94 =

time in msec.

External Time Base Control (Electronic Cams)

Online or CMD command that restores the real-time reference (1 msec =

1 msec).

Suggested M-Variable for time base change. Equal to 110 is 100%, equal

to 0is0%.

1102
t-22

—S,wheret isthe dew rate

The time reference of each coordinate system can be changed from the default internal reference,
controlled by the % command and variables Mx97, to an external source (usually afrequency reference
from amaster encoder). A simple change of the variable 1x93 alows switching between the internal time
base and an external source. In this fashion, motion programs can be developed and tested running in
real-time (internal time base) and synchronized later to a master frequency when proven to be functional

and compl eted.

—_— s s

Master encoder
generates pulses as
distance is covered
{like a web of material
passing by)

Pulses of the master
are seen by PMAC as
a number that
represent a frequency

The coordinate
system time base is
adjusted every servo
cycle based on the
master frequency

Motion programs in
PMALC are
programmed in time,
TS+ TA+TM and
DELAY

The distances
programmed in PMAC
are covered in the
times specified, TS
and TA+TM

Distance of the slaved coordinate system depends on the

distance covered by the master
The only setup part of thisfeature is an entry in the conversion table that will aso indicate a scale factor
for the maximum frequency that the master can possibly input to PMAC. This maximum frequency will

represent 100% or real time.

Position Following (Electronic Gearing)

PMAC has several methods of coordinating the axes under its control to axes not under its control. The
simplest method is basic position following. Thisisamotor-by-motor function, not a coordinate system
function as time-base following. An encoder signal from the master axis (which is not under PMAC's
control) isfed into one of PMAC' s encoder inputs. Typically, this master signal is either from an open-
loop drive or a handwheel knaob. 1x05 and Ix06 control this function.

Cutter Radius Compensation

PMAC provides the capability for performing cutter (tool) radius compensation on the movesit performs.
This compensation can be performed among the X, Y, and Z-axes, which should be physically
perpendicular to each other. The compensation offsets the described path of motion perpendicular to the
path by a programmed amount. Cutter radius compensation isvalid only in LINEAR and CIRCLE move
modes. The moves must be specified by F (feedrate), not TM (movetime). PMAC must be in move
segmentation mode (113 > 0) to do this compensation. (113 > Oisrequired for CIRCLE mode anyway.)
Program commands CCO, CC1, CC2, CCR and NORMAL control this feature.

Motion Programs 59

PMAC Quick Reference Guide

Synchronous M-Variable Assignment

The scan of amotion program and execution of the commandsin it are governed by the lookahead
feature. PMAC will calculate move commands ahead of time for a proper blending and will execute
every instruction in between immediately. This ahead-of-time situation would make an M-Variable
assignment asynchronous to the motion profiles unless a double equal signisused instead. M1==1, for
example, will indicate to PMAC that the assignment has to take place at the blending point between the
previous move encountered and the next. In LINEAR and CIRCLE mode moves, this blending occurs
V*TA/2 distance ahead of the specified intermediate point, where V is the commanded velocity of the
axis, and TA isthe acceleration (blending) time. Thisisavailable only for M-Variables and are not in the
form TWB, TWD, TWR, TWS.

Synchronizing PMAC to Other PMACs

When multiple PMACs are used together, intercard synchronization is maintained by passing the servo
clock signal from the first card to the others. With careful writing of programs, this permits complete
coordination of axes on different cards.

Axis Transformation Matrices

PMAC provides the capability to perform matrix transformation operations on the X, Y, and Z-axes of a
coordinate system. These operations have the same mathematical functionality as the matrix forms of the
axis definition statements, but these can be changed on the fly in the middle of programs; the axis
definition statements should be fixed for a particular application. The matrix transformations permit
tranglation, rotation, scaling, mirroring, and skewing of the X, Y, and Z-axes. They can be useful for
English/metric conversion, floating origins, making duplicate mirror images, repeating operations with
angle offsets, and more. The matrices are implemented by the use of Q-Variables and DEFINE TBUF,
TSEL, TINIT, ADIS, IDIS, AROT and IROT commands.

Position-Capture and Position-Compare Functions

The position-capture function latches the current encoder position at the time of an external event into a
special register. It isexecuted totally in hardware, without the need for software intervention (although it
is set up, and later serviced, in software). This means that the only delays in the capture are the hardware
gate delays (negligible in any mechanical system), so this provides an incredibly accurate capture
function. The move-until-trigger functions (either jog or motion program) conveniently use the position
capture feature for continuous motions until atrigger condition is reached.

Essentially, the position-compare feature is the opposite of the position-capture function. Instead of
storing the position of the counter when an external signal changes, it changes an external signal when the
counter reaches a certain position.

Learning a Motion Program

It is possible to have PMAC learn lines of a motion program using the on-line LEARN command. In this
operation, the axes are moved to the desired position and the command is given to PMAC. PMAC then
adds a command line to the open motion program buffer that represents this position. This process can be
repeated to learn a series of points.

The motors can be open loop or closed loop as they are moved around.

60 Motion Programs

PMAC Quick Reference Guide

PLC PROGRAMS

PMAC will stop the scanning of the motion program lines when enough move commands have been
calculated ahead of time. Thisfeatureis called look-ahead and it is necessary to properly blend the
moves together and to observe the motion safety parameters. In the following example, PMAC calculates
up to the third move and will stop the program scanning until the first move is completed; that is, when
more move planning is required:

Example:

OPEN PROG 1 CLEAR ; Open program buffer

113=0 ; Two moves ahead of calculation

LINEAR INC TA100 TSO F50 ; Mode commands

X1 ; First Move

X1 ; Second Move

X1 ; Third Move

M1=1 ; This line will be executed only after the
; First move is completed

CLOSE ; Close written buffer, program one

In contrast, enabled PLCs are conti nuously executed from beginning to end regardless of what any other
PLC or Motion program is doing. PLCs are called asynchronous because they are designed for actions
that are asynchronous to the motion.

Also, they are called PLC programs because they perform many of the same functions as hardware
programmable logic controllers. PLC programs are numbered 0 through 31 for both the compiled and
uncompiled PLCs. This means that there can be both a compiled PLC n and an uncompiled PLC n stored
in PMAC. The faster execution of the compiled PL Cs comes from two factors: first, from the elimination
of interpretation time, and second, from the capability of the compiled PLC programs to execute integer
arithmetic. However, the space dedicated to store up to 32 compiled PLC programsis limited to 15K
(15,360) 24-bit words of PMAC memory; or 14K (14,336) words if there is a user-written servo as well.
PL C programs 1-31 are executed in background. Each PLC program executes one scan (to the end or to
an ENDWH I LE statement) uninterrupted by any other background task (although it can be interrupted by
higher priority tasks). In between each PLC program, PMAC will do its general housekeeping, and
respond to a host command, if any. In between each scan of each individua background interpreted PLC
program, PMAC will execute one scan of all active background compiled PLCs. This means that the
background compiled PLCs execute at a higher scan rate than the background interpreted PLCs. For
example, if there are seven active background interpreted PL Cs, each background compiled PLC will
execute seven scans for each scan of a background interpreted PLC. At power-on\reset PLCC programs
run after the first PLC program runs. These are the suggested uses of all the available PLC buffers:

e PLCO: PLCOisaspecial fast program that operates at the end of the servo interrupt cycle with a
frequency specified by variable I8 (every 18+1 servo cycles). Thisprogram is meant for afew time-
critical tasks and it should be kept small, because its rapid repetition can steal time from other tasks.
A PLC O that istoo large can cause unpredictable behavior and can even trip PMAC’ s watchdog
timer by starving background tasks of time to execute.

e PLCCO: The compiled PLCCO should be used in the same instances as PL CO, taking advantage of
the faster execution rate that a compiled PLC provides. Both PLCO and PLCCO can be defined at the
sametime.

e PLC1: Thisisthefirst code that PMAC will run on power-up, assuming that 15 was saved with a
value of 2 or 3. This makes PLC1 the appropriate PLC to initialize parameters, perform commutated
motors phase search and run motion programs. PLC1 can aso disable other PLCs before they start
running and can disable itself at the end of its execution.

PLC Programs 61

PMAC Quick Reference Guide

e PLC2 SincePLCl issuggested asaninitialization PLC (and can run potentially only once on
power-up), PLC2 isthe first PLC in the remaining sequence from 2 to 31. This makes PLC2 the ideal
place to copy digital input information from INO expansion boards like the Acc-34 into itsimage
variables. Thisway, PLCs 3 to 30 could use the input information, writing the necessary output
changes to the outputs image variables.

e PLC3toPLC30: PLC programs are useful particularly for monitoring analog and digital inputs,
setting outputs, sending messages, monitoring motion parameters, issuing commands as if from a
host, changing gains, and starting and stopping moves. By their complete accessto PMAC variables
and |/O and their asynchronous nature, they become very powerful adjuncts to the motion control
programs.

e PLCC3toPLCC30: Compiled PLCsare convenient for its faster execution compared to regular
PLCs. Since the execution rate of compiled PLCsis the same as some of the safety checks (following
error limits, hardware overtravel limits, software overtravel limits, and amplifier faults), PLCCs are
ideal to replace or complement them. However, due to its limited allocated memory space, PLCCs
should be reserved only for faster execution critical tasks.

e PLC3L: Thisisthelast executed PLC in the sequence from 1to 31. PLC31 isrecommended for
copying the output image variable (changed in lower number PLCs executed previoudly) into the
actual outputs of an IN\O expansion board like, for example, the Acc-34A.

Entering a PLC Program

PL Cs are programmed in the same way as motion programs are in a text editor window for later
downloading to PMAC.

Before starting to write the PLC, make sure that memory has not been tied up in data gathering or
program trace buffers, by issuing DELETE GATHER and DELETE TRACE commands.

1. Open the buffer for entry with the OPEN PLC n statement, where n isthe buffer number. Next, if
there is anything currently in the buffer that should not be kept, it should be emptied with the CLEAR
statement (PL C buffers may not be edited on the PMAC itself; they must be cleared and re-entered).
If the buffer is not cleared, new statements will be added onto the end of the buffer.

2. When finished, close the buffer with the CLOSE command. Opening a PLC program buffer
automatically disables that program. After it isclosed, it remains disabled, but it can be re-enabled
again with the ENABLE PLC n command, where n is the buffer number (0--31). 15 must also be set
properly for a PLC program to operate.

3. Atclosing, PMAC checksto make sure all I'F branches and WHILE loops have been terminated
properly. If not, it reports an error, and the buffer isinoperable. Then correct the PLC programin
the host and re-enter it (clearing the erroneous block in the process, of course). This processis
repeated for all of the PLC buffers to be used.

Because all PLC programsin PMAC’s memory are enabled at power-on/reset, it is good practice to have
15 saved as 0 in PMAC's memory when developing PLC programs. Thiswill allow PMAC to be reset
and have no PLCs running (an enabled PLC only runsif |5 is set properly) and recover more easily from a
PL C programming error.

Structure Example:
CLOSE
DELETE GATHER
DELETE TRACE
OPEN PLC n CLEAR
{PLC statements}
CLOSE
ENABLE PLC n

62 PLC Programs

PMAC Quick Reference Guide

To erase an uncompiled PLC program, open the buffer, clear the contents, then close the buffer again.
This can be done with three commands on oneline, asin:

OPEN PLC 5 CLEAR CLOSE
PLC Program Structure

The important thing to remember in writing a PLC program is that each PLC program is effectively in an
infinite loop; it will execute over and over again until told to stop. (These are called PLC because of the
similarity in how they operate to hardware Programmable Logic Controllers — the repeated scanning
through a sequence of operations and potential operations.)

Calculation Statements

Much of the action taken by a PLC is done through variable value assignment statements:

{variable}={expression}. Thevariablescan bel, P, Q, or M-types and the action thus taken can

affect many things inside and outside the card. Perhaps the simplest PL C program consists of one line:
P1=P1+1

Every time the PLC executes, usually hundreds of times per second, P1 will increment by one.

Of course, these statements can get alot moreinvolved. The statement:
P2=M162/(1108*32*10000)*C0S (M262/(1208*32*100))

could be converting radial (M162) and angular (M262) positions into horizontal position data, scaling at

the sametime. Because it updates this frequently, whoever needs access to thisinformation (e.g. host

computer, operator, motion program) can be assured of having current data.

Conditional Statements

Most action in a PLC program is conditional, dependent on the state of PMAC variables, such as inputs,
outputs, positions, counters, etc. Action can be level-triggered or edge-triggered; both can be done, but
the techniques are different.

Level-Triggered Conditions
A branch controlled by alevel- triggered condition is easier to implement. Taking our incrementing
variable example and making the counting dependent on an input assigned to variable M 11, we have:
IF (M11=1)

P1=P1+1
ENDIF
Aslong astheinput istrue, P1 will increment several hundred times per second. When the input goes
false, P1 will stop incrementing.

Edge-Triggered Conditions
To increment P1 once for each time M 11 goes true (triggering on the rising edge of M 11 sometimes
called aone-shot or latched), a compound condition to trigger the action is needed. Then as part of the
action, set one of the conditions false, so the action will not occur on the next PLC scan. The easiest way
to do thisis through the use of a shadow variable which will follow the input variable value. Actionis
taken only when the shadow variable does not match the input variable. Our code would become:
IF (M11=1)
IF (P11=0)
P1=P1+1
P11=1
ENDIF
ELSE
P11=0
ENDIF

Make sure that P11 can follow M11 both up and down. Set P11 to O in alevel-triggered mode.

PLC Programs 63

PMAC Quick Reference Guide

WHILE Loops
Normally a PLC program executes all the way from beginning to end within asingle scan. The exception
to thisrule occursif the program encounters atrue WHILE condition. In this case, the program will
execute down to the ENDWH I LE statement and exit this PLC. After cycling through all of the other
PLCs, it will re-enter this PLC at the WHI LE condition statement, not at the beginning. This process will
repeat as long as the condition istrue. When the WH I LE condition goes false, the PLC program will skip
past the ENDWH I LE statement and proceed to execute the rest of the PLC program.

To increment the counter as long as the input is true and prevent execution of the rest of the PLC
program, program:
WHILE (M11=1)

P1=P1+1
ENDWHILE
This structure makes it easier to hold up PLC operation in one section of the program, so other branches
in the same program do not have to have extra conditions so they do not execute when this condition is
true. Contrast thisto using an IF condition (see above).

