

^1 PRODUCT GUIDE

^2 Universal PMAC Lite

^3 PMAC Product Guide

^4 500-603657-xPGx

^5 April 21, 2004

Single Source Machine Control Power // Flexibility // Ease of Use
21314 Lassen Street Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com

Copyright Information
© 2003 Delta Tau Data Systems, Inc. All rights reserved.
This document is furnished for the customers of Delta Tau Data Systems, Inc. Other
uses are unauthorized without written permission of Delta Tau Data Systems, Inc.
Information contained in this manual may be updated from time-to-time due to product
improvements, etc., and may not conform in every respect to former issues.

To report errors or inconsistencies, call or email:

Delta Tau Data Systems, Inc. Technical Support
Phone: (818) 717-5656
Fax: (818) 998-7807
Email: support@deltatau.com
Website: http://www.deltatau.com

Operating Conditions
All Delta Tau Data Systems, Inc. motion controller products, accessories, and
amplifiers contain static sensitive components that can be damaged by incorrect
handling. When installing or handling Delta Tau Data Systems, Inc. products, avoid
contact with highly insulated materials. Only qualified personnel should be allowed to
handle this equipment.

In the case of industrial applications, we expect our products to be protected from
hazardous or conductive materials and/or environments that could cause harm to the
controller by damaging components or causing electrical shorts. When our products
are used in an industrial environment, install them into an industrial electrical cabinet
or industrial PC to protect them from excessive or corrosive moisture, abnormal
ambient temperatures, and conductive materials. If Delta Tau Data Systems, Inc.
products are directly exposed to hazardous or conductive materials and/or
environments, we cannot guarantee their operation.

PMAC Guide

mailto:support@deltatau.com
http://www.deltatau.com/

PMAC Product Guide

Table of Contents i

Table of Contents

INTRODUCTION ...1
What is PMAC?...1

Standard Features for a Typical Application ..2
Configuring and Programming PMAC..2

Hardware Setup...2
Software Setup ...2
Programming PMAC...3

Universal PMAC Lite Connectors and Indicators ...3
J1 - Display Port Outputs (JDISP Port) ..3
J2 - Control-Panel Port I/O (JPAN Port)..3
J3 - Thumbwheel Multiplexer Port I/O (JTHW Port) ..3
J4 – RS-232 Serial Port Connection (JRS232 Port) ..3
J4A – RS-422 Serial Port Connection (JRS422 Port)..3
J5 - General-Purpose Digital Inputs and Outputs (JOPTO Port)...3
J6 - Auxiliary I/O Port Connector (JXIO Port) ...4
J7 - A/D Port Connector (JS1 Port) ..4
J8 - Position-Compare Connector (JEQU Port) ...4
J11 - Machine Connector (JMACH Connector)..4
TB1 – Power Supply Terminal Block...4
LED Indicators ..4
Fuse ...4

Universal PMAC Lite Dimensions ..5
Universal PMAC Lite Jumpers and Connectors Layout..6
Default Jumper Configuration ...7
Troubleshooting...8

Getting PMAC to Communicate Again..8
Resetting PMAC to Factory Defaults ..8
Before Calling for Help ...8

PMAC JUMPER CONFIGURATION..11
Power-Supply Configuration Jumpers...11

E85, E87, E88: Analog Circuit Isolation Control ...11
E89-E90: Input Flag Supply Control...12

Clock Configuration Jumpers ..12
E98: DAC/ADC Clock Frequency Control..12
E29-E33: Phase Clock Frequency Control ...12
E48: Option CPU Clock Frequency Control...12
E3-E6: Servo Clock Frequency Control ..12
E34A-E38: Encoder Sample Clock..13
E40-E43: Servo and Phase Clock Direction Control ..13

Encoder Configuration Jumpers ..13
E24-E27: Encoder Complementary Line Control ...13
E22-E23: Control-Panel Handwheel Enable ..13
E72-E73: Control Panel Analog Input Enable..13
E74-E75: Encoder Sample Clock Output ..14

Board Reset/Save Jumpers ..14
E39: Reset-From-Bus Enable ..14
E50: Flash-Save Enable/Disable Control ...14
E51: Re-Initialization on Reset Control ..14
E93-E94: Reset from Bus by Software Enable ..14
E103: Watchdog Timer Disable ..15
E106: Power-Up/Reset Load Source...15

Communication Jumpers ...15
E9-E10, E13-E14: Serial Interface Configuration Control...15

PMAC Product Guide

ii Table of Contents

E44-E47: Serial Baud Rate Selection..16
E49: Serial Communications Parity Control...16
E66-E71, E91-E92: ISA Bus Base Address Control ..16
E54-E55, E57-E59, E61-63, E65: Interrupt Source Control...18
E76-E84, E86: Host Interrupt Signal Select..18
E107-E108: Serial Port Configure..18

I/O Configuration Jumpers ..19
E1-E2: Machine Output Supply Configure..19
E7: Machine Input Source/Sink Control..19
E17A - E17D: Amplifier-Enable Polarity Control ..19
E28: Following Error/Watchdog Timer Signal Control..20
E100: Auxiliary Signals Supply Control..20
E101-E102: Auxiliary Signals Output Voltage Configure...20
E109: Display Port Configuration ..20
E110: Expansion Port Configuration ..20

Reserved Configuration Jumpers...21
E0: Reserved for Future Use ...21

WIRING GUIDELINES ...23
Ground Loops..23

Star Ground Connection..23
Opto-Isolation Circuits ..24
EMI, Electromagnetic Interference..24

Twisted Wires ..24
Shielded Cable...25
Wires Separation and Length ..25

Flat Cable Shielding ..25
Basic Rules for Proper Wiring...26
MACHINE CONNECTIONS...27
Power Supplies ..27

Digital Power Supply...27
Analog Power Supply ..27
Flags Power Supply (Optional) ...28

Overtravel Limits and Home Switches..28
Types of Overtravel Limits...28
Home Switches...29

Motor Signals Connections..29
Incremental Encoder Connection ..29
Termination Resistors..30
DAC Output Signals ..30
Amplifier Enable Signal (AENAx/DIRn)..31
Amplifier Fault Signal (FAULTn) ...32

General-Purpose Digital Inputs and Outputs (JOPTO Port) ..33
J5 (JOPTO): I/O Port Connector ..34

Serial Connections...35
J4 (JRS232) Serial Port Connector ...36
J4A (JRS422): Serial Port Connector ...37

Machine Connections Example ...38
ACC-8P/ACC-8D Breakout Board..39
J8 (JEQU): Position-Compare Connector..41
TB1 (JPWR): Power Supply..41

TB1 (4-Pin Terminal Block) ..41
PROGRAMMING PMAC..43
Moving a Motor: Jog Commands and Motion Programs ..43
Axes and Coordinate Systems ...44

PMAC Product Guide

Table of Contents iii

Online Commands ...44
Buffered (Program) Commands ..45
Computational Features...45

I-Variables...45
P-Variables..46
Q-Variables ...47
M-Variables...47
Array Capabilities ...48
Operators...49
Functions ...49
Comparators..50

I-Variables Setup ...51
Motor Definition I-Variables...51
Motor Safety I-Variables ...51
S-Curve and Linear Acceleration Variables..52
Rate vs Time: Programming the Maximum Acceleration Parameters ..52
Benefits of Using S-Curve Acceleration Profiles...53
Motor Movement I-Variables ..53
Servo Control I-Variables..54
Coordinate System I-Variables..54
Encoder/Flag Setup I-Variables ..55

Encoder Conversion Table ..55
Jogging Moves...55

Jog Acceleration..55
Jog Speed...56
Jog Commands ..56
Indefinite Jog Commands ..56
Jogging to a Specified Position ...56
Jog Moves Specified by a Variable..56
Jog-Until-Trigger ..56

Homing Search Moves ..57
Homing Acceleration...57
Homing Speed..57
Home Trigger Condition ...58
Specify Flag Set ...58
Software Capture Option...58
Trigger Signals and Edges...58
Torque-Mode Triggering...59
Merits of Dual Trigger ..59
Action on Trigger...60
Home Command ..60
On-Line Command ..60
Monitoring for Finish ..60
Monitoring for Errors..60
Buffered Program Command...60
Homing from a PLC Program ...61
Motion vs. PLC Program Homing...61
Zero-Move Homing..61
Homing Into a Limit Switch...62
Multi-Step Homing Procedures ...63
Which Direction to Home? ..63
Already Into Home?...64

Command and Send Statements ..65
PMAC Position Registers ..66
MOTION PROGRAMS..69

PMAC Product Guide

iv Table of Contents

Coordinate Systems ...69
Axis Definitions ...69
Axis Definition Statements...70

Writing a Motion Program...70
Running a Motion Program ...72
Subroutines and Subprograms ...73

Passing Arguments to Subroutines ..73
How PMAC Executes a Motion Program..74
Linear Blended Moves...75

Notes about Linear Interpolation Moves ...76
Circular Interpolation ..79
Splined Moves ...81
PVT-Mode Moves ...81
Other Programming Features...84

Internal Timebase, the Feedrate Override ..84
Synchronous M-Variable Assignment..84
Axis Transformation Matrices ...84
Learning a Motion Program..84

PLC PROGRAMS...85
Entering a PLC Program..86
PLC Program Structure ...86
Calculation Statements ..87
Conditional Statements..87

Level-Triggered Conditions...87
Edge-Triggered Conditions ...87

WHILE Loops ...88
COMMAND and SEND statements ..88
Timers..89
TROUBLESHOOTING..91
Resetting PMAC to Factory Defaults ..91
The Watchdog Timer (Red LED) ..91
Establishing Communications ...92

General ..92
Bus Communications ...93
Serial Communications..93

Motor Parameters ..93
Motion Programs ...94
PLC Programs ...95
I-VARIABLES...97
Global I-Variables ...97

I1 Serial Port Mode ...97
I5 PLC Programs On/Off ..98
I6 Error Reporting Mode...98
I7 In-Position Number of Cycles ...99
I8 Real Time Interrupt Period ...100
I9 Full/Abbreviated Program Listing Form ..100
I13 Programmed Move Segmentation Time...101
I15 Degree/Radian Control for User Trig Functions ..102
I50 Rapid Move Mode Control ..102
I52 \ Program Hold Slew Rate...102
I53 Program Step Mode Control ...102

Motor Definition I-Variables...103
Ix00 Motor x Activate ..103
Ix01 Motor x PMAC-Commutation Enable ...103

PMAC Product Guide

Table of Contents v

Ix02 Motor x Command Output (DAC) Address..103
Ix03 Motor x Position Loop Feedback Address...104
Ix04 Motor x Velocity Loop Feedback Address ...105
Ix05 Motor x Master (Handwheel) Position Address ..106
Ix06 Motor x Master (Handwheel) Following Enable...106
Ix07 Motor x Master (Handwheel) Scale Factor...107
Ix08 Motor x Position Scale Factor...107
Ix09 Motor x Velocity Loop Scale Factor..107

Motor Safety I-Variables ...108
Ix11 Motor x Fatal (Shutdown) Following Error Limit...108
Ix12 Motor x Warning Following Error Limit...108
Ix13 Motor x Positive Software Position Limit..109
Ix14 Motor x Negative Software Position Limit ..109
Ix15 Motor x Deceleration Rate on Position Limit or Abort ...110
Ix16 Motor x Maximum Permitted Motor Program Velocity ..110
Ix17 Motor x Maximum Permitted Motor Program Acceleration ...110
Ix19 Motor x Maximum Permitted Motor Jog/Home Acceleration ...111

Motor Movement I-Variables ..112
Ix20 Motor x Jog/Home Acceleration Time...112
Ix21 Motor x Jog/Home S-Curve Time ..112
Ix22 Motor x Jog Speed ...113
Ix23 Motor x Homing Speed and Direction...113
Ix25 Motor x Limit/Home Flag/Amp Flag Address ...113
Ix26 Motor x Home Offset ...116
Ix27 Motor x Position Rollover Range ..116
Ix28 Motor x In-position Band ..117
Ix29 Motor x Output - or First Phase - DAC Bias...117

Servo Control I-Variables..118
Ix30 Motor x PID Proportional Gain ..118
Ix31 Motor x PID Derivative Gain ..119
Ix32 Motor x PID Velocity Feedforward Gain ..119
Ix33 Motor x PID Integral Gain..119
Ix34 Motor x PID Integration Mode..120
Ix35 Motor x PID Acceleration Feedforward Gain...120
Ix68 Motor x Friction Feedforward ..120
Ix69 Motor x Output Command (DAC) Limit ..121
Ix80 Motor x Power-Up Mode...121

Coordinate System I-Variables..122
Ix87 Coordinate System x Default Program Acceleration Time..122
Ix88 Coordinate System x Default Program S-Curve Time...123
Ix89 Coordinate System x Default Program Feedrate/Move Time..123
Ix90 Coordinate System x Feedrate Time Units ..124
Ix91 Coordinate System x Default Working Program Number ...124
Ix92 Coordinate System x Move Blend Disable...124
Ix94 Coordinate System x Time Base Slew Rate (and Limit)...124
Ix95 Coordinate System x Feed Hold Deceleration Rate ..125
Ix96 Coordinate System x Circle Error Limit..125

Encoder/Flag Setup I-Variables...126
I900, I905, ... I975 Encoder n Decode Control Encoder I-Variable 0 ..126
I902, I907, ... I977 Encoder n Position Capture Control Encoder I-Variable 2 ..127
I903, I908, ... I978 Encoder n Flag Select Control Encoder I-Variable 3..128

ONLINE COMMANDS ..129
<CONTROL-A>..129
<CONTROL-B>..129
<CONTROL-C>..130

PMAC Product Guide

vi Table of Contents

<CONTROL-D>..130
<CONTROL-F> ..130
<CONTROL-G>..131
<CONTROL-H>..131
<CONTROL-I> ...131
<CONTROL-K>..132
<CONTROL-M>...132
<CONTROL-O>..132
<CONTROL-P> ..133
<CONTROL-Q>..133
<CONTROL-R>..133
<CONTROL-S> ..134
<CONTROL-V>..134
<CONTROL-X>..134
<CONTROL-Y>..135
<CONTROL-Z>..135
...136
#{constant} ..136
#{constant}-> ..136
#{constant}->0 ..137
#{constant}->{axis definition}..137
$...139
$$$...139
$$$ *** ..140
%..141
%{constant}...141
&{constant}...142
&..142
/..143
? ...143

First Word Returned (X:$003D, X:$0079, etc.) ..144
Second Word Returned (Y:$0814, Y:$08D4, etc.) ...145

?? ...147
First Word Returned (X:$0818, X:$08D8, etc.) ..147
Second Word Returned (Y:$0817, Y:$08D7, etc.) ...148
Second Word Returned (Y:$0817, Y:$08D7, etc.) ...150

???..152
First Word Returned (X:$0003)...152
Second Word Returned (Y:$0003) ...154

\ ..155
A ..155
ABS ...156
{axis}={constant} ...156
B{constant} ...157
CLEAR..157
CLOSE ..158
{constant}..158
DATE ..159
DEFINE TBUF..159
DELETE GATHER...159
DELETE TBUF...160
DISABLE PLC..160
ENABLE PLC...161
F...161
FRAX ..162
H ..162

PMAC Product Guide

Table of Contents vii

HOME ...163
HOMEZ...163
I{constant}...164
I{constant}={expression}..165
I{constant}=* ..165
INC ..165
J! ..166
J+ ...166
J- ..167
J/ ..167
J:{constant} ...167
J:* ..168
J= ...168
J={constant} ..169
J=* ...169
J=={constant}..170
J^{constant}...170
J^*..171
{jog command}^{constant}...171
K ..172
LEARN..173
LIST...174
LIST PC...174
LIST PE...175
LIST PLC ..175
LIST PROGRAM..176
M{constant} ..177
M{constant}={expression} ...177
M{constant}->...178
M{constant}->*...178
M{constant}->D:{address} ...179
M{constant}->L:{address}..179
M{constant}->X/Y:{address} ...179
MFLUSH...181
O{constant} ...181
OPEN PLC ..182
OPEN PROGRAM..182
P...183
P{constant}..183
P{constant}={expression}...184
PASSWORD={string} ..184
PC ..185
PE ..186
PMATCH ..186
Q ..187
Q{constant} ...188
Q{constant}={expression} ..188
R ..188
R[H]{address} ...189
S...190
SAVE...190
SIZE...191
TYPE...192
UNDEFINE ...192
UNDEFINE ALL ..193
V ..193