COMMAND and SEND Statements

One of the most common uses of PLCsisto start motion programs and Jog motors by means of command
statements.

Some COMMAND action statements should be followed by aWH I LE condition to ensure they have taken
effect before proceeding with the rest of the PLC program. Thisistrueif a second COMMAND action
statement that requires the first COMMAND action statement to finish will follow. (Remember, COMMAND
action statements are processed only during the communications section of the background cycle.) For
example, to stop any motion in a Coordinate System and start motion program 10, the following PLC can
be used:

M187->Y:$0817,17,1 ; &1 In-position bit (AND of motors)
OPEN PLC3 CLEAR
IF (M11=1) ; Input is ON
IF (P11=0) ; Input was not ON last time
P11=1 ; set latch
COMMAND"'&1A™ ; ABORT all motion
WHILE (M187=0) ; wait for motion to stop.
ENDW
COMMAND*'&1B10R"™ ; start program 10
ENDIF
ELSE
P11=0 ; reset latch
ENDIF
CLOSE

Any SEND, COMMAND, or DISPLAY action statement should be done only on an edge-triggered condition,
because the PLC can cycle faster than these operations can process their information, and the communications
channels can get overwhelmed if these statements get executed on consecutive scans through the PLC.

IF (M11=1) ; Input is ON
IF (P11=0) ; Input was not ON last time
COMMAND"" #1J+"" ; JOG motor
P11=1 ; set latch
ENDIF
ELSE
P11=0 ; reset latch
ENDIF

64 PLC Programs

PMAC Quick Reference Guide

Timers

Timing commands like DWELL or DELAY are reserved only to motion programs and cannot be used for
timing purposes on PLCs. Instead, PMAC has four 24-bit timers to write to and count down once per
servo cycle. Thesetimers are at registers X:$0700, Y :$0700, X:$0701, and Y:$0701. Usually asigned
M-Variableis assigned to the timer; avalue is written to it representing the desired time in servo cycles
(multiply milliseconds by 8,388,608/110); then the PLC waits until the M-Variableislessthan 0.

Example:
M90->X:$0700,0,2
M91->Y:$0700,0,2
M92->X:$0701,0,2
M93->Y:$0701,0,2
OPEN PLC3 CLEAR
M1=0
M90=1000*8388608/110
WHILE (M90>0)
ENDWHILE

M1=1

DIS PLC3

CLOSE

AR D

S
S
S
S

Timer register 1 (83886087110 msec)
Timer register 2 (83886087110 msec)
Timer register 3 (83886087110 msec)
Timer register 4 (83886087110 msec)

Reset Outputl before start
Set timer to 1000 msec, 1 second
Loop until counts to zero

Set Output 1 after time elapsed
disables PLC3 execution (needed in this example)

If more timers are needed, the best technique to useisin memory address X:0. This 24-bit register counts
up once per servo cycle. Store a starting value for this, then with each scan subtract the starting value
from the current value and compare the difference to the amount of time to wait.

Example:

MO->X:$0,24

M85->X:$07F0,24

M86->X:$07F1,24

OPEN PLC 3 CLEAR

M1=0

M85=MO

M86=0

WHILE(M86<1000)
M86=MO-M85

M86=M86*110/8388608

ENDWHILE
M1=1
DISABLEPLC3
CLOSE

Servo counter register
Free 24-bit register
Free 24-bit register

Reset Outputl before start
Initialize timer

Time elapsed less than specified time?
Time elapsed so far in milliseconds

Set Output 1 after time elapsed
disables PLC3 execution (needed in this example)

Even if the servo cycle counter rolls over (starts from zero again after the counter is saturated), by
subtracting into another 24-bit register rollover is handled gracefully.

Rollover Example:

MO = 1000

M85 = 16777000

M86 = 1216

Bit [23[22[21]20[19]18[17]16[15][14[13]12[|11][1w0]9[8]7][6]5[4]3]2]1]0

MO |oJof[o]J]oJo[o]J]oJoJoJoJoJofJoJoJaJaJa]1]1]oJ1]o]o]oO

Mes | 1 [1 [1 a1l arJaJafar]JaJafar]aJaJarlo]Jo[1]ofJ1]o]o]oO

Mes| o J]o[o]J]oJoJo]J]oJoJoJ]oJ]oJoJo]J1JoJo]1]1]oJo]JoJoJo]oO
<4— Carry-out bit

PLC Programs 65

PMAC Quick Reference Guide

Compiled PLC Programs

PLCCs are compiled by PEWIN in the downloading process. Only the compiled code gets downloaded
to PMAC. Therefore, save the ASCII source code in the host computer separately since it cannot be
retrieved from PMAC. Compiled PLCs are firmware dependent and so they must be recompiled when
the firmwareis changed in PMAC.

If more than one PLCC is programmed, all the PLCCs code must belong to the same ASCI| text file.
PEWIN will compile all the PLCC code present on the file and place it in the appropriate buffer in
PMAC. If asingle PLCC codeis downloaded, all the rest of the PLCCs that might have been present in
memory will be erased, leaving only the last compiled code.

The multiple-file download feature of the PEWIN File menu allows the PLCC codes to be in different
files. They are combined by PEWIN in the downloading process.

The use of L-Variablesin a PLC program statement tells the compiler that the statement is to be executed
using integer operations instead of floating-point operations.

To implement integer arithmetic in a compiled PLC, define any L-Variables to be used and substitute
them in the programs for the variables that were used in the interpreted form (usually M-Variables). The
compiler will interpret statements containing only L-Variables (properly defined) and integer constants as
operations to be executed using integer arithmetic in compiled PLCs. Preparation of compiled PLCsisa
multi-step process. The basic steps are as follows:

1. Write and debug the PLC programsin interpreted form (simple PLCs programs).
2. Changeall references to PLCs to be compiled from PLC to PLCC.

3. For integer arithmetic, define L-Variables and substitute these for the old variable names in the
programs.

Combine all of the PLC programs to be compiled into one file on the PC.

Make sure the Support MACROS/PL CCs option is checked before downloading.

Activate the compiled PLCs. If operation isnot correct, return to step 1 or 2.

PL CCs can be deleted using the DELETE PLCCn command (replace n by the appropriate number).

N o a b

66 PLC Programs

PMAC Quick Reference Guide

TROUBLESHOOTING

PMAC isahighly reliable device and has several safety mechanisms to prevent continuous damage and
malfunctions. When PMAC shuts down or an erratic behavior is observed, the following reset procedure
should be used.

Resetting PMAC to Factory Defaults

1. If PMAC is communicating with the host computer, skip steps 2-7 on thislist.
2. Turn off PMAC or the host computer where PMAC isinstalled.

3. Remove all cables connected to PMAC leaving connected only the serial port and power cables if
present.

4. Using the appropriate hardware reference for the particular PMAC in question, check that all its
jumpers are at the default configuration or changed properly to accommodate the particular setup for
the machine. Make sure that jumper E50 is properly installed; otherwise any SAVE command issued
to PMAC will not have any effect.

5. Placethe jumper E51 in PMAC (1) or jumper E3 on PMAC2. Thisisahardware re-initialization
jumper.

6. After power-up, try establishing communications again with areliable software package like the
PEWIN program provided by Delta Tau.

7. On power-up, with the re-initialization jumper installed, some PMACs with the flash memory option
will bein bootstrap mode. This means that PMAC will accept a binary file downloaded to change its
internal firmware. If thisisthe case, follow the instructions on the PEWIN screen to disable the
downloading process (usually pressing CTRL +R).

8. Try communications with PEWIN and type the following commands when the terminal is opened
successfully (follow the communications troubleshooting section below in case communications are
still not established):

$EF*F** :Global Reset

PO..1023=0 ;Reset P-variables values

Q0..1023=0 ;Reset Q-variables values

MO..1023->* MO..1023=0 ;Reset M-variables definitions and values
UNDEFINE ALL ;Undefine Coordinate Systems

SAVE ;Save this initial, clean configuration

9. If there-initiaization jumper was installed, remove it at thistime. Restore PMAC in the computer
and power it up.

10. Try communications again and configure PMAC for the application. Make sure there is a backup file
saved in the host computer with all the parameters and programs that PMAC needs to run the
application. Furthermore, since the host computer could also fail and be replaced, save the
configuration file both in the host computer and in afloppy disk stored in asafe place. Thisfile must
be downloaded and a SAVE command must be issued to PMAC.

The Watchdog Timer (Red LED)

The PMAC motion control board has an on-board watchdog timer (sometimes called a dead-man timer or
aget-lost timer) circuit whose job it is to detect a number of conditions that could result in dangerous
malfunction, and shut down the card to prevent a malfunction. The philosophy behind the use of this
circuit isthat it is safer to have the system not operate at all than to have it operate improperly.

Because the watchdog timer wants to fail and many components of the board, both hardware and
software, must be working properly to keep it from failing, it may not be immediately obvious what the
cause of awatchdog timer failureis.

Troubleshooting 67

PMAC Quick Reference Guide

The hardware circuit for the watchdog timer requires that two basic conditions be met to keep it from
tripping. First, it must see a DC voltage greater than approximately 4.75V. If the supply voltage is below
this value, the circuit’ srelay will trip. This prevents corruption of registers due to insufficient voltage.
The second necessary condition is that the timer must see a square wave input (provided by the PMAC
software) of afrequency greater than approximately 25 Hz. If the card, for whatever reason, due either to
hardware or software problems, cannot set and clear this bit repeatedly at this frequency or higher, the
circuit' srelay will trip.

Every RTI, PMAC reads the 12-hit watchdog timer register (Y register $1F) and decrements the value by
8 —thistoggles bit 3. If the resulting value is not less than zero, it copies the result into aregister that
forces the bit 3 value onto the watchdog timer. Repeated, this process provides a square-wave input to the
watchdog timer.

In the background, PMAC executes one scan through an individual PLC program, then checksto see if
there are any complete commands, responding if there are, then executes the housekeeping functions.
Thiscycleisrepeated endlessly.

Most of the housekeeping functions are safety checks such as following error limits and overtravel limits.
When it is done with these checks, PMAC sets the 12-bit watchdog timer register back to its maximum
value. Aslong asthisoccursregularly at least every 512 RTI cycles, the watchdog timer will not trip.

The purpose of this two-part control of the timer isto make sure all aspects of the PMAC software are
being executed, both in foreground (interrupt-driven) and background. If anything keeps either type of
routine from executing, the watchdog will fail quickly. The only recover for thisfailure, assuming the 5V
power supply is satisfactory, isto hardware reset PMAC.

Establishing Communications

Either the Executive or Setup program can be used to establish initial communications with the card.
Both programs have menus that tell the PC where to expect to find the PMAC and how to communicate
with it at that location. If told to look for PMAC on the bus, aso tell it PMAC’ s base address on the bus
(this was set up with jumperson PMAC). If told to look for PMAC on a COM port, tell it the baud rate
(this was set up with jumpers or switches on the PMAC).

Once the program knows where and how to communicate with PMAC, it will attempt to find PMAC at
that address by sending a query command and waiting for the response. If it gets the expected type of
response, it will report that it has found PMAC and can proceed.

If it does not get the expected type of response after several attempts, it will report that it has not found
PMAC. Check thefollowing:

General

1. Isthegreen LED (power indicator) on PMAC's CPU board ON, asit should be? If it isnot, find out
why PMAC isnot getting a +5V voltage supply.

2. Isthered LED (watchdog timer indicator) on PMAC’s CPU board OFF, asit should be? If it is ON,
make sure PMAC is getting very close to 5V supply — at less than 4.75V, the watchdog timer will
trip, shutting down the card. The voltage can be probed at pins 1 and 3 of the J8 connector (A1 and
A2 onthe PMAC VME). If the voltage is satisfactory, inspect PMAC to seethat al inter-board
connections and all socketed ICs are well seated. If the card still will not run with the red LED off,
contact the factory.

68 Troubleshooting

PMAC Quick Reference Guide

Bus Communications

1

Do the bus address jumpers (E91-E92, E66-E71) set an address that matches the bus address that the
Executive program is trying to communicate with?

I's there something else on the bus at the same address? Try changing the bus address to see if
communications can be established at a new address. Usually, Address 768 (300 hex) is open.

Serial Communications

1

Isthe proper port on the PC being used? Make sure that if the Executive program is addressing the
COM1 port, the COM 1 connector has been cabled out.

Does the baud rate specified in the Executive program match the baud rate setting of the E44-E47
jumpers on PMAC?

With a breakout box or oscilloscope, make sure there is action on the transmit lines from the PC
while typing into the Executive program. If not, there is a problem on the PC end.

Probe the return communication line while PMAC receives a command that requires a response
(e.g. <CONTROL-F>). If thereisno action, change jumpers E9-E16 on PMAC to exchange the
send and receive lines. If thereis action, but the host program does not receive characters, RS-232
could be receiving circuitry that does not respond at all to PMAC s RS-422 levels. If thereis
another model of PC, try using it as atest (most models accept RS-422 levels quite well). If the
computer will not accept the signals, alevel-conversion device, such as Acc-26 may be needed.

Motor Parameters

1

No movement at al. Check the following:

a. Areboth limits held low to AGND and sourcing current out of the pins?

Isthere proper supply to A+15V, A-15V, and AGND?

Isthe proportional gain (1x30) greater than zero?

Can any output be measured at the DAC pin when an O command has been given?

Isthe following error limit being tripped? Increase the fatal following error limit (Ix11) by setting
it to amore appropriate value, and try to move again.

Movement, but sluggish. Check the following:

a. Isproportional gain (1x30) too low? Try increasing it (aslong as stability is kept).

b. Isthebig step limit (Ix67) too low? Try increasing it to 8,000,000 -- near the maximum -- to
eliminate any effect.

c. Istheoutput limit (Ix69) too low? Try increasing it to 32,767 (the maximum) to make sure
PMAC can output adequate voltage.

d. Cananintegrator help? Try increasing integral gain (1x33) to 10,000 or more and the integration
limit (Ix63) to 8,000,000.

Runaway condition. Check the following:

a. Istherefeedback? Check that the position changes can be read in both directions.

b. Doesthe feedback polarity match output polarity? Recheck the polarity match as explained
above.

Brief movement, and then stop. Check the following:

a. Isthefollowing error limit being tripped? Increase the fatal following error limit (1x11) by
setting it to amore appropriate value, and try to move again.

© 2 0 T

Troubleshooting 69

PMAC Quick Reference Guide

If holding position well, but cannot move the motor, probably the hardware limits are not being held low.
Check which limits 1125 is addressed to (usually +/-LIM1), then make sure those points are held low (to
AGND), and sourcing current (unscrew the wire from the terminal block and put the ammeter in series
with this circuit to confirm this). Refer to the section Installing and Configuring PMAC for details on
checking the limit inputs.

If the motor dies after it has been given a JOG command, the fatal following error limit has been
exceeded. If this has happened, it is either because a move has been requested that is more than the
system can physically do (if so, reduce 1122), or because it is very badly tuned (if thisis the case, increase
proportional gain 1130). To restore closed-loop control, issue the J/ command.

Motion Programs

If the program does not run at all, there are several possibilities:

1. Canthe program be listed? Intermina mode, type LIST PROG 1 (or whichever program), and seeif
itisthere. If not, try to download it to the card again.

2. Isthe program buffer closed? Type A just in case the program is running; type CLOSE to close any
open buffer; type B1 (or the program #) to point to the top of the program; and type R to try to run it
again.

3. Can each motor in the coordinate system be jogged in both directions? If not, review that motor’s
setup.

4. Have any motors been assigned to the coordinate system that is not really set up yet? Every motor in
the coordinate system must have its limits held low, even if there is no real motor attached.

Try the following steps for any other motion program problem:

1. Type&1%100 in the terminal window.

2. Check that only one of the motors can be jogged that is to be used in the motion program.

3. Typethefollowing commandsin atext editor to be downloaded to PMAC:

close ; Close any buffer opened

delete gather ; Erase unwanted gathered data

undefine all ; Erase coordinate definitions in all coordinate systems
#1->2000X ; Replace #1 for the motor being used and 2000 by the

; appropriate scale factor for the number of counts
; per user units

OPEN PROG 1 CLEAR ; Prepare buffer to be written

LINEAR ; Linear interpolation

INC ; Incremental mode

TA500 ; Acceleration time is 500 msec

TSO ; No S-curve acceleration component

TM2000 ; Total move time is 500 + 2000=2500 msec
X1 ; One unit of distance, 2000 encoder counts
CLOSE ; Close written buffer, program one

4. Torunit, press CTRL+A and then type B1R in the terminal window.

5. Repeat steps 2 through 4 for all the motors intended to run in the actual motion program.

A good method to test motion programsisto run them at lower than one hundred percent override rate.
Any value for n from 1 to 100 in the %n online command will run the motion programs slower, increasing
the chances of success of execution. For example, in the termina window type: &1 %75 B1R

If aprogram runs successfully at lower feedrate override values, there can be mainly two reasons why it
failsat 100%: either thereisinsufficient calculation time for the programmed moves or the acceleration
and\or velocity parameters involved are unsuitable for the machine into consideration. Look for further

details in the PMAC Tasks section.

70 Troubleshooting

PMAC Quick Reference Guide

PLC Programs

PL Cs and PLCCs are one of the most common sources for communication or watchdog timer failures.

Any SEND, COMMAND, or DISPLAY action statement should be done only on an edge-triggered
condition, because the PL C can cycle faster than these operations can process their information, and the
communications channels can get overwhelmed if these statements are executed on consecutive scans
through the PLC.

IF (M11=1) ; Input is ON
IF (P11=0) ; Input was not ON last time
COMMAND"" #1J+"" ; JOG motor
P11=1 ; set latch
ENDIF
ELSE
P11=0 ; reset latch
ENDIF

PL CO or PLCCO should be used for only afew tasks (usually a single task) that must be done at a higher
frequency than the other PLC tasks. The PLC 0 will execute every real-time interrupt as long as the tasks
from the previous RTI have been completed. PLC 0 is potentially the most dangerous task on PMAC as
far as disturbing the scheduling of tasksis concerned. If it istoo long, it will starve the background tasks
for time. Thefirst thing noticed is that communications and background PLC tasks will become sluggish.
In the worst case, the watchdog timer will trip, shutting down the card, because the housekeeping task in
background did not have the time to keep it updated.

Because all PLC programsin PMAC’s memory are enabled at power-on/reset, it is good practice to have
15 saved as 0 in PMAC's memory when developing PLC programs. Thiswill allow PMAC to be reset,
no PLCs running (an enabled PLC only runsif 15 is set properly) and recover more easily fromaPLC
programming error.

As an example, type these commands in the terminal window. After that, open a watch window and
monitor for P1 to be counting up:

OPEN PLC1 CLEAR ; Prepare buffer to be written
P1=P1+1 ; P1 continuously incrementing
CLOSE ; Close written buffer, PLC1
15=2

Press <CTRL+D> and type ENA PLC1l

Troubleshooting 71

PMAC Quick Reference Guide

72

Troubleshooting

PMAC Quick Reference Guide

APPENDIX A - PMAC ERROR CODE SUMMARY

16, Error Reporting Mode:

This parameter controls how PMAC reports errorsin command lines. When I6issetto 0 or 2, PMAC
reports an error with a<BELL> character only. When 16is0, the <BELL> character is given for invalid
commands issued both from the host and from PMAC programs (using CMD"*{command}'"). When |16
is 2, the <BELL> character is given only for invalid commands from the host; there is no response to
invalid commands issued from PMAC programs. In no mode is there a response to valid commands
issued from PMAC programs.

When 16 isset to 1 or 3, an error number message can be reported along with the <BELL> character. The
message comes in the form of ERRnnn<CR>, where nnn represents the three-digit error number. If I3 is
set to 1 or 3, thereisa<LF> character in front of the message.

When 6 is set to 1, the form of the error message is<BELL>{error message}. Thissettingisthe
best for interfacing with host-computer driver routines. When 16 is set to 3, the form of the error message
is<BELL><CR>{error message}. Thissetting isappropriate for use with the PMAC Executive
Program in terminal mode.

Currently, the following error messages can be reported:

Error Problem Solution
ERROO1 | Command not allowed during program execution | (should halt program execution before issuing command)
ERROOZ2 | Password error (should enter the proper password)
ERROO3 | Data error or unrecognized command (should correct syntax of command)
ERROO4 | lllegal character: bad value (>127 ASCII) or seria | (should correct the character and or check for noise on the
parity/framing error serial cable)
ERROO5 | Command not allowed unless buffer is open (should open a buffer first)
ERROO6 | No room in buffer for command (should allow more room for buffer -- DELETE or CLEAR
other buffers)
ERROO7 | Buffer already in use (should CLOSE currently open buffer first)
ERROO8 | MACRO Link error Register X:$0798 holds the error value
ERROQO9 | Program structural error (e.g. ENDIF without 1F) | (should correct structure of program)
ERRO10 | Both overtravel limits set for amotor in the C.S. (should correct or disable limits)
ERRO11 | Previous move not completed (should Abort it or allow it to complete)
ERRO12 | A motor in the coordinate system is open-loop (should close the loop on the motor)
ERRO13 | A motor in the coordinate systemis not activated | (should set 1x00 to 1 or remove motor from C.S))
ERRO14 | No motorsin the coordinate system (should define at least one motor in C.S.)
ERRO15 | Not pointing to valid program buffer (should use B command first, or clear out scrambled
buffers)
ERRO16 | Running improperly structured program (e.g. (should correct structure of program)
missing ENDWHILE)
ERRO17 | Trying to resume after / or \ with motors out of (should use J= to return motor[s] to stopped position)

stopped position

Appendix A —PMAC Error Code Summary

73

PMAC Quick Reference Guide

74

Appendix A —PMAC Error Code Summary

PMAC Quick Reference Guide

APPENDIX B — PMAC I-VARIABLES SUMMARY

Global I-Variables Range Default |Units
I1 |Serial Handshake Line Disable 0..3 0 None
12 | Control Panel Disable 0.3 1 None
I3 |1/0 Handshake Mode 0.3 1 None
14 | Communications Checksum Enable 0.3 0 None
I5 |PLC Programs On/Off 0.3 0 None
16 |Error Reporting Mode 0.3 3 None
I7 |In-Position # of Consecutive Cycles 0..255 0 Background computation cycles
(minus one)
I8 |Real Time Interrupt Period 0..255 2 Servo Interrupt Cycles
19 |Full/Abbrev. Listing Form 0.3 2 None
110 |Servo Interrupt Time 0..8,388,607 | 3713707 |1/8,388,608 msec
111 |Program Move Calc. Time 0.. 8,388,607 0 Msec
112 | Jog-to-Pos. Calc. Time 1.. 8,388,607 10 Msec
113 | Programmed Move Segmentation Time | O .. 8,388,607 0 Msec
114 | Auto Position Match On Run Enable 0.1 1 None
115 | Deg/Radians for User Trig 0.1 0 (degrees) |None
116 |Rotary Buffer Request On Point 0 .. 8,388,607 5 Command lines.
117 |Rotary Buffer Request Off Point 0.. 8,388,607 10 Program lines
118 | Fixed Buffer Full Warning Point 0 .. 8,388,607 10 Long Memory Words
Data Gathering I-Variables Range Default |Units
119 | Data Gathering Period (In Servo 0.. 8,388,607 1 Servo Interrupt Cycles
Cycles)
120 | Data Gathering Selection Mask $000000 .. $0 None
$FFFFFF
121 | Data Gathering Source 1 Address $000000 .. $0 Modified PMAC addresses
$FFFFFF
122- | Data Gathering Source 2 thru 24 $000000 .. $0 Modified PMAC addresses
144 | Addresses $FFFFFF
145 | Data Gathering Buffer Location And 0.3 0 None

Mode

Appendix B —PMAC |-Variables Summary

75

PMAC Quick Reference Guide

Other Global |-Variables Range Default Units
147 | Address Of Pointer For Control-W $0000 .. $FFFF $0 Legal PMACY addresses
Command (0.. 65,535)
148 |DPRAM Servo Data Enable 0.1 0 None
149 | DPRAM Background Data Enable 0.1 0 None
150 |RAPID Mode Control 0.1 1 None
151 | Leadscrew Compensation Enable 0.1 0 None
152 |Feed Hold Slew Rate 0.. 8,388,607 37137 110 units/ segmentation period
153 | Program Step Mode Control 0.1 0 None
155 | DPR Background Data buffer enable 0.1 0 None
156 | DPRAM Communications Interrupt 0.1 0 None
Enable
157 | DPRAM Binary Rotary Buffer Enable 0.1 0 None
158 |DPRAM ASCIlI Communications 0.1 0 None
Enable
159 |DPRAM Buffer Max Motor/CS 0.8 0 None
Number
160 |Auto-Converted ADC Register Address| 0, $FFDO .. 0 PMACY addresses
$FFFE
161 | Number of Auto-Converted ADC pair 0.7 0 Number of registers minus 1
Registers
162 |Internal Message Carriage Return 0.1 0 None
Control
163 | Control-X Echo Enable 0.1 0 None
164 |Internal Response Tag Enable 0.1 0 None
I18x | Motor x 3rd Resolver Gear Ratio 0.. 4095 0 Second-resolver turns per third-
resolver turn
189 |Cutter Comp Outside Corner Break -1.0--1.0 0.99848 (cos 1°) |cos Dq
Point
190 |Minimum Arc Angle Non-negative 0 (sets2-20) | Semi-circles (p radians; 180
floating point degrees)
19x | Motor x 2nd Resolver Gear Ratio 0.. 4095 0 Primary-resolver turns per
second-resolver turns
199 |Backlash Hysteresis 0..8,388,607 | 64 (=4 counts) | 1/16 Count
Motor Definition I-Variables Range Default Units
IX00 | Motor x Activate 0.1 1 (for motor #1) | None
IX01 | Motor x PMAC-Commutate Enable 0.1 0 None
IX02 | Motor x DAC Address PMAC addresses | SeeIx02 table | Extended legal PMAC X and Y
addresses
IX03 | Motor x Position Address PMAC X See encoder | Extended legal PMAC X
addresses table addresses
IX04 | Motor x 'Velocity' Address PMAC X Same as Ix03 |Legal PMAC X addresses
addresses
IX05 | Motor x Master Position Address PMAC X $073F Lega PMAC X addresses
addresses
IX06 | Motor x Master Follow Enable 0.1 0 None
IX07 | Motor x Master Scale Factor -8,388,608 .. 96 None
8,388,607
IX08 | Motor x Position Scale Factor 0.. 8,388,607 96 None
IX09 | Moator x Velocity Scale Factor 0.. 8,388,607 96 None
I1X10 | Motor x Power-on Servo Position PMAC addresses $0 Extended PMAC or multiplexer-
Address port addresses
76 Appendix B —PMAC |-Variables Summary