PMAC Product Guide

viii Table of Contents

VERSION..194
W{address} ...194
Z...195
BUFFER COMMANDS..197
{axis}{data}[{axis}{data}...] ..197
{axis}{data}:{data} [{axis}{data}:{data}...] ..197
{axis}{data}^{data}[{axis}{data}^{data}...]..198
{axis}{data} [{axis}{data}...] {vector}{data} [{vector}{data}...] ...199
A{data}..200
ABS ...201
ADDRESS...201
ADIS{constant}...202
AND ({condition}) ..202
AROT{constant} ...203
B{data}..204
BLOCKSTART...204
BLOCKSTOP..204
C{data}..205
CALL...205
CIRCLE1...206
CIRCLE2...207
COMMAND"{command}" ...207
COMMAND^{letter} ..209
DELAY{data} ...210
DISABLE PLC {constant}[,{constant}...] ..210
DISPLAY [{constant}] "{message}" ..210
DISPLAY ... {variable}...211
DWELL ...211
ELSE ...212
ENABLE PLC...213
ENDIF ...213
ENDWHILE..214
F{data} ..214
FRAX ..215
GOSUB ...216
GOTO..217
HOME ...217
HOMEZ...218
I{data} ...219
I{constant}={expression}..219
IDIS{constant} ..220
IF ({condition}) ...220
INC ..221
IROT{constant}...222
J{data} ...222
K{data}..223
LINEAR ..223
M{constant}={expression} ...224
M{constant}=={expression} ...224
M{constant}&={expression} ..225
M{constant}|={expression}...225
M{constant}^={expression} ...225
N{constant} ...226
NORMAL..226
O{constant} ...227

PMAC Product Guide

Table of Contents ix

OR({condition}) ..227
P{constant}={expression}...228
PSET..228
PVT{data} ...229
Q{constant}={expression} ..229
R{data}..230
RAPID ...231
READ ..231
RETURN ...233
SEND...233
SEND^{letter}...235
SPLINE1..236
SPLINE2..236
STOP ...237
TA{data} ...237
TINIT...238
TM{data}...238
TS{data}..239
TSELECT{constant} ...239
U{data}..240
V{data}..240
W{data}...240
WAIT...241
WHILE({condition})...241
X{data}..243
Y{data}..243
Z{data} ..243

PMAC Product Guide

x Table of Contents

PMAC Product Guide

Introduction 1

INTRODUCTION
This manual is the main source of information for installing and programming the Universal PMAC-Lite
motion controller for a typical application. A typical application in this case is composed of up to four
amplifiers each requiring a single ±10V differential command signal or DAC, a single quadrature
incremental encoder per motor and a maximum of eight general-purpose digital inputs and outputs.

The manual sections are in the following sequence:

• Description of PMAC capabilities and features
• Description of PMAC on-board configuration jumpers
• Complete description of how to connect PMAC to the machine
• Complete description of how to program PMAC
• Description of the EZ-PMAC Setup Software

The PMAC motion controller is rich in features and expansion capabilities. Because this manual
illustrates the implementation of PMAC in a typical application, some of the PMAC advanced features
are not described. Further information of all PMAC features can be obtained from the PMAC Software
Reference, the PMAC User and the PMAC Hardware Reference manuals.

Use the EZ-PMAC program as a software tool for configuring and programming PMAC. All the example
programs provided in this manual can be found in the samples folder of the EZ-PMAC Setup Software
installation directory.

What is PMAC?
PMAC, pronounced Pe’-MAC, stands for Programmable Multi-Axis Controller. It is a family of high-
performance servo motion controllers capable of commanding up to 32 axes of motion simultaneously
with a high level of sophistication.

The Universal PMAC-Lite board, member of the PMAC family, is a 4-axis motion controller. The term
Lite stands to indicate a maximum of four on-board axes of motion control. The term “Universal”
indicates that this motion controller can have different types of on-board backup memory, either battery
based type or flash type.

Each axis is controlled by an independent channel circuitry which in turn is composed of the following
features:

• A single differential 16-bits DAC output
• Amplifier enable output
• One quadrature incremental encoder input
• Four dedicated flag inputs: two end-of-travel limits, one home input and one amplifier fault input

The Universal PMAC-Lite can be programmed to control the motion of up to four motors in any
coordinated fashion, either independently of each other or coordinated with, for example, linear or
circular interpolation.

The Universal PMAC-Lite is not only a sophisticated motion controller but it is also a PLC device
(Programmable Logic Controller). PLC programs in PMAC run independently of each other and of
motion programs and can be tightly synchronized to the motion sequence.

The Universal PMAC-Lite can be installed inside a computer on an ISA bus type and can be programmed
through bus communications. Alternatively, it can be installed in a stand-alone configuration outside the
computer and programmed using serial communications. Either RS-232 or RS-422 serial
communications are supported.

PMAC Product Guide

2 Introduction

PMAC has its own on-board memory. Programs and motion parameters can be kept in memory without
the need to re-program each time PMAC is power up.

Standard Features for a Typical Application
• Motorola DSP 56k Digital Signal Processor
• Four digital-to-analog converter (DAC) outputs
• Four full encoder channels
• 16 general purpose I/O, OPTO-22 compatible
• Overtravel limit, home, amplifier fault/enable flags
• Display port for LCD and VFD displays
• Bus, RS-422 and/or RS-232 control
• Stand-alone operation
• Linear and circular interpolation

• 256 motion programs capacity
• Asynchronous PLC program capability
• 36-bit position range (+/- 64 billion counts)
• 16-bit DAC output resolution
• S-curve acceleration and deceleration
• Cubic trajectory calculations, splines
• Position, velocity and time PVT move types
• Advanced PID servo motion algorithms

Configuring and Programming PMAC
Hardware Setup
On the PMAC, there are many jumpers (pairs of metal prongs) called E-points. Some have been shorted
together. Others have been left open. These jumpers customize the hardware features of the board for a
given application. For example, some of these jumpers set the baud rate for serial communications while
others determine the type of amplifier enable signals that PMAC can output.

Check each jumper configuration before installation to the machine. Details of each jumper function and
setting are provided in the chapters of this manual. Once PMAC jumpers are properly set, install it in the
machine either in a stand-alone configuration or inside the computer on the ISA bus.

Software Setup
PMAC has a large set of initialization parameters (I-Variables) that determine the personality of the card
for a specific application. Many of these are used to configure a motor properly. Once set up, these
variables may be stored in non-volatile EAROM memory (using the SAVE command) so the card is
always configured properly. (PMAC loads the EAROM I-variable values into RAM on power up.)

Note:

The EZ-PMAC Setup Software provides dedicated screens as well as a terminal
window for configuring each I-Variable.

In a terminal window, the value of any I-Variable may be queried simply by typing in the name of the I-
Variable. For instance, typing I900<CR> causes the value of the I900 to be returned. Change the value
by typing in the name, an equals sign, and the new value (e.g. I900=3<CR>). To change any I-Variables
during this setup, use the SAVE command before powering down or resetting the card or the changes
made will be lost.

PMAC Product Guide

Introduction 3

Programming PMAC
Buffered commands for Motion programs or PLC programs are entered in any text file and then
downloaded to PMAC with the EZ-PMAC Setup Software or equivalent software.

With online commands, immediately jog motors, change variables, report variables values, start and stop
programs, query for status information and even write short motion and PLC programs from the terminal
window.

Once loaded, each enabled PLC program will run automatically on power-up provided that the I5 I-
variable has been properly set. Motion programs can be started from the terminal window by typing the
B1R command or can be started automatically on power-up from a PLC program.

Note:

Type SAVE in the terminal window to keep any changes that made to PMAC’s
memory. The EZ-PMAC Setup Software gives a reminder to save the PMAC
parameters on each exit.

Universal PMAC Lite Connectors and Indicators
J1 - Display Port Outputs (JDISP Port)
The JDISP connector connects the PMAC to the ACC-12 or ACC-12A liquid crystal displays or the
ACC-12C vacuum fluorescent display. Both text and variable values may be shown on these displays
through the use of the DISPLAY command, executing in either motion or PLC programs.

J2 - Control-Panel Port I/O (JPAN Port)
This connector is considered an advanced feature and it is not used on a standard application.

J3 - Thumbwheel Multiplexer Port I/O (JTHW Port)
The Thumbwheel Multiplexer Port, or Multiplexer Port, on the JTHW connector has eight input lines and
eight output lines. The output lines can be used to multiplex large numbers of inputs and outputs on the
port and Delta Tau provides accessory boards and software structures (special M-Variable definitions) to
capitalize on this feature. Up to 32 of the multiplexed I/O boards may be daisy-chained on the port, in
any combination.

J4 – RS-232 Serial Port Connection (JRS232 Port)
Both RS-232 and RS-422 ports are always provided, and jumpers must be set correctly to use the port of
choice. Jumpers E107 and E108 must connect pins 1 and 2 to use the RS-232 port on the J4 connector. J4
and J4A cannot be used at the same time.

J4A – RS-422 Serial Port Connection (JRS422 Port)
Both RS-232 and RS-422 ports are always provided and jumpers must be set correctly to use the port of
your choice. Jumpers E107 and E108 must connect pins 2 and 3 to use the RS-422 port on the J4A
connector. J4 and J4A cannot be used at the same time.

J5 - General-Purpose Digital Inputs and Outputs (JOPTO Port)
PMAC’s JOPTO connector provides eight general-purpose digital inputs and eight general-purpose
digital outputs. Each input and each output has its own corresponding ground pin in the opposite row.
The 34-pin connector was designed for easy interface to OPTO-22 or equivalent optically isolated I/O
modules. Delta Tau’s ACC-21F is a six-foot cable used for this purpose.

PMAC Product Guide

4 Introduction

J6 - Auxiliary I/O Port Connector (JXIO Port)
This connector is considered an advanced feature and it is not used on a standard application.

J7 - A/D Port Connector (JS1 Port)
This connector is considered an advanced feature and it is not used on a standard application.

J8 - Position-Compare Connector (JEQU Port)
For a typical application, the most important feature of this connector is to connect an external power
supply to use flag sensors in the 12 to 24V range which is otherwise limited to up to a 15V operation.
Other features of this connector are considered advanced and are not used on a standard application.

J11 - Machine Connector (JMACH Connector)
This connector, labeled J11, contains the pins for four channels of machine I/O: analog outputs,
incremental encoder inputs, and associated input and output flags, plus power supply connections.
Usually, lines on this connector are accessed through the ACC-8P or ACC-8D breakout boards.

TB1 – Power Supply Terminal Block
This terminal block can be used to provide the input for the power supply for the circuits on the PMAC-
Lite board when it is not in a bus configuration. However, it is recommended to use the ACC-8P or
equivalent terminal block for the power supply connections.

LED Indicators
The Universal PMAC Lite has three LED indicators: red, yellow, and green. When the green LED is lit,
this indicates that power is applied to the +5V input; when the red LED is lit, this indicates that the
watchdog timer has tripped and shut down the PMAC.

The yellow LED located beside the red and green LEDs, when lit, indicates that the phase-locked loop
that multiplies the CPU clock frequency from the crystal frequency on the Option CPU is operational and
stable. This indicator is for diagnostic purposes only; it may not be present on your board.

Fuse
The 5V output through the J5 JOPTO connector is protected by F1, which is a 2-Amp fuse of the
following type:

Manufacturer: LittleFuse

Part Number: 021-273002-004

PM
A

C
 P

ro
du

ct
 G

ui
de

In
tr

od
uc

tio
n

5

U
ni

ve
rs

al
 P

M
A

C
 L

ite
 D

im
en

si
on

s

PM
A

C
 P

ro
du

ct
 G

ui
de

6

In
tr

od
uc

tio
n

U
ni

ve
rs

al
 P

M
A

C
 L

ite
 J

um
pe

rs
 a

nd
 C

on
ne

ct
or

s
La

yo
ut

E

0
E1

E

13

F1

E
26

H

2
E

35

E3

E
45

C

2
E

58

C
3

E
70

D

3
E

80

F3

E
90

G

2
E

10
6

A
2

E
1

E1

E
14

F1

E

27

H
2

E
36

F3

E

46

D
2

E
59

C

3
E

71

D
3

E
81

F3

E

91

D
3

E
10

7
F1

E

2
E1

E

17
A

G

1
E

28

E3

E
37

F3

E

47

D
2

E
61

D

3
E

72

E2

E
82

F3

E

92

D
3

E
10

8
F1

E

3
F3

E

17
B

G

1
E

29

F3

E
38

F3

E

48

D
1

E
62

D

3
E

73

E2

E
83

G

3
E

93

C
3

E
10

9
B

1
E

4
F3

E

17
C

G

1
E

30

F3

E
39

D

3
E

49

D
1

E
63

D

3
E

74

E2

E
84

G

3
E

94

C
3

E
11

0
C

2
E

5
F3

E

17
D

G

1
E

31

F3

E
40

C

2
E

50

C
1

E
65

D

3
E

75

E2

E
85

G

3
E

98

F3

D
1

B
1

E
6

F3

E
22

G

1
E

32

E3

E
41

C

2
E

51

C
1

E
66

D

3
E

76

F3

E
86

G

3
E

10
0

H
1

D
2

B
1

E
7

D
1

E
23

G

1
E

33

E3

E
42

C

2
E

54

C
3

E
67

D

3
E

77

F3

E
87

G

3
E

10
1

H
1

D
3

B
1

E
9

F1

E
24

H

2
E

34
A

E3

E

43

C
2

E
55

C

3
E

68

D
3

E
78

F3

E

88

H
3

E
10

2
H

1
D

21

G
1

E
10

F1

E

25

H
2

E
34

E3

E

44

C
2

E
57

C

3
E

69

D
3

E
79

F3

E

89

G
2

E
10

3
A

1
F1

F1

1.0 - Introduction

PMAC Product Guide

Introduction 7

Default Jumper Configuration
Jumper Location Default Jumper Location Default

E0 E1 OFF E55 C3 OFF
E1 E1 1-2 E57 C3 OFF
E2 E1 1-2 E58 C3 OFF
E3 F3 OFF E59 C3 OFF
E4 F3 OFF E61 D3 OFF
E5 F3 ON E62 D3 OFF
E6 F3 ON E63 D3 OFF
E7 D1 1-2 E65 D3 OFF
E9 F1 1-2 E66 D3 OFF

E10 F1 1-2 E67 D3 ON
E13 F1 1-2 E68 D3 ON
E14 F1 1-2 E69 D3 ON

E17A G1 OFF E70 D3 ON
E17B G1 OFF E71 D3 OFF
E17C G1 OFF E72 E2 OFF
E17D G1 OFF E73 E2 OFF
E22 G1 OFF E74 E2 OFF
E23 G1 OFF E75 E2 OFF
E24 H2 1-2 E76 F3 OFF
E25 H2 1-2 E77 F3 OFF
E26 H2 1-2 E78 F3 OFF
E27 H2 1-2 E79 F3 OFF
E28 E3 2-3 E80 F3 OFF
E29 F3 OFF E81 F3 OFF
E30 F3 OFF E82 F3 OFF
E31 F3 ON E83 G3 OFF
E32 E3 OFF E84 G3 OFF
E33 E3 OFF E85 G3 OFF

E34A E3 OFF E86 G3 OFF
E34 E3 ON E87 G3 OFF
E35 E3 OFF E88 H3 OFF
E36 F3 OFF E89 G2 ON
E37 F3 OFF E90 G2 1-2
E38 F3 OFF E91 D3 ON
E39 D3 OFF E92 D3 ON
E40 C2 ON E93 C3 OFF
E41 C2 ON E94 C3 OFF
E42 C2 ON E98 F3 1-2
E43 C2 ON E100 H1 1-2
E44 C2 OFF E101 H1 1-2
E45 C2 ON E102 H1 1-2
E46 D2 ON E103 A1 OFF
E47 D2 OFF E106 A2 OFF
E48 D1 OFF E107 F1 1-2
E49 D1 ON E108 F1 1-2
E50 C1 ON E109 B1 OFF
E51 C1 OFF E110 C2 1-2
E54 C3 OFF

 PMAC Product Guide

8 Introduction

Troubleshooting
Getting PMAC to Communicate Again
1. Turn off PMAC or the host computer where PMAC is installed.

2. Remove all cables connected to PMAC and only connect the serial port and power cables if
necessary.

3. Check that all PMAC jumpers are at the default configuration or properly changed to accommodate
the particular setup for the machine. Make sure that jumper E50 is properly installed because
otherwise any SAVE command issued to PMAC will not have any effect (and the problem will return
when E51 is removed).

4. Install jumper E51. This is a hardware re-initialization jumper that takes effect on power-up.

5. After power-up, try establishing communications again with a software package like PEWIN or EZ-
PMAC Setup Software provided by Delta Tau.

6. If communication is established, perform the reset procedure described in the following section.

Resetting PMAC to Factory Defaults
1. Type the following commands on the terminal window. This procedure will set all PMAC variables

to their default configuration and any Motion Program and PLC program will be erased from
memory.
$$$*** ;Global Reset
P0..1023=0 ;Reset P-variables values
Q0..1023=0 ;Reset Q-variables values
M0..1023->* M0..1023=0 ;Reset M-variables definitions and values
UNDEFINE ALL ;Undefine Coordinate Systems
SAVE ;Save this initial, “clean” configuration

2. If the re-initialization E51 jumper was installed, remove it at this time. Restore all PMAC
connections and power it up.

3. Try communications again and configure PMAC for the application. Save a backup file to the host
computer with all the parameters and programs that PMAC needs to run the application. Furthermore,
since the host computer can also fail and be replaced, save the configuration file both in the host
computer and in a floppy disk stored in a safe place. This file must be downloaded and a SAVE
command must be issued to PMAC.

Note:

The EZ-PMAC Setup Software has a set of step-by-step procedures for
establishing PMAC communications, for performing different reset procedures,
and also has dedicated screens for backup and restoring a particular PMAC
configuration.

Before Calling for Help
One of the most important services that Delta Tau provides is the excellent technical support for all its
products. To provide better service, have the following information prepared before contacting us:

1. The PMAC model. In this case, it is the Universal PMAC Lite board.

2. The information from these commands issued from a terminal window: Type, Version and Date.

3. The part number read from the PMAC board (usually located on the soldering side of the board). In
this case, use the number 602402 followed by three more digits describing the revision number.

PMAC Product Guide

Introduction 9

4. The operating system of the computer communicating with PMAC (i.e. the version of Windows
installed in the host computer).

5. The name and version of the software being used for communicating with PMAC. In most cases this
will be either PEWIN or EZ-PMAC Setup Software, both provided by Delta Tau.

6. Prepare a concise description of the problem and identify the problem as either software or hardware
related. For example, problems with motion programs or PLC programs are software related whereas
a motor that does not run properly could be a problem either software or hardware related.

 PMAC Product Guide

10 Introduction

PMAC Product Guide

PMAC Jumper Configuration 11

PMAC JUMPER CONFIGURATION
On the PMAC, there are many jumpers (pairs of metal prongs), called E-points. Some have been shorted
together; others have been left open. These jumpers customize the hardware features of the board for a
given application. For example, some of these jumpers set the baud rate for serial communications while
others determine the type of amplifier enable signals that PMAC can output.

In the following description, a jumper that by default is not present or removed is indicated as OFF. A
jumper that is present or installed is indicated as ON. For a three-position jumper, the proper
configuration will be indicated either 1-2, 2-3 or OFF. For the location of each configuration jumper refer
to the Universal PMAC Lite Connectors and Indicators section of this manual.

Power-Supply Configuration Jumpers

E85, E87, E88: Analog Circuit Isolation Control
Default Configuration

E85 E87 E88
OFF OFF OFF

The PMAC-Lite board circuitry is divided in two parts that can be electrically isolated from each other.
The analog circuitry interfaces, among other signals, the amplifier control lines like the DAC (± 10V)
command output and amplifier enable and fault signals. The digital circuitry includes the CPU as well as
the encoder input circuitry.

These jumpers control whether the analog circuitry on the PMAC-Lite is isolated from the digital
circuitry, or electrically tied to it. In the default configuration, these jumpers are off, keeping the circuits
isolated from each other (provided separate isolated supplies are used).

 PMAC Product Guide

12 PMAC Jumper Configuration

Putting E87 ON ties the digital GND reference signal to the analog AGND reference signal, defeating the
isolation between the circuits. Putting E85 ON ties the digital +12V supply line to the analog A+15V
supply line. Putting E88 ON ties the digital –12V supply line to the analog A-15V supply line. Putting
these jumpers on permits the bus +/-12V supply to power PMAC’s analog circuits.

E89-E90: Input Flag Supply Control
Default Configuration

E89 E90
ON 1-2

If E90 connects pins 1 and 2 and E89 is ON, the input flags (+LIMn, -LIMn, HMFLn, and FAULTn) are
supplied from the analog A+15V supply, which can be isolated from the digital circuitry. If E90 connects
pins 1 and 2 and E89 is OFF, the input flags are supplied from a separate A+V supply brought in on pin 9
of the J8 JEQU connector. This supply can be in the +12V to +24V range, and can be kept isolated from
both the analog and digital circuits. If E90 connects pins 2 and 3, the input flags are supplied from the
digital +12V supply, and isolation from the digital circuitry is defeated.

Clock Configuration Jumpers

E98: DAC/ADC Clock Frequency Control
Default Configuration

E98
1-2

This jumper is related to an advanced feature and should not be changed from default.

E29-E33: Phase Clock Frequency Control
Default Configuration

E29 E30 E31 E32 E33
OFF OFF ON OFF OFF

These jumpers are related to an advanced feature and should not be changed from default.

E48: Option CPU Clock Frequency Control
Default Configuration

E48
OFF

This jumper is related to an advanced feature and should not be changed from default.

E3-E6: Servo Clock Frequency Control
Default Configuration

E3 E4 E5 E6
OFF OFF ON ON

These jumpers are related to an advanced feature and should not be changed from default.

PMAC Product Guide

PMAC Jumper Configuration 13

E34A-E38: Encoder Sample Clock
Default Configuration

E34A E34 E35 E36 E37 E38
OFF ON OFF OFF OFF OFF

These jumpers are related to an advanced feature and should not be changed from default.

E40-E43: Servo and Phase Clock Direction Control
Default Configuration

E40 E41 E42 E43
ON ON ON ON

These jumpers are related to an advanced feature and should not be changed from default.

Encoder Configuration Jumpers
E24-E27: Encoder Complementary Line Control

Default Configuration
E24 E25 E26 E27
1-2 1-2 1-2 1-2

These jumpers, one per encoder, control the voltage to which the complementary channels A/, B/, and C/
are pulled. The default setting for each jumper, connecting pins 1 and 2, ties the complementary lines to
2.5V. This setting is required for single-ended encoders and is best if the channel is left unconnected. If
encoders with differential line drivers are used, the setting of these jumpers does not matter. Changing
the jumpers to connect pins 2 and 3 ties the complementary lines to 5V. This setting is used for (now
obsolete) complementary open-collector encoders, or if external exclusive-or loss-of-encoder circuitry is
used.

The following table shows which jumper affects which encoder channel:

ENC1 ENC2 ENC3 ENC4
E27 E26 E25 E24

E22-E23: Control-Panel Handwheel Enable
Default Configuration

E22 E23
OFF OFF

These jumpers are related to an advanced feature and should not be changed from default.

E72-E73: Control Panel Analog Input Enable
Default Configuration

E72 E73
OFF OFF

These jumpers are related to an advanced feature and should not be changed from default.

 PMAC Product Guide

14 PMAC Jumper Configuration

E74-E75: Encoder Sample Clock Output
Default Configuration

E74 E75
OFF OFF

These jumpers are related to an advanced feature and should not be changed from default.

Board Reset/Save Jumpers
E39: Reset-From-Bus Enable

Default Configuration
E39
OFF

This jumper is related to an advanced feature and should not be changed from default.

E50: Flash-Save Enable/Disable Control
Default Configuration

E50
ON

If E50 is ON (default), the active software configuration of the PMAC can be stored to non-volatile flash
memory with the SAVE command. If the jumper on E50 is removed, this Save function is disabled, and
the contents of the flash memory cannot be changed.

E51: Re-Initialization on Reset Control
Default Configuration

E51
OFF

If E51 is OFF (default), PMAC executes a normal reset, loading active memory from the last saved
configuration in non-volatile flash memory. If E51 is ON, PMAC re-initializes on reset, loading active
memory with the factory default values.

Note:

If communications with PMAC cannot be established, try installing E51 and power
PMAC up again. If installing E51 enables communications, type Save on the
terminal window and remove the E51 jumper. All memory contents will be cleared
to factory defaults.

E93-E94: Reset from Bus by Software Enable
Default Configuration

E93 E94
OFF OFF

These jumpers are related to an advanced feature and should not be changed from default.

PMAC Product Guide

PMAC Jumper Configuration 15

E103: Watchdog Timer Disable
Default Configuration

E103
OFF

If E103 is installed the watchdog safety function will be disabled. This jumper is for testing purposes
only.

E106: Power-Up/Reset Load Source
Default Configuration

E106
OFF

If E106 is installed when the PMAC-Lite executes its reset cycle, PMAC enters a special re-initialization
mode that permits the downloading of new firmware either through the serial port or the bus port. Under
these conditions, an appropriate program like Delta Tau’s PEWIN Software allows the downloading of a
firmware file.

Note:

Compiled PLCs must be recompiled for running under a different firmware
version. Before attempting to upgrade PMAC operational firmware, make sure all
of PMAC configuration has been stored to disk on a backup file. Also, if compiled
PLCs are used, make sure to store their source code separately, which is not saved
automatically in a backup file.

After the firmware has been changed and before the memory configuration has
been restored, it is important to send the $$$*** command to clear all memory
and buffers.

Communication Jumpers
E9-E10, E13-E14: Serial Interface Configuration Control

Default Configuration
E9 E10 E13 E14
ON ON ON ON

The E9, E10, E13, and E14 jumpers control whether the RS-232 serial port will be in DCE or DTE
format. The default configuration permits straight-across connection to a PC DB-9 serial port.

Jump, E9-1 to E9-2 to allow RXD/ to be input on J4-3.
Jump E10-1 to E10-2 to allow TXD/ to be output on J4-5.
Jump E9-1 to E10-1 to allow TXD/ to be output on J4-3.
Jump E9-2 to E10-2 to allow RXD/ to be input on J4-5.
Jump E13-1 to E13-2 to allow RTS to be input on J4-7.
Jump E14-1 to E14-2 to allow CTS to be output on J4-9.
Jump E13-1 to E14-1 to allow CTS to be output on J4-7.
Jump E13-2 to E14-2 to allow RTS to be input on J4-9.

 PMAC Product Guide

16 PMAC Jumper Configuration

E44-E47: Serial Baud Rate Selection
Default Configuration

E44 E45 E46 E47
OFF ON ON OFF

The configuration of these jumpers and the particular CPU option ordered (usually written on chip U13
on PMAC) determine the baud rate at which PMAC will communicate through its J4 or J4A serial port.

Baud Rate Control
E Points Baud Rate

E44 E45 E46 E47
20 MHz Flash
CPU (Opt 4A)

Battery CPU, 40
MHz Flash CPU

(Opt 5A)

60 MHz Flash
CPU (Opt 5B)

80 MHz Flash
CPU (Opt 5C)

ON ON ON ON Disabled Disabled Disabled Disabled
OFF ON ON ON 300 600 900 1200
ON OFF ON ON 400* 800* 1200 1600*
OFF OFF ON ON 600 1200 1800 2400
ON ON OFF ON 800* 1600* 2400 3200*
OFF ON OFF ON 1200 2400 3600 4800
ON OFF OFF ON 1600* 3200* 4800 6400*
OFF OFF OFF ON 2400 4800 7200 9600
ON ON ON OFF 3200* 6400* 9600 12800*
OFF ON ON OFF 4800 9600 14400 19200
ON OFF ON OFF 6400* 12800* 19200 25600*
OFF OFF ON OFF 9600 19200 28800 38400
ON ON OFF OFF 12800* 25600* 38400 51200*
OFF ON OFF OFF 19200 38400 57600 76800
ON OFF OFF OFF 25600* 51200* 76800 102400*
OFF OFF OFF OFF 38400 76800 115200 153600
*Non-standard baud rate

E49: Serial Communications Parity Control
Default Configuration

E49
ON

This jumper is related to an advanced feature and should not be changed from default.

E66-E71, E91-E92: ISA Bus Base Address Control
Default Configuration

E66 E67 E68 E69 E70 E71 E91 E92
OFF ON ON ON ON OFF ON ON

Jumpers E91, E92, E66, E67, E68, E69, E70, and E71 on the PMAC-Lite determine the base address of
the card in the I/O space of the host PC’s expansion bus. Together, they form a binary number that
specifies the 16 consecutive addresses on the bus where the card can be found. The jumpers form the base
address in the following fashion:

PMAC Product Guide

PMAC Jumper Configuration 17

Jumper E91 E92 E66 E67 E68 E69 E70 E71
Bit # 11 10 9 8 7 6 5 4

Dec Value 2048 1024 512 256 128 64 32 16
Hex Value 800 400 200 100 80 40 20 10

• If a jumper is ON, the value it contributes to the base address is zero.
• If a jumper is OFF, the value it contributes to the base address is given in the table above.

On the PMAC-Lite, the jumpers are physically arranged in the same order they are presented in the above
table.

From Jumper Configuration To Address
To determine the address specified by a given jumper configuration, use the following formula:

(Decimal)
Address = 2048*E91 + 1024*E92 + 512*E66 + 256*E67 + 128*E68 + 64*E69 + 32*E70 + 16*E71

(Hexadecimal)
Address = $800*E91 + $400*E92 + $200*E66 + $100*E67 + $80*E68 + $40*E69 + $20*E70 +
$10*E71

In each case, Exx = 1 if the jumper is OFF; Exx = 0 if the jumper is ON.

Example: On a PMAC card, the jumpers are in the following configuration:

E91 E92 E66 E67 E68 E69 E70 E71
ON ON OFF OFF ON ON ON ON

The address can be computed as:
Decimal Address = 0 + 0 + 512 + 256 + 0 + 0 + 0 + 0 = 768
Hex Address = 0 + 0 + $200 + $100 + 0 + 0 + 0 + 0 = $300

From Address To Jumper Configuration
Once an I/O address on the PC expansion port has been selected, the following procedure can be used to
set the address jumpers.

1. Convert the address to a 3-digit hexadecimal value ($000 to $FFF, representing 0 to 4095). If the
value does not fit in this range, PMAC cannot be set for this address. Make sure the last digit is 0;
only addresses divisible by 16 are permitted as PMAC base addresses.

2. Take the first hex digit and convert it to binary. The binary digits represent bits 11 through 8 of the
base address. Assign each binary digit to jumpers as follows:

Bit # 11(MSB) 10 9 8(LSB)
Jumper E91 E92 E66 E67

Digit Value 8 4 2 1
Setting for 1 OFF OFF OFF OFF
Setting for 0 ON ON ON ON

3. Take the second hex digit and convert it to binary. The binary digits represent bits 7 through 4 of the
base address. Assign each binary digit to jumpers as follows:

 PMAC Product Guide

18 PMAC Jumper Configuration

Bit # 7(MSB) 6 5 4(LSB)
Jumper E68 E69 E70 E71

Digit Value 8 4 2 1
Setting for 1 OFF OFF OFF OFF
Setting for 0 ON ON ON ON

Example 1: To set up the card to be at base address 992 decimal on the PC expansion bus:

1. 992 decimal is equal to 3E0 hexadecimal.
2. The first digit of 3 is binary 0011. This sets E91 ON, E92 ON, E66 OFF, E67 OFF.
3. The second digit of E is binary 1110. This sets E68 OFF, E69 OFF, E70 OFF, E71 ON.

Example 2: To set up the card to be at base address 528 decimal on the PC expansion bus:

1. 528 decimal is equal to 210 hexadecimal.
2. The first digit of 2 is binary 0010. This sets E91 ON, E92 ON, E66 OFF, E67 ON.
3. The second digit of E is binary 0001. This sets E68 ON, E69 ON, E70 ON, E71 OFF.