PMAC Quick Reference Guide

Motor Safety I-Variables Range Default Units
IxX11 |Motor x Fatal Following Error 0.. 8,388,607 32000 1/16 Count
Limit
Ix12 |Motor x Warning Following Error | 0 .. 8,388,607 16000 1/16 Count
Limit
Ix13 |Motor x + Software Position Limit + 247 0 (Disabled) |Encoder Counts
Ix14 |Motor x - Software Position Limit +247 0 (Disabled) |Encoder Counts
Ix15 |Motor x Abort/Lim Decel Rate Positive floating 0.25 Counts/msec2
point
Ix16 |Motor x Maximum Vel ocity Positive floating 32 Counts/msec
point
Ix17 |Motor x Maximum Acceleration | Positive floating 0.015625 | Counts/msec2
point
Ix19 |Motor x Maximum Jog Positive floating 0.015625 | Counts/msec2
Acceleration point
Motor Movement I-Variables Range Default [Units
Ix20 |Motor x Jog/Home Acceleration 0.. 8,388,607 O(solx21 |Msec
Time controls)
Ix21 |Motor x Jog/Home S-Curve Time | 0.. 8,388,607 50 Msec
Ix22 |Motor x Jog Speed Positive floating 32 Counts/ msec
point
Ix23 | Motor x Homing Speed & Floating point 32 Counts/ msec
Direction
Ix25 |Motor x Flag Address PMAC X See Ix25 table | Extended legal PMAC X addresses
addresses
IX26 |Motor x Home Offset -8,388,608 .. 0 1/16 Count
8,388,607
Ix27 | Motor x Position Rollover Range 0.. 8,388,607 0 Counts
Ix28 |Motor x In-Position Band 0 .. 8,388,607 160 (=10 |1/16 Count
counts)
Ix29 |Motor x DAC/1st Phase Bias -32,768 .. 32,767 0 DAC Bits
Servo Control |-Variables Range Default |Units
Ix30 |Motor x Proportional Gain -8,388,608 .. 2000 (I1x08/219) DAC hits/Encoder count
8,388,607
IX31 |Motor x Derivative Gain -8,388,608 .. 1280 (Ix30*1x09)/226 DAC
8,388,607 bits/(Counts/cycle)
Ix32 |Motor x Velocity Feed Forward 0.. 8,388,607 1280 (Ix30*1x08)/226 DAC
Gain bits/(Counts/cycle)
X33 |Motor x Integral Gain 0.. 8,388,607 0 (Ix30*1x08)/242 DAC
bits/(counts* cycles)
Ix34 |Motor x Integration Mode 0.1 1 none
Ix35 |Motor x Acceleration Feed 0.. 8,388,607 0 (Ix30*1x08)/226 DAC
Forward Gain bits/(counts/cycle?)
Ix36 |Motor x PID Notch Filter -2.0..+20 0 none (actual z-transform coefficient)
Coefficient N1
Ix37 |Motor x PID Notch Filter -2.0..+20 0 none (actual z-transform coefficient)
Coefficient N2
Ix38 |Motor x PID Notch Filter -2.0..+20 0 none (actual z-transform coefficient)
Coefficient D1
Ix39 |Motor x PID Notch Filter -2.0..+20 0 none (actual z-transform coefficient)
Coefficient D2
Ix40- | Motor x Extended Servo Loop I-
IX66 |Variable

Appendix B —PMAC |-Variables Summary

77

PMAC Quick Reference Guide

Motor Servo Loop Modifiers Range Default Units
IX57 | Motor x Continuous Current Limit 0..32,767 0 Bits of a 16-bit DAC
IX58 |Motor x Integrated Current Limit 0.. 8,388,607 0 230 (DAC hits)2 * servo cycles
IX59 | Motor x User Written Servo 0.3 0 None
Enable
Ix60 |Motor x Servo Cycle Period 0..255 0 Servo Interrupt Periods
Extension
Ix63 |Motor x Integration Limit -8,388,608 .. 4194304 1/16 count
8,388,607
Ix64 | Motor x 'Deadband Gain' -32,768 .. 32,767 0 (no None
deadband)
Ix65 |Motor x Deadband Size 0..32,767 16 (=1 count) | 1/16 count
IX67 |Motor x Position Error Limit 0.. 8,388,607 4,194,304 | 1/16 count
IX68 |Moator x Friction Feedforward -32,768 .. 32,767 0 DAC hits
IX69 |Motor x DAC Limit 0..32,767 20,480 DAC hits
(~6.25V)
Commutation |-Variables Range Default Units
IX70 | Motor x Number of Commutation 0..255 1 Commutation cycles
Cycles
IX71 |Motor x CountsyN Commutation 0.. 8,388,607 1000 Counts
Cycles
IX72 | Motor x Commutation Phase 0..255 85 (=120° €) |360/256 elec. deg. (/256
Angle commutation cycle)
IX73 |Motor x Phase Finding Value 0..32,767 0 bits of 16-bit DAC
IX74 | Motor x Phase Finding Time 0..255 0 Servo Interrupt Cycles (for Ix80=0
orl)
Servo Interrupt Cycles* 256 (for
IX80=2or 3)
IX75 |Motor x Power-On Phase Position | -8,388,608 -- 0 Encoder counts* Ix70
Offset 8,388,607
IX76 |Motor x Velocity Phase Advance 0.. 8,388,607 0 Angle/Ve
Gain
IX77 | Motor x Magnetization Current -32,768 .. 32,767 0 DAC hits
IX78 |Motor x Slip Gain 0.. 8,388,607 0 238 (electrical cycles/update)/DAC
bit
IX79 |Motor x 2nd Phase DAC Bias -32,768 .. 32,767 0 DAC bits
IX80 |Mator x Power On Mode 0.3 0 none
IX81 |Motor x Power-On Phase Position | PMAC addresses $0 Extended PMAC or multiplexer-port
Address addresses
Ix83 |Motor x Ongoing Position PMAC addresses| see Ix83 table |Legal PMAC X' and 'Y' addresses
Address
Further Motor |-Variables Range Default |Units
Ix85 |Motor x Backlash Takeup Rate 0.. 8,388,607 0 (1/16 Counts) / Background Cycle
IX86 |Motor x Backlash Size 0.. 8,388,607 0 1/16 Count
78 Appendix B —PMAC |-Variables Summary

PMAC Quick Reference Guide

Coordinate System |- Range Default |Units
Variables
Ix87 |C.S. x Default Acceleration Time 0.. 8,388,607 0(so1x88 |Msec
controls)
Ix88 |C.S. x Default S-Curve Time 0 .. 8,388,607 50 Msec
Ix89 |C.S. x Default Feedrate Positive floating 1000 (User position units)/(feedrate time
point units)
IX90 |C.S. x Feedrate Time Units Positive floating 1000.0 Msec
point
IxX91 |C.S. x Default Working Program 0..32,767 0 Motion Program Numbers
Number
IX92 |C.S. x Move Blend Disable 0.1 0 None
Ix93 |C.S. x Time Base Address PMAC "X" | Seelx93table |Legal PMAC addresses
addresses
IxX94 |C.S. x Time Base Slew Rate 0.. 8,388,607 1644 2-23msec/ servo cycle
IX95 |C.S. x FeedHold Decel Rate 0.. 8,388,607 1644 2-23msec/servo cycle
IX96 |C.S. x Circle Error Limit Positivefloating | O (function | User length units
point disabled)
IX98 | Coordinate System x Maximum Non-negative 0 None
Feedrate floating-point
Encoder/Flag Setup |- Range Default | Units
Variables
1900, |Encoder 0 Decode Control 0..15 7 None
1905,..
1901, |Encoder 0 Delay Filter Disable 0.1 0 None
1906,..
1902, |Encoder 0 Capture Control 0..15 1 None
1907,..
1903, |Encoder O Flag Select 0.3 0 None
1908,..
MACRO Support I-Variables Range Default Units
11000 |MACRO Node Auxiliary Register | 0.. $FFFF (O .. $0 None
Enable 65,535)
11001 |MACRO Ring Check Period 0..255 0 Servo cycles
11003 |MACRO Type 1 Master/Slave 0..255 0 Servo cycles
Comm. Timeout
11004 |MACRO Ring Error Shutdown 0 MACRO ring errors
Count
11005 |MACRO Ring Sync Packet 0..65,535 MACRO sync packets
Shutdown Count

Appendix B —PMAC |-Variables Summary

79

PMAC Quick Reference Guide

80

Appendix B —PMAC |-Variables Summary

PMAC Quick Reference Guide

APPENDIX C — PMAC ON-LINE (IMMEDIATE) COMMANDS

On-Line Command |Function Syntax Syntax
<CONTROL-A> Abort al programs and moves ASCIl Value1D |$01
<CONTROL-B> Report status word for all motors ASCII Vaue2D | $02
<CONTROL-C> Report all coordinate system status words ASCII Value3D |$03
<CONTROL-D> Disable all PLC programs ASCII Value4D |$04
<CONTROL-E> Report configured address contentsin ASCIl Value5D | $05

binary (one-shot gathering)
<CONTROL-F> Report following errorsfor al motors ASCIl Value6D | $06
<CONTROL-G> Report global status word ASCII Value7D | $07
<CONTROL-H> Erase last character ASCII Value8D | $08 (<BACKSPACE>)
<CONTROL-1> Repeat last command line ASCII Value9D | $09 (<TAB>)
<CONTROL-K> Kill al motors ASCIl Value 11D | $0B
<CONTROL-L> Close open rotary buffer ASCIl Value12D | $0C
<CONTROL-M> Enter command line ASCII Value 13D |$0D (<CR>)
<CONTROL-N> Report command line checksum ASCIl Value 14D | $0E
<CONTROL-0> Feed hold on all coordinate systems ASCIl Value 15D | $0F
<CONTROL-P> Report positions of al motors ASCIl Value16D | $10
<CONTROL-Q> Quit al executing motion programs ASCIl Value 17D | $11
<CONTROL-R> Begin execution of motion programsinal | ASCIl Vaue18D |$12
coordinate systems
<CONTROL-S> Step working motion programsin all ASCIl Value19D |$13
coordinate systems
<CONTROL-T> Toggle serial port half/full duplex mode ASCIl Value20D | $14
<CONTROL-U> Open rotary program buffer(s) ASCII Value21D |$15
<CONTROL-V> Report velocity of all motors ASCII Value22D |$16
<CONTROL-W> Take command line from dual-ported ASCII Value23D |$17
RAM
<CONTROL-X> Cancel in-process communications ASCIl Vaue24D |$18
<CONTROL-Y> Report last command line ASCII Vaue25D |$19
<CONTROL-Z> Set PMAC in serial port communications ASCIl Value 26D | $1A

mode

Report currently addressed motor
#{constant} Address a motor #{ constant}
#{constant}-> |Report the specified motor's coordinate #{ constant} ->

system axis definition

#{constant}->0

Clear axis definition for specified motor

#{ constant}->0

#{constant}- Assign an axis definition for the specified | #{ constant}->{axis
>{axis motor definition}
definition}
$ Reset motor $
5 Full card reset 5
$$$H*+* Global card reset and re-initialization PP **
% Report the addressed coordinate system's %
feedrate override value
%{constant} Set the addressed coordinate system’s %({ constant}
feedrate override value
&{constant} Address a coordinate system &{ constant}
& Report currently addressed coordinate &

system

Appendix C — PMAC On-Line (Immediate) Commands

81

PMAC Quick Reference Guide

/ Halt program execution at end of currently /
executing move
? Report motor status ?
?7? Report the status words of the addressed 7
coordinate system
??? Report global status words 7?
@ Report currently addressed card on serial @
daisychain
@{card} Address a card on the seria daisychain @{ card}
\ Do aprogram hold (permitting jogging \
while in hold mode)
A Abort all programs and movesin the A
currently addressed coordinate system
ABS Select absolute position mode for axesin ABS ABS({axis}[,{axis}...])

addressed coordinate system

{axis}={constant}

Re-define the specified axis position

{axis}={ constant}

B{constant} Point the addressed coordinate system to a B{ constant}
motion program
CLEAR Erase currently opened buffer CLEAR CLR
CLOSE Close the currently opened buffer CLOSE CLS
{constant} Assign value to variable PO or to table { constant}
entry
DATE Report PROM firmware revision date DATE DAT
DEFINE BLCOMP Define backlash compensation table DEFINE BLCOMP |DEF BLCOMP

{entries} { count
length}

{entries} ,{ count length}

DEFINE COMP (one-

Define leadscrew compensation table

DEFINE COMP

dimensional) {entries} ,[#{ source}
[#{ target} ,]]{ count
length}
DEFINE COMP (two- |Define two-dimensional |eadscrew DEFINE COMP |DEF COMP ...

dimensional)

compensation table

{entr1} {entr2},
srcl} [#H sre2) [#
trgt}]].{1gt1} {Igt2}

DEFINE GATHER

Create a data gathering buffer

DEFINE GATHER

DEF GAT [{constant}]

[{ constant}]
DEFINE ROTARY |Define arotary motion program buffer DEFINE DEF ROT{ constant}
ROTARY { constant}
DEFINE TBUF Create a buffer for axis transformation DEFINE TBUF |DEF TBUF { constant}
matrices { constant}
DEFINE TCOMP Define torque compensation table DEFINE TCOMP |DEF TCOMP

{entries} { count

{entries} ,{ count length}

length}
DEFINE UBUFFER |Create abuffer for user variable use DEFINE UBUFFER | DEF UBUF { constant}
{ constant}
DELETE BLCOMP | Erase backlash compensation table DELETE BLCOMP | DEL BLCOMP
DELETE COMP Erase leadscrew compensation table DELETE COMP |DEL COMP
DELETE GATHER |Erasethe datagather buffer DELETE GATHER |DEL GAT
DELETE PLCC Erase specified compiled PLC program DELETEPLCC |DEL PLCC {constant}
{ constant}
DELETE ROTARY Delete rotary motion program buffer of DELETE ROTARY |DEL ROT
addressed coordinate system
DELETE TBUF Delete buffer for axis transformation DELETETBUF |DEL TBUF

matrices

82

Troubleshooting

PMAC Quick Reference Guide

DELETE TCOMP Erase torgue compensation table DELETE TCOMP |DEL TCOMP
DELETE TRACE Formerly: Erase the motion programtrace | DELETE TRACE |DEL TRAC
buffer
DISABLE PLC Disable specified PLC program(s) DISABLEPLC |DISPLC
{ constant} [,{ constan | { constant} [,{ constant}]
t}] DISPLC
DISABLEPLC |{constant}..{constant}
{constant} ..{ constan
t}
DISABLE PLCC Disable compiled PLCC program(s) DISABLEPLCC |DISPLCC
{ constant} [,{ constan | { constant} [,{ constant}]
t}] DISPLCC
DISABLEPLCC |{constant}..{ constant}
{ constant}..{ constan
t}
ENABLE PLC Enable specified PLC program(s) ENABLEPLC |ENAPLC
{ constant} [,{ constan | { constant} [,{ constant}]
t}] ENA PLC
ENABLEPLC |{constant}..{ constant}
{ constant} ..{ constan
t}
ENABLE PLCC Enable specified PLCC program(s) ENABLEPLCC |ENAPLCC
{constant} [,{ constan | { constant} [,{ constant}]
t}] ENA PLCC
ENABLE PLCC |{constant}..{ constant}
{constant} ..{ constan
t}
ENDGATHER Stop data gathering ENDGATHER |ENDG
F Report motor following error F
FRAX Specify the coordinate system's feedrate FRAX
axes FRAX ({axis}[{axis
}..D)
GATHER Begin data gathering GATHER GAT [TRIG]
[TRIGGER]
H Perform afeedhold H
HOME Start Homing Search Move HOME HM
HOMEZ Do a Zero-Move Homing HOMEZ HMZ
I {constant} Report the current |-variable value(s) I{ constant}[..{ const
ant}]