Example 3: To set up the card to be at base address 544 decimal on the PC expansion bus:

1. 544 decimal is equal to 220 hexadecimal.
2. The first digit of 2 is binary 0010. This sets E91 ON, E92 ON, E66 OFF, E67 ON.
3. The second digit of E is binary 0010. This sets E68 ON, E69 ON, E70 OFF, E71 ON.

E54-E55, E57-E59, E61-63, E65: Interrupt Source Control
Default Configuration

E54 E55 E57 E58 E59 E61 E62 E62 E63 E65
OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF

These jumpers are related to an advanced feature and should not be changed from default.

E76-E84, E86: Host Interrupt Signal Select
Default Configuration

E76 E77 E78 E79 E80 E81 E82 E83 E84 E86
OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF

These jumpers are related to an advanced feature and should not be changed from default.

E107-E108: Serial Port Configure
Default Configuration

E107 E108
1-2 1-2

Both RS-232 and RS-422 serial ports are provided as standard on the Universal PMAC-Lite board.
Jumpers E107 and E108 must be set correctly to use the port of choice. Both jumpers E107 and E108
must connect pins 1 and 2 to use the RS-232 port on the J4 connector. Otherwise, both jumpers E107 and
E108 must connect pins 2 and 3 to use the RS-422 port on the J4A connector.

PMAC Product Guide

PMAC Jumper Configuration 19

I/O Configuration Jumpers
E1-E2: Machine Output Supply Configure

Default Configuration
E1 E2
1-2 1-2

Chip U26 on the Universal PMAC Lite controls the general-purpose digital outputs on connector J5
JOPTO.

With the default sinking output driver IC (ULN2803A or equivalent) in U26, these jumpers must connect
pins 1 and 2 to supply the IC correctly. If this IC is replaced with a sourcing output driver IC
(UDN2981A or equivalent), these jumpers must be changed to connect pins 2 and 3 to supply the new IC
correctly.

Warning:

The jumper setting must match the type of driver IC, or damage to the IC will
result.

E7: Machine Input Source/Sink Control
Default Configuration

E7
1-2

With this jumper connecting pins 1 and 2 (default), the machine input lines on the J5 JOPTO port are
pulled up to +5V or to the externally provided supply voltage for the port. This configuration is suitable
for sinking drivers. If the jumper is changed to connect pins 2 and 3, these lines are pulled down to GND.
This configuration is suitable for sourcing drivers.

E17A - E17D: Amplifier-Enable Polarity Control
Default Configuration

E17A E17B E17C E17D
OFF OFF OFF OFF

Jumpers E17A through E17D control the polarity of the amplifier enable signal for the corresponding
motor 1 to 4. When the jumper is OFF (default), the amplifier-enable line for the corresponding motor is
low true so the enable state is low-voltage output and sinking current, and the disable state is not
conducting current. With the default ULN2803A sinking driver used by the PMAC-Lite, this is the fail-
safe option allowing the circuit to fail in the disable state. With this jumper ON, the amplifier-enable line
is high true so the enable state is not conducting current, and the disable state is low-voltage output and
sinking current. Generally, this setting is not recommended. The following table shows which jumper
affects which channel:

AENA1 AENA2 AENA3 AENA4
E17A E17B E17C E17D

 PMAC Product Guide

20 PMAC Jumper Configuration

E28: Following Error/Watchdog Timer Signal Control
Default Configuration

E28
2-3

1. Jump pin 1 to 2 to allow warning following error (Ix12) for the selected coordinate system to control
FEFCO/ on J8-57.

2. Jump pin 2 to 3 to cause watchdog timer output to control FEFCO/.

Low true output in either case.

E100: Auxiliary Signals Supply Control
Default Configuration

E100
1-2

The U54 driver IC controls the AENA and EQU signals on the J8 JEQU connector. If E100 connects pins
1 and 2, U54 will be supplied from the analog A+15V supply which can be isolated from the digital
circuitry. If E100 connects pins 2 and 3, U54 will be supplied from a separate A+V supply brought in on
pin 9 of the J8 JEQU connector. This supply can be in the +12V to +24V range and can be kept isolated
from the digital and analog circuits.

E101-E102: Auxiliary Signals Output Voltage Configure
Default Configuration

E1 E2
1-2 1-2

The U54 driver IC controls the AENA and EQU signals on the J8 JEQU connector. With the default
sinking output driver IC (ULN2803A or equivalent) in U54 for the J8 JEQU port outputs, these jumpers
must connect pins 1 and 2 to supply the IC correctly. If this IC is replaced with a sourcing output driver
IC (UDN2981A or equivalent), these jumpers must be changed to connect pins 2 and 3 to supply the new
IC correctly.

Warning:

The jumper setting must match the type of driver IC, or damage to the IC will
result.

E109: Display Port Configuration
Default Configuration

E109
OFF

This jumper is related to an advanced feature and should not be changed from default.

E110: Expansion Port Configuration
Default Configuration

E110
1-2

This jumper is related to an advanced feature and should not be changed from default.

PMAC Product Guide

PMAC Jumper Configuration 21

Reserved Configuration Jumpers
E0: Reserved for Future Use

Default Configuration
E0

OFF

This jumper is reserved for future use and should not be changed from default.

 PMAC Product Guide

22 PMAC Jumper Configuration

PMAC Product Guide

Wiring Guidelines 23

WIRING GUIDELINES
Proper wiring, grounding and shielding are essential to prevent unwanted electrical noise and to assure
proper servo operation and performance. The most common symptoms resulting from improper wiring
are inaccurate positioning, poor servo control and, in the worst case, will damage parts of the controller’s
hardware. These are some known noise sources:

• Switches operating inductive loads such as relays and solenoids
• Solid state relays or PWM servo amplifiers
• Arc welding and plasma torch machines
• Heavy current carrying wires
• Fluorescent lights
• Neon lights

The following sections illustrate the most common wiring problems and methods for reducing
electromagnetic noise.

Ground Loops
Ground is an equipotential circuit reference point. A ground loop can be defined as electrical grounds that
are not at the same electrical potential, namely zero volts AC and DC. As a result, a ground loop
generates a potential difference along the ground line connecting two electrical devices. This originates
the following important consequences:

1. An electrical current will circulate along the ground wire, dissipating power and generating heat.
Wire insulators will be degraded and eventually damaged.

2. The ground electric potential will change resulting in a wrong signal reference. Some electrical
signals in PMAC will change state above 0.7V against ground. If the ground reference rises above 1V
an evident unreliable behavior will result.

3. In some cases the ground line is used as a safety mechanism against electric shocks. Therefore, the
ground line must be kept as a zero volts reference point.

Star Ground Connection
All component chassis ground points and signal ground or common points should be tied together at a
single point (star connection). This point should then be tied with a single conductor to an earth ground
point. This form of grounding prevents ground loops and ensures that all components are properly
grounded against shock hazard.

This configuration applies only for common ground connections and it does not apply for devices with
opto-isolation circuits. If PMAC is powered with separate analog and digital power supplies (the
recommended method) do not tie the PMAC analog and digital grounds together.

 PMAC Product Guide

24 Wiring Guidelines

Opto-Isolation Circuits
Delta Tau provides several opto-isolating boards allowing separate ground circuits. Opto-isolating
accessories for encoder signals, serial communications and digital inputs and outputs are available.

Example:

Solution:

In this case, a serial communications isolator board will keep the laptop and desktop grounds separated
avoiding a ground loop.

EMI, Electromagnetic Interference
Electromagnetic interference (EMI) is an electrical noise which creates a disturbance or undesired
response in one or more circuits, equipment, or systems. Usually EMI is due to magnetic fields originated
by nearby high current cables or transformers. Other sources of EMI include high voltage spikes
generated by nearby solenoids, relays and arc welding machines.

Twisted Wires
In order to reduce electromagnetic interference, twisting of the power wires is highly recommended. Two
wires carrying high current originates an inductive loop that is proportional to the area in between them:

In a twisted cable, each adjacent pair of areas eliminates the inductive effect:

PMAC Product Guide

Wiring Guidelines 25

Shielded Cable
In general, it is good practice to shield all wires carrying low-level signals. This is important especially if
the signal level wires are run near power level wiring such as motor wires or relays wires. When shielding
wires connect only one end of the shield, preferably the source end. Connecting both ends of a shield will
result in ground loops. It is recommended that the unconnected end of the shield be insulated to prevent
accidental connection.

Wires Separation and Length
Since the electromagnetic interference drastically decreases with distance, the best method to prevent
EMI is to separate the power cables from the signal cables. In addition, since the capacitance and
inductive characteristics of a cable increases with the distance, delicate signal cables must be kept short.
PMAC’s JMACH cable should not exceed the 36 inches in length whereas PMAC’s JEXP cable should
not exceed the 6 inches in length.

Flat Cable Shielding
When using shielded flat cables, select a rounded cable with IDC connectors in both sides. With the
addition of ground bars this configuration makes a good reliable shielded connection.

 PMAC Product Guide

26 Wiring Guidelines

Basic Rules for Proper Wiring
1. Take the time to sketch the system out before installing. This graphic representation of the installation

will help avoid introducing ground loops and will serve as a road map for eliminating noise if it is
present.

2. Do not introduce ground loops. Ground loops are created whenever a ground reference is established
at more than one location.

3. Never run signal wires alongside power cables. This is true especially in installations where high-
powered amplifiers are used. Large amplifiers are capable of drawing large currents. These currents
vary the electromagnetic field surrounding the power cable. The more current that flows through the
wire, the bigger this field becomes. If signal cables are located in close proximity to this fluctuating
electromagnetic field, noise could be induced into the system.

Do not route signal and power wiring through common junctions. Consider using double-shielded
cables if there is no way to separate the wires.

4. Use a shielded signal cable connecting only one end of the shield, preferably the source end (the point
where the signal is generated). This will ensure maximum protection against induced noises by power
cables and other sources of electromagnetic interference.

5. Twist pairs of power wires from DC power supplies, DC brush motors and other high current cables.

6. Cable intersections should always occur at right angles to minimize magnetic coupling.

7. Keep signal cables short. PMAC’s JMACH cable should not exceed the 36 inches in length whereas
PMACs JEXP cable should not exceed the 6 inches in length.

8. Use a separate analog and digital power supply. This will eliminate noise entering the digital circuits
from the machine connections.

9. When possible use differential instead of single-ended signals. Differential signals will have common
mode rejection for noise spikes. If a single-ended signal is used, do not ground the remaining
associated signal and leave it floating. The ACC-35A and ACC-35B pair is a good example of using
differential signals for long distance connections. By using the ACC-35A and ACC-35B pair,
PMAC’s JTHW connection can be extended from 3 to 100 meters for remote I/O operation.

Noise spike will be suppressed by the common rejection mode of the differential input.

10. Use opto-isolation circuits when possible. Delta Tau provides a variety of opto-isolation boards for

different signals.

11. A diode must be connected across a relay or solenoid coils in order to reduce inductive voltage.

12. In some cases, when the electromagnetic noise affecting an input signal cannot be minimized

otherwise, use an RC filter. The values of the RC filter must be selected carefully in order to not
interfere with the safe operation of the input signal to filter.

PMAC Product Guide

Machine Connections 27

MACHINE CONNECTIONS
Typically, the user connections are made to the ACC-8P terminal block that is attached to the JMACH
connector by a flat cable. The pinout numbers on the terminal block are the same as those on the JMACH
connector for PMAC-Lite.

Power Supplies
Digital Power Supply
1.75 A @ +5V (+/-5%) (8.75 W)
(Four-channel configuration, with a typical load of encoders)

• The host computer provides the 5V power supply if PMAC is installed in its internal bus.

With the board plugged into the bus, it will pull +5V power from the bus automatically and it cannot
be disconnected. In this case, there must be no external +5V supply, or the two supplies will fight
each other, possibly causing damage. This voltage can be measured between pins 1 and 3 of the
terminal block.

• In a stand-alone configuration, when PMAC is not plugged in a computer bus, it will need an external
5V supply to power its digital circuits. The +5V line from the supply should be connected to pin 1 or
2 of the terminal block, and the digital ground to pin 3 or 4.

Analog Power Supply
0.3A @ +12 to +15V (4.5W)
0.25A @ -12 to -15V (3.8W)
(Eight-channel configuration)

The analog output circuitry is the part of PMAC circuitry directly related to the amplifier signals like the
DAC command outputs and amplifier fault\enable lines. The analog circuitry on PMAC is optically
isolated from the digital computation circuitry, and so requires a separate power supply. This is brought
in on the JMACH connector. The positive supply -- +12 to +15V -- should be brought in on the A+15V
line on pin 59. The negative supply -- -12 to -15V -- should be brought in on the A-15V line on pin 60.
The analog common should be brought in on the AGND line on pin 58.

Typically, this supply can come from the servo amplifier. Many commercial amplifiers provide such a
supply. If this is not the case, an external supply may be used. Even with an external supply, the AGND
line should be tied to the amplifier common. It is possible to get the power for the analog circuits from the
bus, but doing so defeats optical isolation. In this case, no new connections need to be made. However,
be sure jumpers E85, E87, E88, E89, and E90 are set up for this circumstance. (The card is not shipped
from the factory in this configuration.)

 PMAC Product Guide

28 Machine Connections

Note:

The PMAC installed in an ISA bus can either use the bus ±12V power supply or an
external ± 15V power supply. It is recommended that an external power supply is
used that will keep the digital and analog circuits separate and that will provide
better electrical noise isolation to PMAC.

Flags Power Supply (Optional)
Each channel of PMAC has four dedicated digital inputs on the machine connector: +LIMn, -LIMn
(overtravel limits), HMFLn (home flag), and FAULTn (amplifier fault). In the Universal PMAC-Lite,
these inputs can be kept isolated from other circuits. A power supply from 12 to 24V connected on pin 9
of J8 can be used to power the corresponding opto-isolators. In this case, jumper E89 must be removed
and jumper E90 must connect pins 1-2.

Overtravel Limits and Home Switches
When assigned for the dedicated uses, these signals provide important safety and accuracy functions.
+LIMn and -LIMn are direction-sensitive overtravel limits which must be actively held low (sourcing
current from the pins to ground) to permit motion in their direction. The direction sense of +LIMn and -
LIMn is as follows: +LIMn should be placed at the negative end of travel, and -LIMn should be placed at
the positive end of travel.

Note:

The Flags screen of the EZ-PMAC Setup Software allows the setup and monitoring the end-of-travel limit
flags. These flags must be disabled or properly connected to allow motion of the corresponding motor.

Types of Overtravel Limits
PMAC expects a closed-to-ground connection for the limits to not be considered on fault. This
arrangement provides a failsafe condition and therefore it cannot be reconfigured differently in PMAC.
Usually a passive normally closed switch is used. If a proximity switch is needed instead, use a 15V
normally closed to ground NPN sinking type sensor.

PMAC Product Guide

Machine Connections 29

Home Switches
While normally closed-to-ground switches are required for the overtravel limits inputs, the home switches
can be either normally closed or normally open types. The polarity is determined by the home sequence
setup, through the I-Variables I902, I907, ... I977. However, for the following reasons, the same type of
switches used for overtravel limits are recommended:

• Normally closed switches are proven to have greater electrical noise rejection than normally open
types.

• Using the same type of switches for every input flag simplifies maintenance stock and replacements.

Motor Signals Connections
Incremental Encoder Connection
The JMACH connector provides two +5V outputs and two logic grounds for powering encoders and other
devices. The +5V outputs are on pins 1 and 2; the grounds are on pins 3 and 4. The encoder signal pins
are grouped by number: all those numbered 1 (CHA1, CHA1/, CHB1, CHC1, etc.) belong to encoder #1.
The encoder number does not have to match the motor number, but usually does. If the PMAC is not
plugged into a bus and drawing its +5V and GND from the bus, use these pins to bring in +5V and GND
from the power supply. Connect the A and B (quadrature) encoder channels to the appropriate terminal
block pins. For encoder 1, the CHA1 is pin 25, CHB1 is pin 21. If there is a single-ended signal, leave
the complementary signal pins floating -- do not ground them. However, if single-ended encoders are
used, make sure that the corresponding jumpers E24 to E27 are set on position 1-2.

For a differential encoder, connect the complementary signal lines -- CHA1/ is pin 27, and CHB1/ is pin
23. The third channel (index pulse) is optional; for encoder 1, CHC1 is pin 17, and CHC1/ is pin 19.

Example: differential quadrature encoder connected to channel #1:

Note:

The Encoders screen of the EZ-PMAC Setup Software checks the proper direction
and functioning of any encoder input in PMAC.

 PMAC Product Guide

30 Machine Connections

Termination Resistors
The PMAC-Lite provides sockets for termination resistors on differential input pairs coming into the
board. As shipped, there are no resistor packs in these sockets. If these signals are brought long distances
into the PMAC-Lite board and ringing at signal transitions is a problem, 6-pin SIP resistor packs may be
mounted in these sockets to reduce or eliminate the ringing. All termination resistor packs are the type
that has independent resistors (no common connection) with each resistor using two adjacent pins. The
following table shows which packs are used to terminate each input device:

Device Resistor Pack Device Resistor Pack
Encoder 1 RP51 Encoder 3 RP53
Encoder 2 RP52 Encoder 4 RP54

DAC Output Signals
If PMAC is not performing the commutation for the motor, only one analog output channel is required to
command the motor. This output channel can be either single-ended or differential, depending on what
the amplifier is expecting.

For a single-ended command using PMAC channel 1, connect DAC1 (pin 43) to the command input on
the amplifier. Connect the amplifier’s command signal return line to PMAC’s AGND line (pin 58). In
this setup, leave the DAC1/ pin floating; do not ground it.

For a differential command using PMAC channel 1, connect DAC1 (pin 43) to the plus command input
on the amplifier. Connect DAC1/ (pin 45) to the minus-command input on the amplifier. PMAC’s
AGND should still be connected to the amplifier common. If the amplifier is expecting separate sign and
magnitude signals, connect DAC1 (pin 43) to the magnitude input. Connect AENA1/DIR1 (pin 47) to the
sign (direction input). Amplifier signal returns should be connected to AGND (pin 58). This format
requires some parameter changes on PMAC (see Ix25 and Ix02). Jumper E17 controls the polarity of the
direction output; this may have to be changed during the polarity test. This magnitude-and-direction mode
is suited for driving servo amplifiers that expect this type of input, and for driving voltage-to-frequency
(V/F) converters, such as PMAC's ACC-8D Option 2 board, for running stepper motor drivers.

To limit the range of each signal to +/- 5V, use parameter Ix69. Any analog output not used for dedicated
servo purposes may be utilized as a general-purpose analog output. Usually, this is done by defining an
M-Variable to the digital-to-analog-converter register (suggested M-Variable definitions M102, M202,
etc.), and then writing values to the M-Variable. The analog outputs are intended to drive high-impedance
inputs with no significant current draw. The 220Ω output resistors will keep the current draw lower than
50 mA in all cases and prevent damage to the output circuitry, but any current draw above 10 mA can
result in noticeable signal distortion.

Example:

PMAC Product Guide

Machine Connections 31

Note:

The DAC screen of the EZ-PMAC Setup Software allows outputting a particular
voltage to the appropriate DAC output which can then be measured with a
voltmeter.

Amplifier Enable Signal (AENAx/DIRn)
Most amplifiers have an enable/disable input that permits complete shutdown of the amplifier regardless
of the voltage of the command signal. PMAC’s AENA line is meant for this purpose. If not using a
direction and magnitude amplifier or voltage-to-frequency converter, use this pin to enable and disable
the amplifier (wired to the enable line). AENA1/DIR1 is pin 47. Jumpers E17A through E17D control
the polarity of this signal and the default is conducting enable.

The amplifier enable signals are controlled by chip U54. If jumper E100 connects pins 1 and 2, U54 will
be supplied from the analog A+15V supply which can be isolated from the digital circuitry. If E100
connects pins 2 and 3, U54 will be supplied from a separate A+V supply brought in on pin 9 of the J8
JEQU connector. This supply can be in the +12V to +24V range and can be kept isolated from both the
digital and analog circuitry. This also allows 24V operation of this signal.

By default, the PMAC Lite is provided with a sinking output driver IC (ULN2803A or equivalent) in
U54. In this configuration, jumpers E101 and E102 must connect pins 1 and 2 to supply the IC correctly.
If this IC is replaced with a sourcing output driver IC (UDN2981A or equivalent), E101 and E102 must
be changed to connect pins 2 and 3 to supply the new IC correctly.

Warning:

A wrong setting of these jumpers will damage the associated output IC.

For any other kind of amplifier enable signal, such as a 5V signal, a dry contact of a relay or a solid-state
relay can be used:

 PMAC Product Guide

32 Machine Connections

Note:

The DAC screen of the EZ-PMAC Setup Software allows changing the state of the
amplifier enable signal which could then be measured with a voltmeter.

Amplifier Enable Jumpers - Summary Table
Amplifier Enables with

… PMAC Jumper Configuration Output Chip (U54)

AGND (fail safe) E17: OFF E100: 1-2 E101: 1-2 E102: 1-2 ULN2803A (default)
12-15V E17: ON E100: 1-2 E101: 1-2 E102: 1-2 ULN2803A (default)

12-15V (fail safe) E17: OFF E100: 1-2 E101: 2-3 E102: 2-3 UDN2981A (must replace)
15-24V E17: ON E100: 2-3 E101: 1-2 E102: 1-2 ULN2803A (default)

15-24V (fail safe) E17: OFF E100: 2-3 E101: 2-3 E102: 2-3 UDN2981A (must replace)
Other (use relay) E17: OFF E100: 1-2 E101: 1-2 E102: 1-2 ULN2803A (default)

Fail safe indicates that the output chip must be operating properly for the amplifier enable output to
enable the amplifier. Other configurations might still enable the amplifier even if the output chip is
damaged or not operating properly.

Amplifier Fault Signal (FAULTn)
This input can take a signal from the amplifier so PMAC knows when the amplifier is having problems
and can shut down action. The polarity is programmable with I-Variable Ix25 (I125 for motor #1) and the
return signal is analog ground (AGND). FAULT1 is pin 49. With the default setup, this signal must
actively be pulled low for a fault condition. In this setup, if nothing is wired into this input, PMAC will
consider the motor not to be in a fault condition.

Note:

The Flags screen of the EZ-PMAC Setup Software allows the setup and
monitoring the state of the amplifier fault signal.

PMAC Product Guide

Machine Connections 33

General-Purpose Digital Inputs and Outputs (JOPTO Port)
PMAC’s J5 or JOPTO connector provides eight general-purpose digital inputs and eight general-purpose
digital outputs. Each input and each output has its own corresponding ground pin in the opposite row.
The 34-pin connector was designed for easy interface to OPTO-22 or equivalent optically isolated I/O
modules. The JOPTO port has these characteristics:

• 16 I/O points (100 mA per channel, up to 24V)
• Hardware selectable between sinking and sourcing in groups of eight; default is all sinking (inputs

can be changed simply by moving a jumper; sourcing outputs must be special-ordered or field-
configured)

• Eight inputs, eight outputs only; no changes. Parallel (fast) communications to PMAC CPU
• Not opto-isolated; easily connected to Opto-22 (PB16) or similar modules through ACC-21F cable

Jumper E7 controls the configuration of the eight inputs. If it connects pins 1 and 2 (the default setting),
the inputs are biased to +5V for the OFF state, and they must be pulled low for the ON state. If E7
connects pins 2 and 3, the inputs are biased to ground for the OFF state, and must be pulled high for the
ON state. In either case, a high voltage is interpreted as a 0 by the PMAC software and a low voltage is
interpreted as a 1.

PMAC is shipped standard with a ULN2803A sinking (open-collector) output IC for the eight outputs.
These outputs can sink up to 100 mA, but must have a pull-up resistor to go high.

Warning:

Do not connect these outputs directly to the supply voltage, or damage to the
PMAC will result from excessive current draw.

A high-side voltage (+5 to +24V) can be provided into Pin 33 of the JOPTO connector which allows this
to pull up the outputs by connecting pins 1 and 2 of Jumper E1. Jumper E2 must also connect pins 1 and
2 for a ULN2803A sinking output. It is possible for these outputs to be sourcing drivers by substituting a
UDN2981A IC for the ULN2803A. This U26 IC is socketed, and so may easily be replaced. For this
driver, pull-down resistors should be used. With a UDN2981A driver IC, Jumper E1 must connect pins 2
and 3, and Jumper E2 must connect pins 2 and 3.

Warning:

The jumper setting must match the type of driver IC, or damage to the IC will
result

Example: Standard configuration using the ULN2803A sinking (open-collector) output IC

 PMAC Product Guide

34 Machine Connections

Note:

The I/O Port screen of the EZ-PMAC Setup Software allows monitoring the state
of the general-purpose JOPTO digital inputs as well as setting the state of each
general-purpose JOPTO digital output.

J5 (JOPTO): I/O Port Connector

J5 JOPTO (34-Pin Connector)
Front View

Pin # Symbol Function Description Notes
1 MI8 INPUT Machine Input 8 Low is true
2 GND COMMON PMAC Common
3 MI7 INPUT Machine Input 7 Low is true
4 GND COMMON PMAC Common
5 MI6 INPUT Machine Input 6 Low is true
6 GND COMMON PMAC Common
7 MI5 INPUT Machine Input 5 Low is true
8 GND COMMON PMAC Common
9 MI4 INPUT Machine Input 4 Low is true

10 GND COMMON PMAC Common
11 MI3 INPUT Machine Input 3 Low is true
12 GND COMMON PMAC Common
13 MI2 INPUT Machine Input 2 Low is true
14 GND COMMON PMAC Common
15 MI1 INPUT Machine Input 1 Low is true
16 GND COMMON PMAC Common
17 MO8 OUTPUT Machine Output 8 Low-true (sinking);

High-true (sourcing)
18 GND COMMON PMAC Common
19 MO7 OUTPUT Machine Output 7 " "
20 GND COMMON PMAC Common
21 MO6 OUTPUT Machine Output 6 " "
22 GND COMMON PMAC Common
23 MO5 OUTPUT Machine Output 5 " "
24 GND COMMON PMAC Common
25 MO4 OUTPUT Machine Output 4 " "
26 GND COMMON PMAC Common
27 MO3 OUTPUT Machine Output 3 " "
28 GND COMMON PMAC Common
29 MO2 OUTPUT Machine Output 2 " "
30 GND COMMON PMAC Common
31 MO1 OUTPUT Machine Output 1 " "
32 GND COMMON PMAC Common
33 +V INPUT/

OUTPUT
+V Power I/O +V = +5Vto +24V

 +5v out from PMAC, +5 to +24V in
from external source, diode isolation
from PMAC

34 GND COMMON PMAC Common

This connector provides means for eight general-purpose inputs and eight general-purpose outputs. Inputs
and outputs may be configured to accept or provide either +5V or +24V signals. Outputs can be made
sourcing changing IC U26 to UDN2981 and jumpers E1 and E2 to position 2-3. E7 controls whether the
inputs are pulled up or down internally. Outputs are rated at 100mA per channel

.

PMAC Product Guide

Machine Connections 35

Serial Connections
The PMAC Lite is provided with both RS232 and RS422 serial ports. To use the RS232 port on the 10-
pin J4 connector, jumpers E107 and E108 must connect pins 1 and 2. To use the RS422 port on the 26-pin
J4A connector, jumpers E107 and E108 must connect pins 2 and 3. Connectors J4 and J4A cannot be
used at the same time.

Delta Tau provides cables for connecting PMAC with a host computer. Accessory 3D connects J4A to a
DB-25 connector; ACC-3L connects J4 to a DB-9 connector. Standard DB-9-to-DB-25 or DB-25-to-DB-
9 adapters may be needed for a particular setup.

If a cable needs to be made, the easiest approach is to use a flat cable prepared with flat-cable type
connectors as indicated in the following diagrams:

PMAC (IDC-10) PC (DB-9)
1 1
2 6 (DSR)
3 2 (RXD)
4 7 (RTS)
5 3 (TXD)
6 8 (CTS)
7 4 (DTR)
8 9
9 5 (GND)

10 No connect

PMAC (IDC-26) PC (DB-25)
1 1
2 14
3 2 (TXD)
4 15
5 3 (RXD)
6 16
7 4 (RTS)
8 17
9 5 (CTS)

10 18
11 6 (DSR)
12 19
13 7 (GND)
14 20 (DTR)
15 8
16 21
17 9
18 22
19 10
20 23
21 11
22 24
23 12
24 25
25 13

 DB-9
Female IDC-10

Do not connect
wire #10

1 1

DB-25
Female IDC-26

Do not connect
wire #26

1 1

26 No connect

 PMAC Product Guide

36 Machine Connections

J4 (JRS232) Serial Port Connector

J4 JRS232 (10-Pin Connector)
Front View

Pin # Symbol Function Description Notes
1 PHASE OUTPUT Phasing Clock
2 DTR BIDIRECT Data Term Ready Tied to DSR
3 TXD/ INPUT Receive Data Host transmit data
4 CTS INPUT Clear to Send Host ready bit
5 RXD/ OUTPUT Send Data Host receive data
6 RTS OUTPUT Req. to Send PMAC ready bit
7 DSR BIDIRECT Data Set Ready Tied to DTR
8 SERVO OUTPUT Servo Clock
9 GND COMMON PMAC Common

10 +5V OUTPUT +5VDC Supply Power supply out
The JRS232 connector provides the PMAC2-PC with the ability to communicate serially with an RS232
port. E107 and E108 must connect pins 1 and 2 to use this connector.

PMAC Product Guide

Machine Connections 37

J4A (JRS422): Serial Port Connector

J4A JRS422 (26-Pin Connector)
Front View

Pin # Symbol Function Description Notes
1 CHASSI COMMON PMAC Common
2 S+5V OUTPUT +5Vdc Supply Deactivated by E8
3 RD- INPUT Receive Data Diff. I/o low true **
4 RD+ INPUT Receive Data Diff. I/o high true *
5 SD- OUTPUT Send Data Diff. I/o low true **
6 SD+ OUTPUT Send Data Diff. I/o high true *
7 CS+ INPUT Clear to Send Diff. I/o high true **
8 CS- INPUT Clear to Send Diff. I/o low true *
9 RS+ OUTPUT Req. to Send Diff. I/o high true **

10 RS- OUTPUT Req. to Send Diff. I/o low true *
11 DTR BIDIRECT Data Term Ready Tied to DSR
12 INIT/ INPUT PMAC Reset Low is reset
13 GND COMMON PMAC Common **
14 DSR BIDIRECT Data Set Ready Tied to DTR
15 SDIO- BIDIRECT Special Data Diff. I/O low true
16 SDIO+ BIDIRECT Special Data Diff. I/O high true
17 SCIO- BIDIRECT Special Ctrl. Diff. I/O low true
18 SCIO+ BIDIRECT Special Ctrl. Diff. I/O high true
19 SCK- BIDIRECT Special Clock Diff. I/O low true
20 SCK+ BIDIRECT Special Clock Diff. I/O high true
21 SERVO- BIDIRECT Servo Clock Diff. I/O low true ***
22 SERVO+ BIDIRECT Servo Clock Diff. I/O high true ***
23 PHASE- BIDIRECT Phase Clock Diff. I/O low true ***
24 PHASE+ BIDIRECT Phase Clock Diff. I/O high true ***
25 GND COMMON PMAC Common
26 +5V OUTPUT +5Vdc Supply Power supply out

The JRS422 connector provides the PMAC with the ability to communicate both in RS422 and RS232.
Jumpers E107 and E108 must connect pins 2 and 3 to use this port.
* Note: Required for communications to an RS-422 host port
** Note: Required for communications to an RS-422 or RS-232 host port
*** Note: These lines are used for an advanced feature and normally should not be connected.

 PMAC Product Guide

38 Machine Connections

Machine Connections Example

Note: For this configuration, jumpers E85, E87, E88, E89 and E90 are left at the default settings.