I{constant}={expr

ession}

Assign avalueto an |-variable

I{ constant} [..{ const
ant} |={ expression}

I{constant}=*

Assign factory default valueto an |-

I{ constant}[..{ const

variable ant}]=*

INC Specify incremental move mode INC

INC({axis}[{axis}..
1)

J! Adjust motor commanded position to J
nearest integer count

J+ Jog positive H

J- Jog negative J

J/ Jog stop J

J:{constant} Jog relative to commanded position J:{ constant}

J:* Jog to specified variable distance from J*
present commanded position

J= Jog to pre-jog position J=

Appendix C — PMAC On-Line (Immediate) Commands

83

PMAC Quick Reference Guide

J={constant} Jog to specified position J={ constant}
J=* Jog to specified variable position J=*
J=={constant} Jog to specified motor position and make J=={ constant}
that position the pre-jog position
JN{constant} Jog relative to actual position JV constant}
Jn* Jog to specified variable distance from *
present actual position
{Jog Jog until trigger J="{ constant}
command}™{cons J={ constant} ~{ constant}
tant} J{ constant} ~{ constant}
JV constant} ~{ constant}
J=*"{ constant}
J:*~ constant}
J* N constant}
K Kill motor output K
LEARN Learn present commanded position LEARN[({axist[{axis}...]] |[LRN[({axis}[,{axis}...]]
LIST List the contents of the currently opened LIST
buffer
LIST COMP List contents of addressed motor’s LIST COMP

compensation table

LI1ST COMP DEF

List definition of addressed motor’s
compensation table

LIST COMP DEF

LIST GATHER

Report contents of the data gathering

LIST GATHER [{tart}]

LISGAT [{start}]

buffer [{length}] [{length}]
LIST LDS List linking addresses of ladder LIST LDS
functions
LIST LINK List linking addresses of internal PMAC LIST LINK
routines
LIST PC List program at program counter LIST PCI,[{ constant}]]
LIST PE List program at program execution LIST PE[,[{ constant}]]
LIST PLC List the contents of the specified PLC LIST PLC { constant}

program

LIST PROGRAM | List the contents of the specified motion LIST PROGRAM LIST PROG{ constant}
program {constant} [{start}] [{ start}] [{length}]
[{length}]
M{constant} |Report the current M-Variable value(s) | M{ constant}[..{ constant}]
M{constant}={e |Assign valueto M-Variable(s) M{ constant}[..{ constant}]=
xpression} {expression}
M{constant}-> |Report current M-Variable definition(s) | M{ constant}[..{ constant}]-
>
M{constant}->* | Self-referenced M-Variable definition | M{constant}[..{ constant}]-
>~k
M{constant}- |Long fixed-point M-Variable definition | M{constant}[..{ constant}]-
>D:{address} >D[:]{ address}
M{constant}- |Dual-ported RAM fixed-point M- M{ constant}[..{ constant}]-
>DP:{address} |Variable definition >DP[:]{ address}
M{constant}- |Dual-Ported RAM Floating-Point M- M{ constant}[..{ constant}]-
>F:{address} |Variable definition >F[:]{ address}
M{constant}- |Longword floating-point M-Variable | M{constant}[..{ constant}]-
>L:{address} |definition >L[:]{ address}
M{constant}- |Binary thumbwhee-multiplexer M{ constant}[..{ constant}]-

>TWB:{address}

definition

>TWB[:]{ muxaddr} ,{ offse
t} {size} {format}

84

Troubleshooting

PMAC Quick Reference Guide

M{constant}-
>TWD:{address}

BCD thumbwheel-multiplexer M-
Variable definition

M{ constant} [..{ constant}]-
>TWDI:]{ muxaddr} { offs
et} {size}[.{dp}] {format}

M{constant}- Resolver thumbwheel-multiplexer M- | M{ constant} [..{ constant}]-
>TWR:{addr}, {off|Variable definition >TWR[:]{ muxaddr},
-} {offset}
M{constant}- Serial thumbwheel-multiplexer M- M{ constant} [..{ constant}]-
>TWS:{address} |Variable definition >TWS[:]{ muxaddr}
M{constant}- Short word M-V ariable definition M{ constant} [..{ constant}]-

>X/Y :{address}

>
X[:]{ address} { offset} [{w
idth} [,{format}]]
M{ constant} [..{ constant}]-
>
Y[:]{ address} { of fset} [{ w
idth} [{format}]]

MACROAUX Report or write MACRO auxiliary MACROAUX MX{NodeNum}
parameter value {NodeNum}{ ParamNum} |{ParamNum}[={ constant}]
[={ constant}]
MACROAUXREAD |Read MACRO auxiliary parameter MACROAUXREAD{Nod | MXR{ NodeNum}
value eNum}{ ParamNum} {ParamNum}{ Variable}
{Variable}
MACROAUXWRITE | Write MACRO auxiliary parameter MACROAUXWRITE |MXW{NodeNum}
value {NodeNum}{ ParamNum} |{ParamNum}{Variable}
{Variable}
MACROSLV{command | Send command to Type 1 MACRO MACROSLAVE M S{ command} { node #}
} {node#} slave { command} { node #}
MACROSLV{node#}, | Report Type 1 MACRO auxiliary MACROSLAVE MS{ node #} {slave
{slave variable} |parameter value {node #} {slave variable} |variable}
MACROSLV{node#}, |Set Type 1 MACRO auxiliary MACROSLAVE MS{node #} {slave
{slave parameter value {node #} {dave variable} ={ constant}
var}={const} variable} ={ constant}
MACROSLVREAD |Read (copy) Type 1 MACRO MACROSLVREAD MSR{node #} {slave
auxiliary parameter value {node #} {dave variable} ,{ PMAC variable}
variable} { PMAC
variable}
MACROSLVWRITE | Write (copy) Type 1 MACRO MACROSLVWRITE |MSW{node#} {dave
auxiliary parameter value {node #} {dave variable} { PMAC variable}
variable} {PMAC
variable}
MFLUSH Clear pending synchronous M- MFLUSH
Variable assignments
O{constant} Open loop output O{ constant}
OPEN PLC Open aPLC program buffer for entry OPEN PL C { constant}

OPEN PROGRAM

Open afixed motion program buffer
for entry

OPEN PROGRAM
{ constant}

OPEN PROG { constant}

OPEN ROTARY Open al existing rotary motion OPEN ROTARY OPEN ROT
program buffers for entry
P Report motor position P
P{constant} Report the current P-Variable value(s) | P{constant}[..{ constant}]
P{constant}={exp|Assign avaueto aP-Variable P{ constant}[..{ constant} |=
ression} { expression}
PAUSE PLC Pause specified PLC program(s) PAUSEPLC PAU PLC

{ constant} [{ constant} ...]

{ constant} [,{ constant} ...]

Appendix C — PMAC On-Line (Immediate) Commands

85

PMAC Quick Reference Guide

PASSWORD={string

Enter/set program password

PASSWORD={ string}

bs
PC Report program counter PC
PE Report program execution pointer PE
PMATCH Re-match axis positions to motor PMATCH
positions
PR Report rotary program remaining PR
Q Quit program at end of move Q
Q{constant} Report Q-Variable value Q{ constant} [.{ constant}]
Q{constant}={exp | Q-Variable value assignment Q{ constant}[..{ constant}]
ression} ={ expression}
R Run motion program R
R[H]1{address} |Report the contents of a specified R[H]{ address}
memory addresses [{ constant}]
RESUME PLC Resume execution of specified PLC RESUME PLC RESPLC
programs {constant}[,{ constant}...] |{constant}[,{constant}...]
S Execute one move step of motion S
program
SAVE Copy setup parameters to non-volatile SAVE
memory
SIZE Report the amount of unused buffer SIZE
memory in PMAC
TYPE Report type of PMAC TYPE
UNDEFINE Erase coordinate system definition UNDEFINE UNDEF
UNDEFINE ALL Erase coordinate definitionsin al UNDEFINE ALL UNDEF ALL
coordinate systems
\Y Report motor velocity V
VERSION Report PROM firmware version VERSION VER
number
W{address} Write value(s) to a specified addresses W{ address} { value}
[{value}..]
Z Make commanded axis positions zero Z

86

Troubleshooting

PMAC Quick Reference Guide

APPENDIX D - PMAC PROGRAM COMMAND

SPECIFICATIONS

{ constant} ..{ constant}

]
DISPLC
{ constant} ..{ constant}

Function Syntax Syntax Type

Position-Only Move Specification {axis}{data} [{ axis}{data} ...] PROG / ROT

Position and Velocity Move Specification |{axis}{data} :{ data} PROG / ROT
[{axis}{data} :{data} ...]

Move Until Trigger {axis}{data} { data} [{ axis}{ Motion
data} { data} ...] Program

Circular Arc Move Specification {axis}{data} [{axis}{data}...] PROG / ROT
{vector}{data}

A-AxisMove A{data} PROG / ROT

Absolute Move Mode ABS|[({axis}[,{axis}...])] PROG / ROT

Motor/Coordinate System Modal ADDRESS ADR [#{ constant}] PLC1to 31

Addressing [#{ constant}][&{ constant}] | [&{ constant}] only

Absolute displacement of X, Y, and Z ADIS{ constant} PROG / ROT

axes

Conditional AND AND ({ condition}) PL C program

only

Absolute rotation/scaling of X, Y,andZ |AROT{ constant} PROG / ROT

axes

B-AxisMove B{data} PROG / ROT

Mark Start of Stepping Block BLOCKSTART BSTART PROG / ROT

Mark End of Stepping Block BLOCKSTOP BSTOP PROG / ROT

C-AxisMove C{ data} PROG / ROT

Jump to Subprogram With Return CALL{data} PROG / ROT
[{letter}{data}...]

Turn Off Cutter Radius Compensation CCO PROG / ROT

Turn On Cutter Radius Compensation Left | CC1 PROG / ROT

Turn On Cutter Radius Compensation cc2 PROG / ROT

Right

Set Cutter Compensation Radius CCR{ data} PROG / ROT

Set Blended Clockwise Circular Move CIRCLE1 CIR1 PROG / ROT

Mode

Set Blended Counterclockwise Circular CIRCLE2 CIR2 PROG / ROT

Move Mode

Program Command | ssuance COMMAND "{command}" |CMD "{command}" PROG / ROT/

PLC

Program Control-Character Command COMMAND letter} CMDM letter} PROG / ROT/

I ssuance PLC

Tool Data (D-Code) D{ data} PROG / ROT

Delay for Specified Time DELAY/{data} DLY/{data} PROG / ROT

Disable PLC Program(s) DISABLEPLC DISPLC PROG / ROT /
{ constant} [,{ constant}] {constant}[,{ constant} |PLC
DISABLEPLC

Appendix D — PMAC Program Command Specifications

87

PMAC Quick Reference Guide

Disable Compiled PLC Program(s) DISABLEPLCC DISPLCC PROG / ROT /
{ constant} [,{ constant}] {constant}[,{ constant} |PLC
DISABLE PLCC] EXCEPT
{ constant} ..{ constant} DISPLCC PLCO, PLCCO
{ constant} ..{ constant}
Display Text to Display Port DISPLAY [{constant}] DISP [{ constant}] PROG / ROT /
"{message} " "{message} " PLC
Formatted Display of Variable Vaue DISPLAY {constant}, DISP { constant}, PROG / ROT /
{ constant} .{ constant}, { constant} .{ constant}, |PLC
{variable} {variable}
Dwell for Specified Time DWELL{data} DWE{ data} PROG / ROT
Start False Condition Branch ELSE Motionor PLC
Start False Condition Branch EL SE {action} Motion
Program
Enable PLC Buffer(s) ENABLEPLC ENA PLC PROG / ROT /
{ constant} [,{ constant}] {constant}[,{ constant} |PLC
ENABLEPLC]
{ constant} ..{ constant} ENA PLC
{ constant} ..{ constant}
Enable Compiled PLC Program(s) ENABLE PLCC ENA PLCC PROG / ROT /
{ constant} [,{ constant}] {constant}[,{ constant} |PLC
ENABLE PLCC

{ constant} ..{ constant}

]
ENA PLCC
{ constant} ..{ constant}

Mark End of Conditional Block ENDIF ENDI Motion or PLC
Mark End of Conditional Loop ENDWHILE ENDW Motion or PLC
Set Move Feedrate (Velocity) F{ data} PROG / ROT
Specify Feedrate Axes FRAX [({axist[{axis}...])] PROG / ROT
Preparatory Code (G-Code) G{ data} PROG / ROT
Unconditional Jump With Return GOSUB{ data} Motion
Program
Unconditional Jump Without Return GOTO{ data} Motion
Program
Programmed Homing HOME { constant} HM { constant} PROG / ROT
[{ constant} ...] [{ constant} ...]
HOME HM
{ constant} ..{ constant} { constant} ..{ constant}
[{ constant} ..{ constant} ...] [{ constant} ..{ constant
}..]
Programmed Zero-Move Homing HOMEZ { constant} HMZ { constant} PROG / ROT
[{ constant} ...] [{ constant} ...]
HOMEZ HMZ
{ constant} ..{ constant} { constant} ..{ constant}
[{ constant} . { constant} ...] [{ constant} . { constant
}..]
[-Vector Specification for Circular Moves | 1{data} PROG / ROT
or Normal Vectors
Set |-Variable Value I{ constant} ={ expression} PROG / ROT/
PLC
Incremental displacement of X, Y,andZ |IDIS{constant} PROG / ROT
axes
Conditional branch IF ({ condition}) Motion or PLC
Conditional branch IF ({ condition}) { action} PROG / ROT
[{action}...]