PMAC Product Guide

Machine Connections 39

ACC-8P/ACC-8D Breakout Board

 PMAC Product Guide

40 Machine Connections

 Pin # Symbol Function Pin # Symbol Function

1 +5V OUTPUT 58 AGND INPUT
2 +5V OUTPUT 59 A+15V/OPT+V INPUT
3 GND COMMON A

na
lo

g
Po

w
e

60 A-15V INPUT D
ig

ita
l

Po
w

er

4 GND COMMON 57 FEFCO/ OUTPUT
25 CHA INPUT 13 CHA INPUT
27 CHA/ INPUT 15 CHA/ INPUT
21 CHB INPUT 9 CHB INPUT
23 CHB/ INPUT 11 CHB/ INPUT
17 CHC INPUT 5 CHC INPUT
19 CHC/ INPUT 7 CHC/ INPUT
1 +5V OUTPUT 1 +5V OUTPUT E

nc
od

er
 In

pu
ts

1,

 5
, 9

, 1
3

3 GND COMMON

E
nc

od
er

 In
pu

ts

3,
 7

, 1
1,

 1
5

3 GND COMMON
43 DAC OUTPUT 29 DAC OUTPUT
45 DAC/ OUTPUT 31 DAC/ OUTPUT
47 AENA/DIR OUTPUT 33 AENA/DIR OUTPUT
49 FAULT INPUT 35 FAULT INPUT A

m
pl

ifi
er

 1

, 5
, 9

, 1
3

58 AGND INPUT

A
m

pl
ifi

er

3,
 7

, 1
1,

 1
5

58 AGND INPUT
51 +LIM INPUT 37 +LIM INPUT
53 -LIM INPUT 39 -LIM INPUT
55 HMFL INPUT 41 HMFL INPUT Fl

ag
s

1,
 5

, 9
, 1

3

58 AGND INPUT

Fl
ag

s
3,

 7
, 1

1,

15

58 AGND INPUT
26 CHA INPUT 14 CHA INPUT
28 CHA/ INPUT 16 CHA/ INPUT
22 CHB INPUT 10 CHB INPUT
24 CHB/ INPUT 12 CHB/ INPUT
18 CHC INPUT 6 CHC INPUT
20 CHC/ INPUT 8 CHC/ INPUT
1 +5V OUTPUT 1 +5V OUTPUT E

nc
od

er
 In

pu
ts

2,

 6
, 1

0,
 1

4

3 GND COMMON

E
nc

od
er

 In
pu

ts

4,
 8

, 1
2,

 1
6

3 GND COMMON
44 DAC OUTPUT 30 DAC OUTPUT
46 DAC/ OUTPUT 32 DAC/ OUTPUT
48 AENA/DIR OUTPUT 34 AENA/DIR OUTPUT
50 FAULT INPUT 36 FAULT INPUT A

m
pl

ifi
er

2,

 6
, 1

0,
 1

4

58 AGND INPUT

A
m

pl
ifi

er

4,
 8

, 1
2,

 1
6

58 AGND INPUT
52 +LIM INPUT 38 +LIM INPUT
54 -LIM INPUT 40 -LIM INPUT
56 HMFL INPUT 42 HMFL INPUT Fl

ag
s

2,
 6

, 1
0,

14

58 AGND INPUT

Fl
ag

s
4,

 8
, 1

2,

16

58 AGND INPUT

PMAC Product Guide

Machine Connections 41

J8 (JEQU): Position-Compare Connector

J8 JEQU (10-Pin Connector)
Front View

Pin # Symbol Function Description Notes
1 EQU1/ OUTPUT Enc. 1 Comp-Eq Low is true
2 EQU2/ OUTPUT Enc. 2 Comp-Eq Low is true
3 EQU3/ OUTPUT Enc. 3 Comp-Eq Low is true
4 EQU4/ OUTPUT Enc. 4 Comp-Eq Low is true
5 AENA1/ OUTPUT Amp Enable 1 Low is true
6 AENA2/ OUTPUT Amp Enable 2 Low is true
7 AENA3/ OUTPUT Amp Enable 3 Low is true
8 AENA4/ OUTPUT Amp Enable 4 Low is true
9 A+V SUPPLY Positive Supply +5V to +24V

10 AGND COMMON Analog Ground
This connector provides the position-compare outputs and the amplifier enable outputs for the four servo
interface channels. The board is shipped by default with a chip in U54 of type ULN2803A or equivalent
open-collector driver IC. It may be replaced with UDN2891A or equivalent open-emitter driver (E101 and
E102 must be changed), or a 74ACT563 or equivalent 5V CMOS driver.

TB1 (JPWR): Power Supply
TB1 (4-Pin Terminal Block)

Top View

Pin# Symbol Function Description Notes
1 GND COMMON Reference Voltage
2 +5V INPUT Positive Supply Voltage Supplies all PMAC digital

circuits
3 +12V INPUT Positive Supply Voltage Ref to digital GND
4 -12V INPUT Negative Supply Voltage Ref to digital GND
This terminal block can be used to provide the input for the power supply for the circuits on the PMAC
board when it is not in a bus configuration. When the PMAC-Lite is in a bus configuration, these supplies
come through the bus connector from the bus power supply automatically. In this case, this terminal block
should not be used.

Note:

Use an external power supply that will keep the digital and analog circuits separate
and that will provide better electrical noise isolation to PMAC. To keep the optical
isolation between the digital and analog circuits on PMAC, provide analog power
(+/-12V to +/-15V & AGND) through the JMACH connector instead of the bus
connector or this terminal block.

 PMAC Product Guide

42 Machine Connections

PMAC Product Guide

Programming PMAC 43

PROGRAMMING PMAC
PMAC is fundamentally a command-driven device. PMAC does things by issuing it ASCII command
text strings and generally PMAC provides information to the host in ASCII text strings. These text strings
are typed and sent from a terminal window of a program communicating with PMAC, either by the ISA
bus or the RS-232/422 serial port. The EZ-PMAC Setup Software, for example, provides such terminal
window.

When PMAC receives an alphanumeric text character over one of its ports, it does nothing but place the
character in its command queue. It requires a control character (ASCII value 1 to 31) to cause it to take
some actual action. The most common control character used is the carriage return (<CR>; ASCII value
13) which tells PMAC to interpret the preceding set of alphanumeric characters as a command and to take
the appropriate action.

Note:

Use the EZ-PMAC Setup Software as a software tool for configuring and
programming PMAC. All the example programs provided in this manual can be
found in the samples folder of the EZ-PMAC Setup Software installation directory.

Moving a Motor: Jog Commands and Motion Programs
The main goal of the PMAC motion controller is to control motion (i.e., to let a particular physical motor
to move). In PMAC once the motors are properly setup, motion can be accomplished in two ways. Jog
commands allow moving the motor continuously, to position it to a certain distance or to move it in
incremental intervals. Jog commands are issued from the terminal window in the form of online
commands:

Examples:
#1J+ ; Moves Motor #1 continuously in the positive direction
#1J/ ; Stops Motor #1
#1J- ; Moves Motor #1 continuously in the negative direction
#1J/ ; Stops Motor #1

If a particular motion sequence is desired, and also if that sequence is tight to some logic, a motion
program is a better approach for moving a motor than Jog online commands:

Example:
OPEN PROG 1 CLEAR ; Opens “PROG1” buffer for editing

LINEAR ; Linear mode motion
INC ; Incremental mode
TA100 ; Acceleration time is 100 msec
TS0 ; No S-curve component
F40 ; Feedrate is 40 length_units / second
IF (M11=1) ; If Input 1 is ON

X3 ; Move axis X 3 length_units of distance
 ELSE

Y-3 ; Move axis Y 3 length_units of distance in the
; opposite direction

 ENDIF
CLOSE

A motion program is placed in a buffer for later execution. Thus, motion program commands are referred
to as buffer commands because they can only be executed inside a motion program.

 PMAC Product Guide

44 Programming PMAC

Note:

A motor that is currently running a motion program cannot be jogged with online
commands. To jog the motor you must stop the motion program first with the A or
Q online command.

Axes and Coordinate Systems
A coordinate system in PMAC is a grouping of one or more motors for the purpose of synchronizing
movements. A coordinate system (even with only one motor) can run a motion program; a motor cannot.
PMAC can have up to eight coordinate systems, addressed as &1 to &8, in a very flexible fashion (e.g.
eight coordinate systems of one motor each, one coordinate system of eight motors, four coordinate
systems of two motors each, etc.)

An axis is an element of a coordinate system. It is similar to a motor, but not the same thing. An axis is
referred to by letter. There can be up to eight axes in a coordinate system, selected from X, Y, Z, A, B, C,
U, V, and W. The simplest axis definition statement is something like #1->X. This simply assigns
motor #1 to the X-axis of the currently addressed coordinate system. When an X axis move is executed in
this coordinate system, motor #1 will make the move.

The axis definition statement also defines the scaling of the axis’ user units. For instance, #1->10000X
also matches motor #1 to the X axis, but this statement sets 10,000 encoder counts to one X-axis user unit
(e.g. inches or centimeters).

Permitted Axis Names: X, Y, Z, U, V, W, A, B, C

X, Y, Z: Traditionally Main Linear Axes
• Matrix Axis Definition
• Matrix Axis Transformation
• Circular Interpolation
• Cutter Radius Compensation

A, B, C: Traditionally Rotary Axes
(A rotates about X, B about Y, C about Z)
• Position Rollover (Ix27)

U, V, W: Traditionally Secondary Linear Axes
• Matrix Axis Definition

Online Commands
Many of the commands given to PMAC are on-line commands; that is, they are executed immediately by
PMAC to cause some action, change some variable, or report some information back to the host.

Some commands, such as P1=1, are executed immediately if there is no open program buffer, but are
stored in the buffer if one is open. Other commands, such as X1000 Y1000, cannot be on-line
commands; there must be an open buffer. These commands will be rejected by PMAC (reporting an
ERR005 if I6 is set to 1 or 3) if there is no buffer open. Still other commands, such as J+, are on-line
commands only and cannot be entered into a program buffer (unless in the form of CMD"J+").

There are three basic classes of on-line commands: motor-specific commands, which affect only the
motor that is currently addressed by the host; coordinate-system-specific commands, which affect only
the coordinate system that is currently addressed by the host; and global commands, which affect the card
regardless of any addressing modes.

PMAC Product Guide

Programming PMAC 45

A motor is addressed by a #n command, where n is the number of the motor with a range of 1 to 8,
inclusive. This motor is the one addressed until another #n is received by the card. For instance, the
command line #1J+#2J- tells Motor 1 to jog in the positive direction and Motor 2 to jog in the negative
direction. There are only a few types of motor-specific commands. These include the jogging commands,
a homing command, an open loop command, and requests for motor position, velocity, following error,
and status.

A coordinate system is addressed by a &n command, where n is the number of the coordinate system with
a range of 1 to 8, inclusive. This coordinate system is the one addressed until another &n command is
received by the card. For instance, the command line &1B6R&2B8R tells Coordinate System 1 to run
Motion Program 6 and Coordinate System 2 to run Motion Program 8. There are a variety of types of
coordinate-system-specific commands. Axis definition statements act on the addressed coordinate
system, because motors are matched to an axis in a particular coordinate system. Since it is a coordinate
system that runs a motion control program, all program control commands act on the addressed
coordinate system. Q-Variable assignment and query commands are also coordinate system commands
because the Q-Variables themselves belong to a coordinate system.

Some on-line commands do not depend on which motor or coordinate system is addressed. For instance,
the command P1=1 sets the value of P1 to 1 regardless of what is addressed. Among these global on-line
commands are the buffer management commands. PMAC has multiple buffers, one of which can be open
at a time. When a buffer is open, commands can be entered into the buffer for later execution. Control
character commands (those with ASCII values 0 - 31D) are always global commands. Those that do not
require a data response act on all cards on a serial daisy-chain. These characters include carriage return
<CR>, backspace <BS>, and several special-purpose characters. This allows, for instance, commands to
be given to several locations on the card in a single line, and have them take effect simultaneously at the
<CR> at the end of the line (&1R&2R<CR> causes both Coordinate Systems 1 and 2 to run).

Buffered (Program) Commands
As their name implies, buffered commands are not acted on immediately, but held for later execution.
PMAC has many program buffers -- 256 regular motion program buffers, and 32 PLC program buffers.
Before commands can be entered into a buffer, that buffer must be opened (e.g. OPEN PROG 3, OPEN
PLC 7).

Each program command is added onto the end of the list of commands in the open buffer; to replace the
existing buffer, use the CLEAR command immediately after opening to erase the existing contents before
entering the new ones. After finishing entering the program statements, use the CLOSE command to
close the opened buffer.

Note:

Include the DELETE GATHER command before opening any buffer. This will assure that memory used
for previously gathering data is released and available for motion and PLC programs use.

Computational Features

I-Variables
I-Variables (initialization, or setup variables) determines the personality of the card for a given
application. They are at fixed locations in memory and have predefined meanings. Most are integer
values and their range varies depending on the particular variable. There are 1024 I-variables, from I0 to
I1023, and they are organized as follows:
I0 -- I79: General card setup
I80 -- I99: Geared Resolver setup
I100 -- I184: Motor #1 setup

 PMAC Product Guide

46 Programming PMAC

I185 -- I199: Coordinate System 1 setup
I200 -- I284: Motor #2 setup
I285 -- I299: Coordinate System 2 setup
...
I800 -- I884: Motor #8 setup
I885 -- I899: Coordinate System 8 setup
I900 -- I979: Encoder 1 - 16 setup
I980 -- I1023: Reserved for future use

Values assigned to an I-Variable may be either a constant or an expression. The commands to do this are
on-line (immediate) if no buffer is open when sent, or buffered program commands is a buffer is open.

Examples:
I120 = 45
I120 = (I120+P25*3)

For I-Variables with limited range, an attempt to assign an out-of-range value does not cause an error.
The value is automatically rolled over to within the range by modulo arithmetic (truncation). For
example, I3 has a range of 0 to 3 (4 possible values). The command I3=5 actually would assign a value
of 5 modulo 4 = 1 to the variable.

On PMACs with battery-backed RAM, most of the I-Variable values can be stored in a 2K x 8 EEPROM
IC with the SAVE command. These values are safe here even in the event of a battery-backed RAM
failure, so the basic setup of the board is not lost. After a new value is given to one of these I-Variables,
the SAVE command must be issued in order for this value to survive a power-down or reset. The I-
Variables that are not saved to EEPROM are held in battery-backed RAM. These variables do not require
a SAVE command to be held through a power-down or reset and the previous value is not retained
anywhere. These variables are: I19-I44, Ix13, Ix14.

On PMACs with flash memory backup (those with Option 4A, 5A, or 5B), all of the I-Variable values can
be stored in the flash memory with the SAVE command. If there is an EEPROM IC on the board, it is not
used. After a new value is given to any I-variable, the SAVE command must be issued in order for this
value to survive a power-down or reset.

Default values for all I-Variables are contained in the manufacturer-supplied firmware. They can be used
individually with the I{constant}=* command, or in a range with the I{constant}..
{constant}=* command. Upon board re-initialization by the $$$*** command or by a reset with
E51 in the non-default setting, all default settings are copied from the firmware into active memory. The
last saved values are not lost; they are just not used.

P-Variables
P-Variables are general-purpose user variables. They are 48-bit floating-point variables at fixed locations
in PMAC’s memory, but with no pre-defined use. There are 1024 P-Variables, from P0 to P1023. A
given P-Variable means the same thing from any context within the card; all coordinate systems have
access to all P-Variables (contrast Q-Variables which are coupled to a given coordinate system, below).
This allows for useful information passing between different coordinate systems. P-Variables can be used
in programs for any purpose desired: positions, distances, velocities, times, modes, angles, intermediate
calculations, etc.

If a command consisting simply of a constant value is sent to PMAC, PMAC assigns that value to
variable P0. For example, if the command 342<CR> is sent to PMAC, it will interpret it as
P0=342<CR>. This capability is intended to facilitate simple operator terminal interfaces. It does mean,
however, that it is not a good idea to use P0 for other purposes, because it is easy to change this
accidentally.

PMAC Product Guide

Programming PMAC 47

Q-Variables
Q-Variables, like P-Variables, are general-purpose user variables: 48-bit floating-point variables at fixed
locations in memory, with no pre-defined use. However, the meaning of a given Q-Variable (and hence
the value contained in it) is dependent on which coordinate system is utilizing it. This allows several
coordinate systems to use the same program (for instance, containing the line X(Q1+25) Y(Q2), but to do
have different values in their own Q-Variables (which in this case, means different destination points).

Several Q-Variables have special uses. The ATAN2 (two-argument arctangent) function uses Q0 as its
second argument (the "cosine" argument) automatically. The READ command places the values it reads
following letters A through Z in Q101 to Q126, respectively, and a mask word denoting which variables
have been read in Q100. The S (spindle) statement in a motion program places the value following it into
Q127.

Based on that and since a total of 1024 Q-Variables are shared between potentially eight coordinate
systems (128 variables each), the practical range of the Q-Variables to be safely used in motion programs
is therefore Q1 to Q99.

The set of Q-Variables working within a command depends on the type of command. When accessing a
Q-Variable from an on-line (immediate) command from the host, it is the Q-Variable for the currently
host-addressed coordinate system (with the &n command). When accessing a Q-Variable from a motion
program statement, it is the Q-Variable belonging to the coordinate system running the program. If a
different coordinate system runs the same motion program, it will use different Q-Variables.

When accessing a Q-Variable from a PLC program statement, it is the Q-Variable for the coordinate
system that has been addressed by that PLC program with the ADDRESS command. Each PLC program
can address a particular coordinate system independent of other PLC programs and independent of the
host addressing. If no ADDRESS command is used in the PLC program, the program uses the Q-
Variables for Coordinate System 1.

M-Variables
To permit easy user access to PMAC’s memory and I/O space, M-Variables are provided. Generally, a
definition only needs to be made once with an on-line command. On PMACs with battery backup, the
definition is held automatically. On PMACs with flash backup, the SAVE command must be used to
retain the definition through a power-down or reset.

Define an M-Variable by assigning it to a location and defining the size and format of the value in this
location. An M-Variable can be a bit, a nibble (4 bits), a byte (8 bits), 1-1/2 bytes (12 bits), a double-byte
(16 bits), 2-1/2 bytes (20 bits), a 24-bit word, a 48-bit fixed-point double word, a 48-bit floating-point
double word, or special formats for dual-ported RAM and for the thumbwheel multiplexer port.

There are 1024 M-Variables (M0 to M1023), and as with other variable types, the number of the M-
Variable may be specified with either a constant or an expression: M576 or M(P1+20) when read from;
the number must be specified by a constant when written to.

The definition of an M-Variable is done using the defines-arrow (->) composed of the minus sign and
greater-than symbols. An M-Variable may take one of the following types, as specified by the address
prefix in the definition:

• X: 1 to 24 bits fixed-point in X-memory
• Y: 1 to 24 bits fixed-point in Y-memory
• D: 48 bits fixed-point across both X- and Y-memory
• L: 48 bits floating-point across both X- and Y-memory
• *: No address definition; uses part of the definition word as general-purpose variable

 PMAC Product Guide

48 Programming PMAC

If an X or Y type of M-Variable is defined, also define the starting bit to use, the number of bits, and the
format (decoding method).

Typical M-Variable definition statements are:
M1->Y:$FFC2,8,1
M102->Y:49155,8,16,S
M103->X:$C003,0,24,S
M161->D:$002B
M191->L:$0822

The M-Variable definitions are stored as 24-bit codes at PMAC addresses Y:$BC00 (for M0) to Y:$BFFF
(for M1023). For all but the thumbwheel multiplexer port M-Variables, the low 16 bits of this code
contains the address of the register pointed to by the M-Variable (the high eight bits tell what part of the
address is used and how it is interpreted).

If another M-Variable points to this part of the definition, it can be used to change the subject register.
The main use of this technique is to create arrays of P- and Q-Variables or arrays in dual-ported RAM or
in user buffers (see on-line command DEFINE UBUFFER).

Many M-Variables have a more limited range than PMAC’s full computational range. If a value outside
of the range of an M-Variable is placed to that M-Variable, PMAC automatically rolls over the value to
within that range and does not report any errors. For example, with a single bit M-Variable, any odd
number written to the variable ends up as 1, any even number ends up as 0. If a non-integer value is
placed in an integer M-Variable, PMAC automatically rounds to the nearest integer.

Once defined, an M-Variable may be used in programs just as any other variable -- through expressions.
When the expression is evaluated, PMAC reads the defined memory location, calculates a value based on
the defined size and format, and utilizes it in the expression.

Care should be exercised in using M-Variables in expressions. If an M-Variable is something that can be
changed by a servo routine (such as instantaneous commanded position), which operates at a higher
priority the background expression evaluation, there is no guarantee that the value will not change in the
middle of the evaluation. For instance, if in the expression (M16- M17)*(M16+M17) the M-Variables
are instantaneous servo variables, the user cannot be sure that M16 or M17 will have the same value both
places in the expression, or that the values for M16 and M17 will come from the same servo cycle. The
first problem can be overcome by setting P1=M16 and P2=M17 right above this, but there is no general
solution to the second problem.

Array Capabilities
It is possible to use a set of P-Variables as an array. To read or assign values from the array, simply
replace the constant specifying the variable number with an expression in parentheses.

Example:
P1=10 ; Array index variable
P3=P(P1) ; Same as P3=P10

PMAC Product Guide

Programming PMAC 49

To write to the array, M-Variables must be used. An M-Variable defined to the corresponding P-Variable
address will allow changing any P-Variable and therefore the contents of the array.

Example: Values 31 to 40 will be assigned to variables P1 through P10
M34->L:$1001 ; Address location of P1
M35->Y:$BC22,0,16 ; Definition word of M34

OPEN PLC 15 CLEAR
P100=31
WHILE (P100!>40) ; From 31 to 40
 M34=P100 ; Value is written to the array
 P100=P100+1 ; Next value
 M35=M35+1 ; Next Array position (next P-variable)
ENDWHILE
DISABLEPLC15 ; This PLC runs only once
CLOSE

ENA PLC15 ; Enable the PLC. Make sure I5 is either 2 or 3
P1..10 ; List the values of P1 to P10

The same concept applies for Q-Variables and M-Variables arrays although the address range for them is
different.

Operators
PMAC operators work like those in any computer language: they combine values to produce new values.
PMAC uses the four standard arithmetic operators: +, -, *, and /. The standard algebraic precedence rules
are used: multiply and divide are executed before add and subtract, operations of equal precedence are
executed left to right, and operations inside parentheses are executed first.

PMAC also has the % modulo operator which produces the resulting remainder when the value in front of
the operator is divided by the value after the operator. Values may be integer or floating point. This
operator is useful particularly for dealing with counters and timers that roll over. When the modulo
operation is done by a positive value X, the results can range from 0 to X (not including X itself). When
the modulo operation is done by a negative value -X, the results can range from -X to X (not including X
itself). This negative modulo operation is useful when a register can roll over in either direction.

PMAC has three logical operators that do bit-by-bit operations: & (bit-by-bit AND), | (bit-by-bit OR), and
^ (bit-by- bit EXCLUSIVE OR). If floating-point numbers are used, the operation works on the
fractional as well as the integer bits. & has the same precedence as * and /; | and ^ have the same
precedence as + and -. Use of parentheses can override these default precedence.

Functions
These perform mathematical operations on constants or expressions to yield new values. The general
format is:

{function name} ({expression})

The available functions are SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2, SQRT, LN, EXP, ABS, and
INT.

Whether the units for the trigonometric functions are degrees or radians is controlled by the global I-
Variable I15.

 PMAC Product Guide

50 Programming PMAC

SIN This is the standard trigonometric sine function.
COS This is the standard trigonometric cosine function.
TAN This is the standard trigonometric tangent function.
ASIN This is the inverse sine (arc-sine) function with its range reduced to +/-90 degrees.
ACOS This is the inverse cosine (arc-cosine) function with its range reduced to 0 -- 180 degrees.
ATAN This is the standard inverse tangent (arc-tangent) function.

ATAN2

This is an expanded arctangent function, which returns the angle whose sine is the expression in
parentheses and whose cosine is the value of Q0 for that coordinate system.
If doing the calculation in a PLC program, make sure that the proper coordinate system has been addressed
in that PLC program. (Actually, it is only the ratio of the magnitudes of the two values and their signs,
that matter in this function). It is distinguished from the standard ATAN function by the use of two
arguments. The advantage of this function is that it has a full 360-degree range, rather than the 180-degree
range of the single-argument ATAN function.

LN This is the natural logarithm function (log base e).

EXP
This is the exponentiation function (ex).
Note: To implement the yx function, use ex ln(y) instead. A sample PMAC expression would be
EXP(P2*LN(P1)) to implement the function P1P2.

SQRT This is the square root function.
ABS This is the absolute value function.

INT This is a truncation function which returns the greatest integer less than or equal to the argument
(INT(2.5)=2, INT(-2.5)=-3).

Functions and operators can be used either in motion programs, PLCs or as online commands. For
example, the following commands can be typed in a terminal window:
P1=SIN (45) P1 ; Reports the sine value of a 45° angle
I130=I130/2 ; Lower the proportional gain of Motor #1 by half
I125=I125|$20000 ; Disable the end-of-travel limits of Motor #1

Comparators
A comparator evaluates the relationship between two values (constants or expressions). It is used to
determine the truth of a condition in a motion or PLC program. The valid comparators for PMAC are:
 = (equal to)
 != (not equal to)
 > (greater than)
 !> (not greater than; less than or equal to)
 < (less than)
 !< (not less than; greater than or equal to)
 ~ (approximately equal to -- within one)
 !~ (not approximately equal to -- at least one apart)

Note that <= and >= are not valid PMAC comparators. The comparators !> and !<, respectively, should
be used in their place.

PMAC Product Guide

Programming PMAC 51

I-Variables Setup
Before attempting to move any motor, it is essential to set up the corresponding I-Variables that will
determine, for example, how fast the motor will accelerate, how fast it will move, and how well the
motion will be performed based on its tuning parameters.

Note:

The EZ-PMAC Setup Software has dedicated screens for the configuration of each
I-Variable. The Catalog function of the EZ-PMAC Setup Software has the
description of each I-Variable.

The section below is a summary of the I-Variables involved in each feature. For more information, refer
to the complete I-Variables description chapter. Some I-Variables might be expressed as, for example,
Ix00. In the case of a motor I-Variable, x stands for the motor number in the range of 1 through 8. In the
case of a coordinate system I-Variable, x stands for the coordinate system number, also in the range of 1
through 8.

Note:

Completely reset PMAC before start the I-Variables setup process. The $$$***
online command resets all PMAC I-Variables to factory defaults. This global reset
command also deletes any motion program or PLC program present in memory
before reset.

Motor Definition I-Variables
Ix00 - Motor x Activate: For controlling an actual physical motor, this PMAC motor I-Variable should
be set to one. If there is no physical motor associated with this PMAC motor x, then this variable should
be set to zero which is the case when using the encoder input or DAC output of this motor for a different
purpose than controlling an actual physical motor.

Motor Safety I-Variables
Ix11 - Motor x Fatal Following Error Limit: This variable setup the maximum number of counts of
allowed following error before the motor is shutdown.

Warning:
Setting Ix11 to zero can lead to a dangerous motor runaway condition. For
example, if the encoder feedback information is lost, PMAC will shutdown the
motor when the following error exceeds Ix11 and so will prevent the motor to
runaway in an uncontrollable fashion.

Ix13 - Motor x + Software Position Limit: This variable determines the maximum allowed range of
motion in the positive direction. Enabling this function is useful when no actual end-of-travel limit
switches are used.

Ix14 - Motor x - Software Position Limit: This variable determines the maximum allowed range of
motion in the negative direction. Enabling this function is useful when no actual end-of-travel limit
switches are used.

Ix15 - Motor x Abort/Lim Deceleration Rate: This parameter sets the deceleration rate used when a
programmed motion is aborted either by the A abort command or when a maximum position limit is
reached.

Ix16 - Motor x Maximum Velocity: This parameter setup the maximum allowed velocity for a motor
performing a linear move commanded from a motion program. This maximum value is not observed if
variable I13 is greater than zero.

 PMAC Product Guide

52 Programming PMAC

Ix17 - Motor x Maximum Acceleration: This parameter sets the maximum allowed acceleration for a
motor performing a linear move issued from a motion program. This maximum value is not observed if
variable I13 is greater than zero.

Note:
Safety parameters Ix16 and Ix17 are not observed if I13 is greater than zero. I13
greater than zero is necessary, for example, if a motion program is performing a
circular interpolation move.

Ix19 - Motor x Maximum Jog/Home Acceleration: This parameter sets the maximum allowed
acceleration rate for a motor performing jog or homing move.

S-Curve and Linear Acceleration Variables
The acceleration portion of a programmed move, either programmed by a jog or a motion program
command, is controlled by two time parameters in units of millisecond. In the case of jog or homing
commands these two parameters are I-Variables Ix20 and Ix21. Ix20 determines the overall acceleration
time which is the total time required for any change in velocity. Ix21 determines the portion of the overall
acceleration ramp that is performed in S-curve mode:

In all cases, if two times the S-curve acceleration parameter is greater than the linear acceleration
parameter then the overall acceleration time will be two times the S-curve acceleration time:

If (2 x Ix21) > Ix20 then Ix20 = (2 x Ix21)

The acceleration of either linear or circular interpolated moves programmed from a motion program is
determined by a set of different parameters. However, these parameters have the same meaning as those
described above:

Move type S-Curve Acceleration Parameter Linear Acceleration Parameter
Jog or Home commands Ix21 Ix20

Linear or circular interpolation TA or Ix87 TS or Ix88

Rate vs Time: Programming the Maximum Acceleration Parameters
The safety I-Variables Ix17 and Ix19 determine the maximum allowed acceleration for the motor x.
These variables are programmed in the resulting rate of encoder counts per millisecond square. However,
the acceleration of a programmed move, either from jog commands or motion programs, is set in
milliseconds as described above. The following relationship holds for the conversion between those
parameters:

Time onAccelerati Curve S'' - Time onAccelerati Linear

Velocity
 Rate onAccelerati =

PMAC Product Guide

Programming PMAC 53

Examples:

Jog Commands Linearly Interpolated Moves

Ix21 - Ix20

Ix22
 Ix19 =

Ix88 - Ix87

Ix16
 Ix17 =

Benefits of Using S-Curve Acceleration Profiles
In an electric motor the acceleration directly translates into torque and electrical current. When no S-
Curve component is programmed, the acceleration, torque and current are suddenly applied to the motor
all at once as soon as it starts moving.

 With a programmed S-curve profile, on the other hand, the acceleration is linearly introduced resulting in
a smoother transition in torque and current. However, the acceleration rate in a pure S-curve acceleration
profile is two times that necessary for a pure linear acceleration profile (see equation above). This
requires in some cases a longer acceleration time when using S-curve acceleration.

Motor Movement I-Variables
Ix20 Motor x Jog/Home Acceleration Time: This variable determines how long the acceleration portion
of the jog moves will take, regardless if a S-curve components is also programmed or not (see diagram
above).

Ix21 Motor x Jog/Home S-Curve Time: This variable determines the portion of the acceleration ramp
that will be performed in S-curve mode. If Ix20 is set to zero, then the acceleration ramp will take 2*Ix21
and will be executed in pure S-curve mode.

Ix22 Motor x Jog Speed: This variable sets the jog velocity. If the motor x is already moving, a new jog
command must be issued for the Ix22 parameter to have effect.

Ix23 Motor x Homing Speed & Direction: This variable is often set with the same value as Ix22.
However, what is important in this case is its sign which determines in which direction PMAC will take
when searching for the home sensor.

Ix25 Motor x Flag Address: This variable determines how the flags related to motor x will be used.
These flags include the end-of-travel limits, the amplifier enable and fault lines and the home flag.

 PMAC Product Guide

54 Programming PMAC

Note:

The EZ-PMAC Setup Software has a dedicated screen for the configuration of the
Ix25 I-Variable. The same screen allows monitoring the end-of-travel limits and
other related flags.

Ix26 Motor x Home Offset: This variable determines an offset in 1/16 of a count that PMAC will move
after the home procedure is completed. It is important to let PMAC move away from the home sensor
which could be important for a better reliable home search routine.

Servo Control I-Variables
The servo control variables are setup in the motor tuning process. Usually, this is accomplished using a
software tool like the PMAC Executive Software or the EZ-PMAC Setup Software.