88

Appendix D — PMAC Program Command Specifications

PMAC Quick Reference Guide

Incremental Move Mode INC [({axist[{axis}...])] PROG / ROT
Incremental rotation/scaling of X, Y, and |IROT{ constant} PROG / ROT
Z axes
J-Vector Specification for Circular Moves | X data} PROG / ROT
K-Vector Specification for Circular K{ data} PROG / ROT
Moves
Blended Linear Interpolation Move Mode |LINEAR LIN PROG / ROT
Set M-Variable Vaue M{ constant} ={ expression} PROG / ROT
Synchronous M-Variable Value M{ constant} =={ expression} Motion
Assignment Program
M-Variable 'And-Equals Assignment M{ constant} & ={ expression} PROG / ROT
M Variable 'Or-Equals Assignment M{ constant} |={ expression} PROG / ROT
M-Variable 'XOR-Equals Assignment M{ data} “={ expression} PROG / ROT
Machine Code (M-Code) M{ data} PROG / ROT
Read MACRO auxiliary parameter value | MACROAUXREAD{NodeN | MXR{NodeNum}{Par | background
um}{ParamNum}{Variable} |amNum}{Variable} PLC only
Write MACRO auxiliary parameter value | MACROAUXWRITE{Node | MXW{NodeNum}{Pa |background
Num} { ParamNum}{ Variable [ramNum}{Variable} |PLC only
Read (copy) Type 1 MACRO auxiliary MACROSLVREAD{node MSR{node #} {dave |PLC1lto3l
parameter value #} {davevariable} { PMAC |variable} {PMAC only
variable} variable}
Write (copy) Type 1 MACRO auxiliary MACROSLVWRITE{node |[MSW{node#} {dave |PLC1lto3l
parameter value #} {davevariable} { PMAC |variable} ,{PMAC only
variable} variable}
Program Line Label N{ constant} PROG / ROT
Define Normal Vector to Plane of Circular | NORMAL {vector}{ data} NRM {vector}{data} |PROG/ROT
Interpolation and Cutter Radius [{ vector}{data}...] [{vector}{data}...]
Compensation
Alternate Line Label Of{ constant} PROG / ROT
Conditional OR OR ({ condition}) PL C program
only
Set P-Variable Value P{ constant} ={ expression} PROG / ROT
Pause execution of PLC program(s) PAUSE PLC PAU PLC {constant} |PROG/ROT/
{ constant} [{ constant} ...] [{ constant} ...] PLC
PAUSEPLC PAU PLC { constant}
{ constant} [..{ constant}] [..{constant}]
Specify automatic subroutine call function | PRELUDE1{ command} Motion
PRELUDEO Program
Redefine current axis positions (Position | PSET{ axis}{ data} Motion
SET) [{axis}{data}...] Program
Set Position-Velocity-Time mode PV T{data} PROG / ROT
Set Q-Variable Vaue Q{ constant} ={ expression} PROG/ ROT /
PLC
Set Circle Radius R{ data} PROG / ROT
Set Rapid Traverse Mode RAPID RPD PROG / ROT
Read Arguments for Subroutine READ({ letter} ,[{letter}...]) Motion
Program
Resume execution of PLC programs(s) RESUME PLC RESPLC {constant} |PROG/ROT/
{ constant} [{ constant} ...] [{ constant} ...] PLC
RESUME RES PL C { constant}
PLC{ constant}[..{ constant}] |[..{constant}]
Appendix D — PMAC Program Command Specifications 89

PMAC Quick Reference Guide

Return From Subroutine Jump/End Main |RETURN RET Motion
Program Program
Spindle data command S{ data} PROG / ROT
Cause PMAC to Send Message SEND"{ message}" PROG / ROT /
SENDS"'{ message}" PLC
SENDP"{ message}"
Cause PMAC to Send Control Character | SEND”V letter} PROG / ROT /
SENDSY{ | etter} PLC
SENDP/{ letter}
Put program in uniform cubic spline SPLINE1 PROG / ROT
motion mode
Put program in non-uniform cubic spline | SPLINE2 PROG / ROT
motion mode
Stop program execution STOP Motion
Program
Tool Select Code (T-Code) T{ data} PROG / ROT
Set Acceleration Time TA{data} PROG / ROT
Initialize selected transformation matrix | TINIT PROG / ROT
Set Move Time TM{ data} PROG / ROT
Set S-Curve Acceleration Time TS{ data} PROG / ROT
Select active transformation matrix for X, | TSELECT{ constant} PROG / ROT
Y, and Z axes
U-Axis Move U{data} PROG / ROT
V-AxisMove V{data} PROG / ROT
W-Axis Move W{ data} PROG / ROT
Suspend program execution WAIT PROG / ROT
Conditional looping WHILE ({ condition}) Motion or PLC
Conditional looping WHILE ({ condition}) PROG / ROT
{action}
X-Axis Move X{data} PROG / ROT
Y-Axis Move Y {data} PROG / ROT
Z-AxisMove Z{data} PROG / ROT
90 Appendix D — PMAC Program Command Specifications

T6

suoniuegajgelreA- |\ pasebbng Jojo — 3 xipuaddy

T'€2'OT00$: X< | T'€2'8T0D$: X< | T'ECVT0O$: X< |T'€Z'0T0O$:X< | T'€Z°D000%: X< | T'€2'8000%:X< | T'€2'V000$: X< | T'€2'0000%: X<
-€Z8IN -€¢LIN -€29IN -€ZSIN axad) -€ZEN -€2CIN -€CTIN sniels 1ndui 1 1Nv4
T'22°OT00%: X< |T'22'8T00$: X< |T2CVT00$: X< |T22'0T00$: X< | T°22°D000%: X< | T'22'8000%$:X< | T'2¢'V000$: X< | T°22'0000$: X<
-ZZ8IN -Z¢LIN -Z29IN -Z¢SIN -ZCrIN -CCEN -¢2ZIN -ZCTIN snress indut |7+
T'TZ'OT00$: X< |T'T2'8T00$: X< | T TZYT00$: X< |TTZ'0T00$: X< | T'TZD000%: X< | T'T2'8000%$:X< | T'TZ'P000$: X< | T'TZ'0000$: X<
-TZ8IN -T¢LIN -TCON -T¢SIN -TerIN -TCEN -T2CIN -TCTIN sniels indut N1 T-
T'02'0T00%: X< |T'02'8T00%: X< |T'02'¥T00$: X< |T'0Z0T00$:X< |T'02'D000%: X< | T°02'8000%: X< | T'0ZV000%$:X< | T'0Z°0000%: X<
-0Z8IN -0¢/IN -0C9N -0¢SIN -0Zr N -0CEN -02ZIN -0CTIN snress indui 4 IANH
T'6T'OT00%: X< |T'6T'8T00$: X< |T'6T¥YT00$: X< |T'6T0T00$:X< |T'61'D000%: X< | T'6T'8000%: X< | T'6T ¥000$:X< | T'6T°0000%: X< sniess indul
-6T8IN -6TLIN -6T9N -6TSIN 6TV IN -6TEIN -6TCIN -6TTIN jpuueyd pig ON3
T'ST'OT00$:X< |T'8T'8T0O$:X< [T'8T'YT00$:X< |T'8T'0T0D$:X< T'8T'D000%:X< | T'ST'8000$:X< | T'S8T'Y000$:X< | T'8T'0000%:X<
-8T8IN 8TLN -8TON -8TSIN 8TV IN -8TEN -8TZIN -8TTIN Be|) Joie-1unod ONI
T'LTOT00$:X< |T'LT'8T0O$:X< [TLT'VT0D$:X< |T'LT'OT0D$:X< T'/T'D000%:X< | T'2T'8000$:X< | T'LT'V00D$:X< | T'ZT'0000%:X< Be|y
/T8N -/T.IN -/ TON /TSN LTV IN -JTEN -JTZIN -JTTIN paimdeo-uonsod DN
T'OT'OT0D$:X< |T'9T'8T00$:X< |T'9T'YT0D$:X< |T'9T'0T0D$: X< T'OT'D000%:X< | T'9T'8000%:X< | T'9T'V00D%:X< | T'9T'0000%:X<
-9T8IN OTLIN -9T9N -9TSIN 9Ty IN -OTEN -9TZIN -OTTIN Be|) aredwoo NO
TYT'OT00$:X< |T'PT'8T00$:X< |TVTVT00$:X< |THT'OT0D$: X< TYT'D000%:X< | T'¥T'8000%:X< | THTV000$:X< | THT'0000%:X<
VT8N VT.IN -YTON VTSN YTy IN -YTEW -YTZN -YTTIN ndinO H1A/VYNAVY
T'ET'OT00$:X< |T'ECT'8T0O$:X< [T'ST'YT0D$:X< |T'ET'OT0D$: X< T'ET'D000%:X< | T'ET'8000$:X< | T'ST'Y00D$:X< | T'ET'0000%:X< a|ceud
-ST8IN ST.IN -STON -STSIN STV IN -STEN -STZIN STTIN LsAulasedwod NO
T'ZT'OT00$: X< |T'ZT'8T00$:X< |T'ZT'VT00$:X< |T'CT'OT0D$: X< T'ZT'D000%:X< | T'ZT'8000%:X< | T'ZT'V000%:X< | T'CT'0000%:X< 3lqeue
-ZI8N CTLIN -ZTON TSN ZTYIN ZIEW ZIZIN ZITIN indino aredwod NOJ
TTTOT0O$:X< |T'TT'8T0O$:X< [T'TTYT00$:X< |T'TT'OT0D$:X< T'TT'D000%:X< | T'TT'8000%$:X< | T'TTV000%$:X< | T'TT'0000%:X< [023U0D
T8N -TTLN -TTON -TTISIN TP IN -TTEN -TTZIN -TTTIN Yore| Be|jaredwod NO
S'OT'8'4T00$: A< [S'9T'8'IT00$: A< [S'9T'8'LT00$ A< [S'OT'8'9TOD$: A< | S'9T'8'4000%: A< | S'9T'8'I000%$: A< | S'9T'8'2000%: A< | S'9T'8'9000%: A<
-G0S -G0LIN -G09IN -G0S -SOvIN -GOEN -G0ZIN -GOTIN ndul Bofeue 110-9T OAY
S'Y2'0'22/0%:X< |S'F2'0'92/0%: X< [S'V2'0'S2L0$:X< [S'V2'0'V2/0$:X< | S'¥2'0'€2L0$:X< | S'¥2'0'22L0$:X< | S'PZ'0'T2L0$:X< | S'¥2'0'02L0%: X< (10 zem) uonsod
-708IN V0L N 709N -70SIN YOy IN -VOEN -V0ZIN -VOTIN parejodeiul ONI
S'Y2'0'4T00$:X< |S'72'0'aT00%:X< [S'72'0'2T00$:X< [S'¥2'0'ET00$:X< |S'¥2'0'4000%$:X< |S'¥2'0'9000%: X< | S'#2'0°2000%:X< | S'¥72'0'€000%: X< Jo1siBes uonisod
-£08IN 0L 09N -S0SIN -SOrIN -S0EN -S0ZIN -S0TIN aJedwoo@inded ONI
S'9T'8'VT0O$: A< [S'9T'8'AT0O$: A< [S'9T'8'CT00$: A< [S'OT'8'ETOO$: A< |S'9T'8'V00D$: A< [S'9T'8'9000%: A< | S'9T'8'2000%: A< | S'9T'8'C000%$: A< indino
-Z08IN -20LN 209N -20SIN -20vIN -Z0EN 202N 20T Bofeue 119-9T Ova
S'v2'0'aT00%$: X< |S'FZ'0'6T00$:X< [S'¥2'0'ST0O$:X< [S'P2'0'TT00$:X< |S'¥2'0'd00D$:X< | S'¥2'0'6000%:X< | S'¥2'0'S000%: X< | S'¥2'0'T000%: X< uonsod
-TOSIN -TOLN -TO9N -TOSN -TOYIN -TOSEN -TOZIN -TOTIN J9IUN0D 119-4Z ONJ
Ovd/epodus yim
8# IO10N /# 1010\ o I010N G# 010N 7# 1010 N €# 010N Z# 1010 N T# 010N pa1eInoSSY S BISItey

SNOILINIAFd F19VIIdVA-IN d31LSTDODNS dOLO0ON — 3 XIAN3IddV

apIN9 30UR.RJBY HOINDO IV INd

suoniueda|gqelreA- A pa1sebbng 1010\ — 3 Xipuaddy

6

TOT'YSA0$:A< |T'OT'Y6I0$:A< |T'OT'PAD0$:A< |T'OT'HPTE0$:A< T'OT'VYSVO$:A< | T'OT'Y660$:A< | T'OTPASO$:A< | T'OTYTS0$:A<
-G8IN -SvLIN -GSO -GYGIN Sty IN -SYEN -SZIN -GFTIN 11g 91 [dwoo-8WoH
T'CYGA0$: A< |T'EPBI0$:A< T'S'PAd0$:A< |T'EPTI0S:A< T'E'YSV0$: A< T'€'7660%$: A< T'€'7A80%: A< T'E'YT80$: A<
-SY8IN VLN SO SYSIN Sy IN SYEN V2N -SPTIN 1ig Jose-1jrey-pijdwy
TZY6A0$: A< [TZP6I0$:A< TZ2YAd0$:A< [TZPTE0$:A< T'Z'YSV0$: A< T'2'¥660%$: A< T'Z'7A80%: A< T'Z'YT80%: A<
28N 2L N 29N VSN 2N ZVEN 22N VTN 11 Jos-Huimo||0)-[ered
TTYSA0S: A< [T TPEI0$: A< TTYAd0$:A< [T THTE0S:A< T'TYSV0$: A< T'T¥660%$: A< T'T'yA80%: A< TTYT80$: A< g Joie
-TY8IN TV, IN -TYON -TVSIN Ty IN -TVEN -TVZIN “TVTIN Buimo|jo)-Buiuemn
T0'YGA0$: A< |T0PBO0$: A< T0'PAd0$:A< |TOPTI0$:A< T'0'PSV0$: A< T'0'7660%: A< T'0'7A80%: A< T'0'7T80$: A<
O8N OvLIN 09N -OrSIN Oy N -OVEN V2N -OrTIN 11q uonsod-u|
TYTVYSA0S: A< [TPTIV6I0$:A< [THTYAT0$:A< [THTHPTA0S: A< TYTVSVOS:A< | THTY660$:A< | THTVAS0$:A< | THTHYT80$:A< g sness
-6E8IN -6ELIN 69N -6EGIN -6V N -6EEIN -6E2IN -6ETIN pajqeus-Ri1dwy
TRTTATOS: X< |T'BT'SVIOS:X< |T'8T'69T0$:X< |T'8T°ACTO$:X< T'8T'T400$:X< | T'8T'GH00$:X< | T'S8T'6/00$:X< | T'8T'AL00$:X<
-8E8IN 8ELIN 89N -8EGIN -8V IN -8EEIN -88ZIN 8STIN 11q spow-doo|-uedo
TUTTATOS: X< |TZT'SVIOS: X< |TLT'69T0$:X< |T'2T'AZTO$:X< T'/T'T400$:X< | T'2T'G900$:X< | T'LT'6/00%:X< | T'2T'AL00$:X<
-/E8IN -JELIN /S9N -JESIN -JSYIN -JEEN -LEZN -JETIN 11g weJboud-Buiuuny
TSTTATOS:X< [T'ST'SVIOS: X< |T'ST'69T0$:X< |T'GT'ACTO$:X< T'ST'T400$:X< | T'ST'GH00$:X< | T'ST'6/00%:X< | T'ST'AL00$:X<
-GESIN -GELIN -GE9N -GESIN -GSV IN -GEEN -GEZIN GETIN 11q sseuboud-ul-|pma
TETTATOS: X< |T'ET'SVIOS: X< |T'CT'69T0$:X< |T'ST'ACTO$:X< TET'T400$:X< | T'ST'GH00$:X< | T'ST'6L00$:X< | T'ST'AL00$:X< 1uq
-CE8IN €SLIN SN -SESIN €SYIN -CEEN -£€ZN €STIN 0Joz-A1nopA-paIsea
T'Z2TATOS:X< |T'2Z'SVIOS: X< |T'22'69T0$:X< |1'22'ACT0$:X< T'22'T400$:X< | T'22's900$:X< | T'22'6/00%:X< | T'2Z'AcL00$:X< 1uq
-ZE8IN ZELIN -ZSIN -ZESIN ZEYIN -ZEEN 2€ZN ZETN 1Bs-1wi|-pus-aAiebeN
TTZTATOS:X< [TTZ'SVIOS: X< [TTZ'69T0$:X< |T'T2'ACTO$:X< TTZ'T400$:X< | T'T2'G900$:X< | T'TZ'6/00%:X< | T'TZ'AL00$:X< uq
-TE8N -TELN -TEON -TESIN -TSVIN -TEEN -TEZIN -TETN 18S-1IWI|-pus-dANIsod
TTIVYSA0S:A< [T TIV6I0$:A< [TTTYADOS A< [T TTHTA0S: A< TTIVSVOS:A< | TTTY660$:A< | TTTPAS0$:A< | T'TTHT80$:A< g |
-0E8IN -0SLN 089N -0ESIN -0EYIN -0EEN -0SZIN -0ETIN -uonsod-uo-peddois
8# I010IN /# JI010N o# I010 N G# J010N 7# 1010\ €# I010N Z# 010N T# 010N sligsniels Jo10N

3pINg 0us BRY XINO DV INd

€6

suoniuegajgelreA- |\ pasebbng Jojo — 3 xipuaddy

(51 [2e 480X 1]/T) 10180

0800$:d<-S/8 |0000$:A<-G/LIN |0000%:A<-G/9N |0790$:A<-GLSIN | 08V0$:A<-G.¥IN | 0060$:A<-GLEN | 0060$:A<-G/ZIN | 0¥80%:A<-GLTN Buimo||o} T# J010 N
S S [ETRIS)
SY2'0'voa0$: A< | 72'0'VVO0$: A< | '¥2'0'VAE0$ A< |S¥2'0'Ved0$: A< |S'T20'VOV0S$: A< |S'PZ'0'VV6E0$: A< |S'¥Z'0'VAB0$: A< | S'¥Z'0 VZ80$: A< OAIBSSI0 [2€ +60X11/T)
/8N VLN V9N V.S VIV N VLEN VLN VLTN ‘BA [enjoe pael|l}
S'%2'0'65A0%$: A< |S'V2'0'6600%: A< |S'P20'SA90$: A< |S'V2'0'GTA0$: A< | ST20'GGV0$: A< | S'72'0'G660%: A< | SP2'0'SA80%: A< | S'¥2'0'GT80%: A< (S1unoo) Bsyo
-€L8IN -€LLIN -€L9IN -€LSIN €LV IN -ELEIN -€LZIN -€/TIN 2In)ckeo swoy Bpoous

9900$:1<-C/8N

avo0$:1<CLLIN

g390$:1<-2/9N

g290$:1<-2/SIN

g9V03$: 1<CLVY N

aVv603$:1<-CLEN

g380%: 1<-C¢LZIN

g280%: 1<-CLTIN

(S1unoo) souessip/uonisod
fola|qeien

SYZ'0°'GATOS X< [SHZ'0BVYI0S: X< |SH20°'A9T0$:X< [STZ0O'TETOS: X< | STZ'0'S400$:X< | ST2’0'6900%: X< | ST2'0'AL00$: X< | STZ'0Tr00$: X< (02X[5un02)
-T/8N TLLN -TLON -TLSW TN -TLEW -TLZN TLTN uonisod aseyd uaseld
sl

- A Ul uonJely sapnjoul

G310$:A<-0/8N |6VT0$:A<-0LLIN | A9T0$:A<-0L9N |TETO$:A<-0LSN | S400$:A<-0/7N | 6900$:A<-0/EW | AL00$:A<-0/ZW | T¥00$:A<-0LTN 'sod aseyd wesaid
uo11994109

VAT0$:A<-698W | IVT0$-A<-69LN |22T0$:A<-699N |9ET0$:A<-69SIN | V400$:A<-69v W | 3900$:A<-69€ W | Z800$:A<-692IN | 9¥00$:A<-69T N uoesuedwo)
S'OT'8'6ITOS X< [S'9T'8'AVI0$: X< |SOT'BTLTOS X< |SOT'B'SETOS:X< | S'9T'8'6400$:X< [S'9T'8'A900%: X< | S'9T'8'T800%$: X< | S'9T'8'Sr00%: X< (ST
-898 1N -89/ N 899N -89S\ 897 N -89EN -89ZIN 89T 2va) Indino 1|14
1 [ze«L0x1]m)

sod (fpaympuey)

TAT0$:A<-298N |S6T0$:A<-29ZN |6STO$:A<-299N | ATTO$:A<-29SW | TI00$:A<-L9v W | SVY00$:A<-29EN | 6900$:0<-29ZW | Z00$:A<-L9TN Jolseuw Juesa.d
S¥Z'0°,AT0$:X< [SFZ'0'96T0$: X< |STZ0'4STOS: X< [ST2’0'€2T0$:X< | S'PZ'0/300$:X< [ST2’0'aV00$: X< | S7Z'0°'4900$: X< | STZ'0°€E00%: X< (0Aosm [z «60X11/T)
998\ 99/ N 999N 995N 997 99N -99ZN -99TIN Apopa enpy

(s1un BuisaUIBUB)

AaT80$:1<-G98IN |OT80$:1<-G92IN | 9T80$: 1<-G99IN | VT80$: 1<-G9SIN | 6T80$: 1<-GOrIN | T280$:1<-G9EWN | 0280%$:1<-G9ZIN | 4T80$:1<-G9TIN | uonisod by sixe-X
(1 [ze-80x11/T)
£500$:A<-798N |£600$:d<-¥9LN |£A90$:A<-799N |ETH0$:A<-9SIN | EGV0$:A<-vavIN | £660$:A<-¥9EW | £A80$:A<-¥9ZIN | ET80$:A<-+ITIN seiq uonisod

grao$-d<-€98IN

9800$-A<-€9LIN

g080$-:d<-€99N

9090$-A<-€9S N

arvos$-a<-eariN

98603-d<-€9EIN

g080$-d<-€9ZN

g9080$-A<-€9TIN

[ee «80x1]/T)
uonsod (pus) Bbre |

40710$:d<-298 N

€610$:A<-C9LIN

/ST0$:A<-¢99N

a170$:d<-29SN

4d00$:d<-¢ovIN

EV00$:d<-29EN

/900%$:d<-¢9ZIN

d9200$:A<-¢9TN

(sw [2e80x11T)
uonsod enpy

S0 [z 80X1]/T)

00T0%$:Ad<-T98IN |06T0$:A<-T9LIN |¥ST0$:A<-TI9IN |8TT0$:A<-TISIN |DA00$:A<-TIrIN | 0OV00$:Ad<-TIEN | #900$:A<-T9ZIN | 8200$:A<-TITIN uonisod papuewlo)d
slesibey
8# 1010\ /# 1010\ 9# 010N G# I0IOIN # 1010\ €# I01ON Z# 1010\ T# I01OIN SN0\ J010\

apIN9 30UR.RJBY HOINDO IV INd

suoniuieQA s(qelreA-|A pa1sebbng J01o A — 3 xipusddy 6
SY2'0'8rans$: X< |S'r2'0'8800%: X< |S'720'8090%: X< |S'P20'8090$: X< | ST2'0'8rV0$: X< | S'¥2'0'8860%: X< | S'P2‘0'8080%: X< | S'¥2‘0'8080%: X< (Suun
-868 N -86L -869 -865 N -867 N -86E N -862 -86T N OT|) 8seq aw ueseld
SZ’0'9rA0$: X< |ST2'0'9800$:X< |ST20'9090$:X< |ST20'9090$:X< |STZ0'9rV0$:X< | ST2'09860%: X< | STZ'0'9080$:X< | S¥20'9080%: X< (S1un T 1) 3seq
-/68IN -/6/N -/69IN -/6SIN -L6VIN -/6EN -/6CIN -/6TIN ol 1] papuewiod 1SoH

g ues/sS L uesfs 9 uesAs G uesAsS ¥ Wes/AS ¢ uesfs Z wesfs T wesAs sa|qelie)
aleulpJoo) aleulpJoo)d aleulpJoo)d aleulpJoo)d areulploo)d aleulpoo)d areulpoo)d areulploo)d WoISAS areuIp 100D
G9A0%$:1<-¥68IN |SVI0$: 1<-v6. N |S3D0$:1<-¥69IN |SG2d0%: T1<-V6SIN | GOVOS$: T<-¥61IN | SV60$:1<-¥6EN | GI80%: T<-¥6CIN | SC80%: 1<-V6TIN [§9)) wmhmo m_x<v
Huns
#9A0%$:1<-€68IN |7VO0$:1<-E6LIN | ¥IF0$:1<-E69IN |12d0$:T1<-E6SIN | YIVOS: 1<-E6VIN | YV60$:-1<-E6EIN | #380%:1<-E6CIN | ¥280%:1<-E6TIN 1013e} 8[e3s SIXV-W/Z
(Hunsp)
€900$: 1<-268N |EVO0$:1<-26LIN | £390$:1<-269N |£290$:1<-26GN | £9VO0$: T<-26r N | EV60$:1<-26EN | £380%: T<-26CN | £280%:1<-26TIN | J0idey m_ﬁmom m_x/w->\>
11UN/S10) J033e)
2900%$:1<-T68IN |2VDI0%$:1<-T6LN |2390$:1<-T69IN |2290%$:1<-T6GIN | 29V0S$: 1<-T6VIN | 2V60$: 1<-T6EN | ¢380%:1<-T6CN | ¢280%:1<-T6TIN 9[e3s SIXY-O/d/V/N/X
spsibey uoniuleg
8# 010N /# 1010\ 9# I010 N G# I010IN it 010N €# I010N Z# 1010\ T# 1010\ SIXY 010 A
T'02'/GA0$:A< |T'02'2600%: A< T'02'2A90$:A< |T'02'LTA0$: A< T'02'/GV0$: A< T'02'2660%: A< T'02'2A80%: A< T'02'/T80%: A< (sio10w Jo
-068IN -06LN -069IN -06SIN -06vV N -06EN -06Z¢IN -06TIN J0) 11q Jose-)|ne)-dwy
T'6T'/SA0%:A< |T'6T'26D0%$:A< T'6T'2Ad0$:A< |T'6T'LTI0$:A< T'6T'/GV0$: A< T'6T'2660%: A< T'6T'2A80%: A< T'6T'LT80%: A< (H0)
688\ 68L I 689 685 687 N 68E N 682 68T N 11 Joue-Buimoyjoy-ered
T'8T'/GA0$:A< |T'8T'2600%: A< T'8T'2A90$:A< |T'8T'LTA0$:A< T'8T'/GV0$: A< T'8T'2660%: A< T'8T'2A80%: A< T'8T'.LT80%: A< (40) uq Joue
-888I\ -88LIN -889IN -88S I\ -887 I\ -88EN -88CIN -88TIN -Buimo|jo)-Buiurep
T'/T'/GA0$: A< |T'LT'2600%: A< T/7'2Q90$:A< |TLT'2T90$:A< T'/T'/GV0$: A< T'/T'1660%: A< T'/T',A80%: A< T'/T'/T80%: A< (s1010w
-/88IN -/8LIN -/89IN -/8SIN -8V IN -/8EN -/8CIN -/8TIN 10 ANV) 1 uonsod-u|
T'7'85A0%: X< T'7'8600%: X< T'v'8Aad0os$: X< TY'8Td0$:X< T'V'89V0$: X< T'7'8660%: X< T'v'8A80%: X< T'v'8T80%: X< 159nba.
788N V8LIN 789N 78S I\ -V8v N -V8EN -78CIN V8T uoJow snonuuoD
T'22'/SA0$: A< |T'22'1600%: A< T'22'2A90$:A< |T'22'LT90%: A< T'22'/GV0$: A< 1'22'1660%: A< T'22',A80%: A< T'22'/T80%: A<
-C88IN -C8LIN -C89IN -C8SIN -C8VIN -C8EN -C8CIN -C8TIN 119 J0oJe-sWl-uny
T'T2'/GA0$: A< |T'TZ'2600%: A< T72'2A90$:A< |T'TZ'LTA0$: A< T'T2'/GV0$: A< T'12'2660%: A< T'72',A80%: A< T'T2'/T80%: A<
-T88IN -T8LIN -T89N -T8SIN -8V IN -T8EN -T8CIN -I8TIN 11q J0lB-snipel-a[oliD
T'0'85A0%: X< T'0'8600%: X< 17'0'8Ad0$: X< T'0'8Td0$:X< T'0'8GV0$: X< T'0'8660%: X< T'0'8A80%: X< T'0'8T80%: X<
-088 N -08L W -089 N -08S -087 W -08EN -082 -08T W 1q Buuni-weiboig
g ues/fs L uesAs 9 uesAs TS ¥ Wes/AS ¢ uesfs Z uesAs T WesAs slugsneis
aleulpJoo) aleulpJoo)d aleulpJoo)d aleulpJoo)d areulploo)d aleulpJoo)d areulploo)d areulpJoo)d WoISAS areulp 100D

3pINg 0us BRY XINO DV INd

PMAC Quick Reference Guide

APPENDIX F —1/0 SUGGESTED M-VARIABLE DEFINITIONS

[/O M-Variables Definition
MI1/00 M900->Y :$FFDO0,0,1
MI1/O01 M901->Y:$FFDO,1,1
MI1/O2 M902->Y :$FFDO0,2,1
MI1/O3 M903->Y:$FFDO0,3,1
MI1/O4 M904->Y :$FFD0,4,1
MI1/O5 M905->Y :$FFDO0,5,1
MI1/O6 M906->Y :$FFDO0,6,1
MI1/O7 M907->Y :$FFDO0,7,1
MI1/08 M908->Y :$FFDO0,8,1
MI1/09 M909->Y :$FFDO0,9,1
MI1/O10 M910->Y:$FFDO0,10,1
MI1/O11 M911->Y:$FFDO0,11,1
MI1/O12 M912->Y:$FFDO0,12,1
MI1/0O13 M913->Y:$FFDO0,13,1
MI1/O14 M914->Y :$FFDO0,14,1
MI/O15 M915->Y:$FFDO0,15,1
MI1/O16 M916->Y :$FFDO0,16,1
MI1/O17 M917->Y:$FFDO0,17,1
MI1/0O18 M918->Y:$FFDO0,18,1
MI1/019 M919->Y:$FFDO0,19,1
MI1/020 M920->Y :$FFDO0,20,1
MI1/021 M921->Y:$FFDO0,21,1
MI1/022 M922->Y :$FFDO0,22,1
MI1/023 M923->Y:$FFDO0,23,1
MI1/O24 M924->Y :$FFD1,0,1
MI1/025 M925->Y:$FFD1,1,1
MI1/026 M926->Y:$FFD1,2,1
MI1/O27 M927->Y:$FFD1,3,1
MI1/028 M928->Y:$FFD1,4,1
MI1/029 M929->Y:$FFD1,5,1
MI1/O30 M930->Y:$FFD1,6,1
MI/O31 M931->Y:$FFD1,7,1
MI1/032 M932->Y:$FFD1,8,1
MI1/O33 M933->Y:$FFD1,9,1
MI1/O34 M934->Y:$FFD1,10,1
MI1/O35 M935->Y:$FFD1,11,1
MI1/O36 M936->Y:$FFD1,12,1
MI/O37 M937->Y:$FFD1,13,1
MI1/O38 M938->Y:$FFD1,14,1
MI1/O39 M939->Y:$FFD1,15,1
M1/040 M940->Y:$FFD1,16,1
MI1/O41 M941->Y:$FFD1,17,1
M1/042 M942->Y:$FFD1,18,1
M1/043 M943->Y:$FFD1,19,1
M1/044 M944->Y :$FFD1,20,1
M1/0O45 M945->Y :$FFD1,21,1
M1/O46 M946->Y:$FFD1,22,1
MI1/O47 M947->Y :$FFD1,23,1

Appendix F —1/0 Suggested M-Variable Definitions

95

PMAC Quick Reference Guide

Control-Panel Port Input Bits

Definition

Jog Minus Input

M20->Y:$FFC0,8,1

Jog Plus Input

M21->Y:$FFCO0,9,1

Prejog | nput

M22->Y :$FFC0,10,1

Start (Run) Input

M23->Y:$FFC0,11,1

Step/Quit Input

M24->Y :$FFC0,12,1

Stop (Abort) Input

M25->Y :$FFC0,13,1

Home Command Input

M26->Y :$FFC0,14,1

Feed Hold Input

M27->Y :$FFC0,15,1

Motor/C.S. Select Input Bit O

M28->Y :$FFCO0,16,1

Motor/C.S. Select Input Bit 1

M29->Y:$FFC0,17,1

Motor/C.S. Select Input Bit 2

M30->Y:$FFC0,18,1

Motor/C.S. Select Input Bit 3

M31->Y:$FFC0,19,1

Selected Motor/C.S. Number

M32->Y :$FFC0,16,4,C

Thumbwhed Port Bits

Definition

SEL 0 Output M40->Y:$FFC1,8,1
SEL 1 Output M41->Y:$FFC1,9,1
SEL 2 Output M42->Y:$FFC1,10,1
SEL 3 Output M43->Y:$FFC1,11,1
SEL 4 Output M44->Y:$FFC1,12,1
SEL5 Output M45->Y:$FFC1,13,1
SEL 6 Output M46->Y:$FFC1,14,1
SEL 7 Output M47->Y:$FFC1,15,1
SEL 0-7 Outputs byte M48->Y:$FFC1,8,8,U
DATO Input M50->Y:$FFC1,0,1
DAT1 Input M51->Y:$FFC1,1,1
DAT2 Input M52->Y:$FFC1,2,1
DAT3 Input M53->Y:$FFC1,3,1
DAT4 Input M54->Y:$FFC1,4,1
DATS Input M55->Y :$FFC1,5,1
DATS6 Input M56->Y :$FFC1,6,1
DAT7 Input M57->Y:$FFC1,7,1
DATO-7 Inputs byte M58->Y :$FFC1,0,8,U
To clear al existing definitions MO..1023->*

Servo cycle counter MO->X:$0,0,24,U

96

Appendix F —1/0 Suggested M-Variable Definitions

PMAC Quick Reference Guide

General Purpose I nputs and Outputs

Definition

Machine Output 1

M1->Y:$FFC2,8,1

Machine Output 2

M2->Y:$FFC2,9,1

Machine Output 3

M3->Y:$FFC2,10,1

Machine Output 4

M4->Y:$FFC2,11,1

Machine Output 5

M5->Y:$FFC2,12,1

Machine Output 6

M6->Y :$FFC2,13,1

Machine Output 7

M7->Y:$FFC2,14,1

Machine Output 8

M8->Y:$FFC2,15,1

Machine Outputs 1-8 treated as byte

M9->Y:$FFC2,8,8,U

Machine Input 1

M11->Y:$FFC2,0,1

Machine Input 2

M12->Y:$FFC2,1,1

Machine Input 3

M13->Y:$FFC2,2,1

Machine Input 4

M14->Y:$FFC2,3,1

Machine Input 5

M15->Y:$FFC2,4,1

Machine Input 6

M16->Y:$FFC2,5,1

Machine Input 7

M17->Y:$FFC2,6,1

Machine Input 8

M18->Y:$FFC2,7,1

Machine Inputs 1-8 treated as byte

M19->Y :$FFC2,0,8,U

PMAC Built-in timers

Definition

Timer register 1 (8388608/1 10 msec)

M90->X:$0700,0,24,S

Timer register 2 (8388608/1 10 msec)

M91->Y:$0700,0,24,S

Timer register 3 (8388608/1 10 msec)

M92->X:$0701,0,24,S

Timer register 4 (8388608/1 10 msec)

M93->Y:$0701,0,24,S

Open memory; cleared to 0 on power- $0770 - $077F
on/reset
Open registers (stored in battery-backed $07F0 - $07FF

RAM)

Appendix F —1/0 Suggested M-Variable Definitions

97

PMAC Quick Reference Guide

98

Appendix F —1/0 Suggested M-Variable Definitions

PMAC Quick Reference Guide

APPENDIX G — ACC-8D/8P PINOUT DESCRIPTIONS

(Wwooy) ur 9T’

(ww 90y) ur 9T

PMAC ACC-8D
TERMINAL BLOCK BOARD

alln 4

L
|
|
|

OOOUVIUIUIUIUIADRDDRNWWWWWRNRNNNNRE R R PR O
WFRONUIWRPRONOIWRPRONOUITWRONOUOIWRPRONUJUITWRONOITWE
6B 088800B8888B88868B8808086989C0C6
TB1
S SRS R S N R S IS N I S N NS S N S N I I B N I s I S N S S S I S IS
OO UIUUIOIORADRDDRDRERDRNWWWWWNNNNNERERPEREROOPRMN
ANOOORNOOORNONMORNOOORNOOOMNO coese 138
— cosesce ceccccce MER RN ER
J6| meeceece J5 neeecceee
7 S : JlBeeeee ecooonm
_u_mm_nmo_u_u/\mo | ®6eececsscccsssccccnssssscssscse JD\IAC/ Japeeeee J2A| eeees
OPTION 1 7 | ©e0000000000000080000000000000000e VMEBUS eooeonm ee0ee 2B
o __________ ! eoeoe |J4A
7 0000000000000 0000000000000000elm | JPMAC/
000000000000000000000000000000¢ PCBUS Wm%wm%mwmm ® TPl O

O
<

g
8.37in. (212.60 mm)

7.87 in. (200.00)

(ww 2£T2) 'W1I8C

99

Appendix G — Acc-8D/8P Pinout Descriptions

PMAC Quick Reference Guide

Pin # Symbol Function Pin # Symbol Function
1 +5V OUTPUT o | 58 AGND INPUT
,g % 2 +5V OUTPUT g c»§ 59 A+15V/OPT+V INPUT
A 3 GND COMMON 60 A-15V INPUT
o
4 GND COMMON Refer tothe appropriate PMAC Har dwar e Reference
57 FEFCO/ OUTPUT manual for connectionsand jumper descriptions.
25 CHA INPUT 13 CHA INPUT
0 27 CHA/ INPUT 0 15 CHA/ INPUT
gg 21 CHB INPUT gg 9 CHB INPUT
50 23 CHB/ INPUT = 11 CHB/ INPUT
g 17 CHC INPUT g 5 CHC INPUT
g 19 CHC/ INPUT g 7 CHC/ INPUT
1 +5V OUTPUT 1 +5V OUTPUT
3 GND COMMON 3 GND COMMON
43 DAC OUTPUT 29 DAC OUTPUT
za 45 DAC/ OUTPUT Ko f 31 DAC/ OUTPUT
g = 47 AENA/DIR OUTPUT —é — 3 AENA/DIR OUTPUT
< 49 FAULT INPUT < 35 FAULT INPUT
58 AGND INPUT 58 AGND INPUT
] 51 +LIM INPUT o 37 +LIM INPUT
£ | 53 -LIM INPUT B 39 -LIM INPUT
L 10 A NG
T 55 HMFL INPUT T 41 HMFL INPUT
58 AGND INPUT 58 AGND INPUT
26 CHA INPUT 14 CHA INPUT
" 28 CHA/ INPUT " 16 CHA/ INPUT
gg 2 CHB INPUT gg 10 CHB INPUT
=S 24 CHB/ INPUT Y 12 CHB/ INPUT
g 18 CHC INPUT g 6 CHC INPUT
g 20 CHC/ INPUT g~ 8 CHC/ INPUT
1 +5V OUTPUT 1 +5V OUTPUT
3 GND COMMON 3 GND COMMON
44 DAC OUTPUT 30 DAC OUTPUT
Z i 46 DAC/ OUTPUT ko f R DAC/ OUTPUT
é = 48 AENA/DIR OUTPUT —é — 4 AENA/DIR OUTPUT
<< 50 FAULT INPUT <% 36 FAULT INPUT
58 AGND INPUT 58 AGND INPUT
- 52 +LIM INPUT] 38 +LIM INPUT
0 S 0 N
Byl -LIM INPUT Blq 40 -LIM INPUT
TS 56 HMFL INPUT T 42 HMFL INPUT
58 AGND INPUT 58 AGND INPUT
100 Appendix G — Acc-8D/8P Pinout Descriptions

	PMAC PC or PMAC VME Features
	PMAC PC
	PMAC Lite
	PMAC VME
	PMAC STD
	PMAC Mini
	PMAC2
	PMAC2 Ultralite
	Turbo PMAC Family
	Display Port Outputs (JDISP Port)
	Control-Panel Port I/O (JPAN Port)
	Thumbwheel Multiplexer Port I/O (JTHW Port)
	Serial Port Connection
	General-Purpose Digital Inputs and Outputs (JOPTO Port)
	Machine Connectors
	LED Indicators
	Hardware Setup
	Software Setup
	Programming PMAC
	Single Character I/O
	Commutation Update
	Servo Update
	VME Mailbox Processing
	Real-Time Interrupt Tasks
	Background Tasks
	Observations
	Priority Level Optimization
	Terminal Mode Communications
	Resetting PMAC for First Time Use
	Digital Power Supply
	Analog Power Supply
	Flags Power Supply (Optional)
	Disabling the Overtravel Limits Flags
	Types of Overtravel Limits
	Home Switches
	PMACPack and PMAC2 Flag Inputs
	Checking the Flag Inputs
	Incremental Encoder Connection
	Checking the Encoder Inputs
	Checking the DAC Outputs
	DAC Output Signals
	Amplifier Enable Signal (AENAx/DIRn)
	Amplifier Fault Signal (FAULTn)
	General-Purpose Digital Inputs and Outputs (JOPTO Port)
	I-Variables
	P-Variables
	Q-Variables
	M-Variables
	Array Capabilities
	Operators
	Functions
	Comparators
	User-Written Phase and User-Written Servo Algorithms
	User Buffer Storage Space
	Conversion Table Structure
	Further Position Processing
	Axis Definitions
	Axis Definition Statements
	Passing Arguments to Subroutines
	G, M, T, and D-Codes (Machine-Tool Style Programs)
	Observations
	Rotary Motion Program Buffers
	Internal Time Base, the Feedrate Override
	External Time Base Control (Electronic Cams)
	Position Following (Electronic Gearing)
	Cutter Radius Compensation
	Synchronous M-Variable Assignment
	Synchronizing PMAC to Other PMACs
	Axis Transformation Matrices
	Position-Capture and Position-Compare Functions
	Learning a Motion Program
	Level-Triggered Conditions
	Edge-Triggered Conditions
	General
	Bus Communications
	Serial Communications