Note:

The EZ-PMAC Setup Software has a dedicate screen for the configuration of the
tuning variables. However, the PMAC Executive program auto-tuning utility is
strongly recommended for its simplicity and reliability.

Ix30 Motor x Proportional Gain: This is the most important variable for the tuning setup process. It
determines how strong the corrections on the servo loop will be made based on a given following error
value. The rule of thumb for the setup of this variable is to increase it until the motor starts to buzz and
the backup for about 20% of its value.

Ix31 Motor x Derivative Gain: This variable acts effectively as an electronic damper. The higher Ix31
is, the heavier the damping effect is. On a typical system with a current-loop amplifier and PMAC’s
default servo update time (~440 msec), an Ix31 value of 2000 to 3000 will provide a critically damped
step response.

Ix32 Motor x Velocity Feed Forward Gain: Typically, this variable is used to minimize the tracking
errors when the motor is moving with a constant velocity. If the motor is driving a current-loop (torque)
amplifier, usually Ix32 will be equal to (or slightly greater than) Ix31 to minimize tracking error.

Ix33 Motor x Integral Gain: Typically, this variable is used to minimize the steady state following error
when the motor is settling on the target position. Usually, the following error in this case is due to gravity
and external forces.

Ix35 Motor x Acceleration Feed Forward Gain: This parameter is intended to reduce tracking error due
to inertial lag.

Ix68 Motor x Friction Feedforward: This parameter is intended primarily to help overcome errors due
to mechanical friction.

Coordinate System I-Variables
Ix87 C.S. x Default Acceleration Time: This parameter determines the default acceleration time of a
motion program running on Coordinate System x which is otherwise set by the TA parameter inside the
motion program.

Ix88 C.S. x Default S-Curve Time: This parameter determines the default S-curve acceleration time of a
motion program running on Coordinate System x which is otherwise set by the TS parameter inside the
motion program.

Ix89 C.S. x Default Feedrate: This parameter determines the default federate (velocity) of a motion
program running on Coordinate System x which is otherwise set by the F parameter inside the motion
program.

PMAC Product Guide

Programming PMAC 55

Ix90 C.S. x Feedrate Time Units: This parameter determines the units of time used for either the Ix89 I-
variable or the F motion program parameter in compare to milliseconds. The default value of 1000
defines the federate in units per second.

Encoder/Flag Setup I-Variables
I900, I905,.. Encoder 0 Decode Control: This variable determines how an increase in the encoder
feedback counter will be interpreted when translated into position. An increase in the encoder counter can
be interpreted as an increase or a decrease in the position counter, thus determining the proper direction of
motion. Typical values are either 3 or 7 which respectively determine a clock-wise or counter-clockwise
direction of decoding.

I902, I907,.. Encoder 0 Capture Control: This variable determines the trigger condition that results in
the completion of the home search command. For example, the trigger condition could be a combination
of the home sensor being activated and the encoder C channel rising high.

I903, I908,.. Encoder 0 Flag Select: This variable determines which flag will be used for the home
trigger condition, selected from the home flag, the end-of-travel limits or the amplifier fault flag.

Note:

The EZ-PMAC Setup Software has a dedicate screen for the configuration of the
homing I-Variables.

Encoder Conversion Table
The PMAC Encoder Conversion table is a method to adapt the different kind of feedback information into
a standard format that PMAC can use for its servo calculations. For example, the information provided by
a regular quadrature encoder might be different than that of a parallel feedback sensor. However, the
feedback information provided by these two different sensors would have the same format after the
encoder conversion table processes it.

For most PMAC users with quadrature encoders, this process can be virtually transparent with no need to
worry about the details. To set the encoder conversion table for using regular quadrature encoders for
motors 1-4, enter these commands on the terminal window:
WY:$720,$00C000
WY:$721,$00C004
WY:$722,$00C008
WY:$723,$00C00C
WY:$724,$000000

Jogging Moves
Jog Acceleration
Jog/home acceleration time is specified by Ix20 for motor x, and the S-curve time by Ix21. If Ix20 is less
than two times Ix21, the acceleration time used will be twice Ix21. The acceleration limit for jog/home
moves is set by Ix19 (in counts/msec

2
). If Ix20 and Ix21 are so small that Ix19 would be exceeded, Ix19

controls the acceleration time (without changing the profile shape). To specify the acceleration by rate
instead of time, simply set the acceleration time parameters small enough that the limiting acceleration
rate parameter is always used.

To specify the acceleration by rate, do not set both acceleration time parameters Ix20 and Ix21 to zero.
This will cause a division-by-zero error in the move calculations that could cause erratic movement. The
minimum acceleration time setting should be Ix20=1 and Ix21=0.

 PMAC Product Guide

56 Programming PMAC

Jog Speed
Jogging speed is specified by Ix22, which is a magnitude of the velocity, in counts per millisecond.
Direction is specified by the jog command itself.

Jog Commands
The commands to jog a motor are on-line (immediate) commands that are motor-specific; they act on the
currently addressed motor.

Note:

A jog command to a motor will be rejected if the motor is in a coordinate system
that is currently executing a motion program, even if the motion program is not
commanding that motor to move. PMAC will report ERR001 if I6 is set to 1 or 3.

Indefinite Jog Commands
J+ commands an indefinite positive jog for the addressed motor; J- commands an indefinite negative
jog; J/ commands an end to the jog, leaving the motor in position control after the deceleration. It is
possible for the J/ command to leave the commanded position at a fractional count which can cause
dithering between the adjacent integer count values. If this is a problem, the J! command can be used to
force the commanded position to the nearest integer count value.

Jogging to a Specified Position
Jog commands to a specified position, or of a specified distance, can be given. J= commands a jog to the
last pre-jog position; J={constant} commands a jog to the (unscaled) position specified in the
command; J=={constant} commands a jog to the (unscaled) position specified in the command and
makes that position the pre-jog position; J^{constant} commands a jog of the specified distance from
the actual position at the time of the command (J^0 can be useful to take up remaining following error);
J:{constant} commands a jog of the specified distance from the commanded position at the time of
the command.

Jog Moves Specified by a Variable
Jogging moves to a position or of a distance specified by a variable are possible. Each motor has a
specific register (L:$082B for motor 1, L:$08EB for motor 2, etc.) that holds the position or distance to
move on the next variable jog command. This register contains a floating-point value scaled in encoder
counts. It should be accessed with an L-format M-Variable. The J=* command causes PMAC to use
this value as a destination position. The J^* command causes PMAC to use the value as a distance from
the actual position at the time of the command. The J:* command causes PMAC to use the value as a
distance from the commanded position at the time of the command.

Each time one of these commands is given, the acceleration and velocity parameters at that time control
the response to the command. To change speed or acceleration parameters of an active jog move, change
the appropriate parameters, then issue another jog command.

Jog-Until-Trigger
The jog-until-trigger function permits a jog move to be interrupted by a trigger and terminated by a move
relative to the position at the time of the trigger. It is similar to a homing search move, except that the
motor zero position is not altered, and there is a specific destination in the absence of a trigger.

The jog-until-trigger function for a motor is specified by adding a ^{constant} specifier to the end of
a regular definite jog command for the motor, where this {constant} is the distance to be traveled
relative to the trigger position before stopping, in encoder counts. It cannot be used with the indefinite
jog commands J+ and J- .

PMAC Product Guide

Programming PMAC 57

This makes the jog command for a jog-until trigger something like J=10000^100 , J=*^-50 or
J:50000^0. The value before the ^ is the destination position or distance (depending on the type of jog
command) to be traveled in the absence of a trigger. If this first value is represented by a * symbol,
PMAC looks in a pre-defined register for the position or distance. The second value is the distance to be
traveled relative to the position at the time of the trigger. This value is always expressed as a distance,
regardless of the type of jog command. Both values are expressed in encoder counts.

The trigger condition for the motor is set up just as for homing search moves:

• Ix03 bit 17 specifies whether input flags are used to create the trigger, or the warning following error
limit status bit is the trigger (torque-limited triggering): 0=flags, 1=error status.

• If input flags are to create the trigger, Ix25 specifies the flag register.

• If input flags are to create the trigger, Encoder/Flag I-Variables 2 and 3 for this set of flags specify
which edges of which signals will cause the trigger.

• Ix03 bit 16 specifies whether the hardware-captured counter value is used as the trigger position --
suitable for incremental encoder signals, real or simulated -- or the software-read position is used
instead -- suitable for other types of feedback (0=hardware, 1=software). The software-read position
must be used if the following error status is used for the trigger.

PMAC will use the jog parameters Ix19-Ix22 in force at the time of the command for the pre-trigger move
and the values of these parameters in force at the time of the trigger for the post-trigger move.

The captured value of the sensor position at the trigger is stored in a dedicated register if later access is
needed. The units are in counts; for incremental encoders, they are relative to the power-up/reset
position.

PMAC sets the motor home-search-in-progress status bit (bit 10 of the first motor status word returned on
a ? command) true (1) at the beginning of a jog-until-trigger move. The bit is set false (0) either when the
trigger is found, or at the end of the move.

In addition, PMAC sets the motor trigger move status bit (bit 7 of the second motor status word returned
on a ? command) true at the beginning of a jog-until-trigger move, and keeps it true at least until the end
of the move. If a trigger is found during the move, this bit is set false at the end of the post-trigger move;
however, if the pre-trigger move finishes without finding a trigger, the bit is left true at the end of the
move. Therefore, this bit can be used at the end of the move to tell whether the trigger was found
successfully or not. The motor desired-velocity-zero status bit can be used to determine the end of the
move.

Homing Search Moves
Homing Acceleration
The acceleration for homing search moves is controlled by the same parameters -- Ix19, Ix20, and Ix21 --
as for jogging moves. These are described in the above section.

Homing Speed
Homing speed and direction are specified by Ix23. If Ix23 is greater than zero, the homing search move
will be positive. If it is less than zero the move will be negative. The magnitude of Ix23 controls the
speed of the move (in counts/msec).

 PMAC Product Guide

58 Programming PMAC

Home Trigger Condition
PMAC’s homing search moves utilize the hardware position capture feature built in to the DSPGATE IC.
Because software action is not required to do the actual capture, it is incredibly fast and accurate (delay
less than 100 nsec). This means that the capture is fully accurate regardless of motor speed, so there is no
need to slow down the homing move to get an accurate capture.

Ix21
Ix20

Ix21

Ix20

Ix21

Ix21 Ix21 Ix21
Ix20

Ix23

Home Complete=0
Home Search
In Progress=1

Home Complete=1
Home Search in Progress=0

Trigger
Occurs

Net distance from
trigger position

= Ix26

Desired Velocity Zero=1
In Position=1
(when FE in range)

Time

Note: Rate of acceleration
limited by Ix19 - can override
Ix20 and Ix21

Vel

Homing Search Move Trajectory

Specify Flag Set
In the basic setup of the motor, Ix25 specifies which set of flags (associated with one of the encoder
counters) is used for that motor. It is important that the flag number match the position encoder number
for the motor (e.g. if using ENC1 as the position-loop feedback, use Flags1 -- HMFL1, +/-LIM1,
FAULT1 -- for thw flags, and CHC1 as the encoder index channel) in order to make use of PMAC’s
accurate hardware position capture feature.

Software Capture Option
If not using quadrature encoder feedback for the position loop, but still need to do a homing search move,
set bit 16 of the position-loop feedback address parameter Ix03 to 1 to tell PMAC that it cannot use the
hardware capture feature, so it must use a software capture technique. For example, if the address for
Ix03 is $0724, Ix03 should be set to $10724 for the software capture of home position.

When software capture is used, there is a potential delay between the actual trigger and PMAC’s position
capture of several milliseconds. This can lead to inaccuracies in the captured position; the speed of the
motor at the time of the trigger must be kept low enough to achieve an accurate enough capture. A two-
step procedure with a fast, inaccurate capture followed by a slow, accurate capture, is common ly used in
these types of systems.

Trigger Signals and Edges
Once the set of flags for the motor with Ix25 has been specified, use Encoder/Flag I-Variable 2 (I902,
I907, etc.) to tell PMAC whether to use a flag, the index channel, or both, as the capture trigger, and
which edge of the flag and/or the index channel to use.

PMAC Product Guide

Programming PMAC 59

Next use Encoder/Flag I-Variable 3 (I903, I908, etc.) to specify which of the four flags (HMFLn, +LIMn,
-LIMn, FAULTn) is to be used for the capture. If using a limit or a fault flag for home capture, disable
the normal function of that input by setting high bits of Ix25, at least for the duration of the homing search
move (see example below).

Torque-Mode Triggering
Normally, the trigger condition for homing search moves, jog-until-trigger moves, and motion program
move-until-trigger moves is an input flag signal transition. Sometimes it is desired that a trigger occur
when an obstruction such as a hard stop is encountered. To support this type of functionality, PMAC
permits triggering on a warning following error condition instead of an input flag. This is sometimes
called torque-mode triggering because it effectively triggers on a torque level (except for velocity-mode
amplifiers) because output torque command is proportional to following error. It is also called a torque-
limited mode because it provides an easy way to create moves that are limited in torque, and that stop
when the torque limit is reached.

To enable this torque-mode triggering, set bit 17 of the position-loop feedback address I-Variable Ix03 to
1. Bit 16 of Ix03 should also be set to 1 to tell PMAC to use the software-read position on a capture
instead of the hardware-latched position, because there is no input signal to latch the position in this
mode. Bits 0-15 contain the actual address of the feedback. For example, the default value of I103 is
$0720, specifying the address of the first entry in the encoder conversion table, and specifying signal-
based triggering. If I103 is changed to $30720, the same register is used for feedback, but now torque-
mode triggering is specified.

In this mode, the trigger for a homing search move or a move-until-trigger is a true state of the warning
following error status bit for the motor. The warning following error magnitude for the motor is set by
Ix12, with units of 1/16 of a count. When PMAC detects this transition, it will read the present feedback
position as the trigger position, and then move relative to this position. In a homing search move, the
relative distance is specified by Ix26, in units of 1/16 count. In a jog-until-trigger, the distance is
specified by the second value in the jog command -- the value after the ^ arrow -- in units of counts. In a
motion program move-until-trigger, the distance is specified by a second value in the axis command -- the
value after the ^ arrow -- in user axis units.

When using these types of moves, set the Ix69 command output to a lower value representing the torque
or force limit to ensure that this limit is not exceeded at any time during the move, before or after the
trigger.

Note:

If the warning following error status bit is true at the start of the move, the trigger
will occur almost immediately.

Merits of Dual Trigger
It is common practice to use a combination of a homing switch and the index channel as the home trigger
condition. The index channel of an encoder, while precise and repeatable, is not unique in most
applications because the motor can travel more than one revolution. Typically, the homing switch while
unique is not extremely precise or repeatable. By using a logical combination of the two, uniqueness can
be reached from the switch and precision and repeatability from the index channel. In this scheme, the
homing switch is effectively used to select which index channel pulse is used as the home trigger.

Although the homing switch does not need to be placed extremely accurately in this type of application, it
is important that its triggering edge remain safely between the same two index channel pulses. In
addition, the homing switch pulse must be wide enough to always contain at least one index channel
pulse.

 PMAC Product Guide

60 Programming PMAC

Action on Trigger
In the homing search move, as soon as the PMAC firmware recognizes that the hardware trigger has
occurred, it takes several actions. It reads the position at the time of capture, usually the hardware capture
register and uses it and the Ix26 home offset parameter to compute the new motor zero position. As soon
as this is done, reported positions are referenced to this new zero position (plus or minus any axis offset in
the axis definition statement -- if the axis definitions is #1->10000X+3000, the home position will be
reported as 3000 counts).

If software overtravel limits are used (Ix13, Ix14 not equal to zero), they are re-enabled at this time after
having been automatically disabled during the search for the trigger. The trajectory to this new zero
position is then calculated, including deceleration and reversal if necessary. Note that if a software limit
is too close to zero, the motor may not be able to stop and reverse before it hits the limit. The motor will
stop under position control with its commanded position equal to the home position. If there is a
following error, the actual position will be different by the amount of the following error.

Home Command
The homing search move can be executed either through an on-line command (which can be given from a
PLC program using the COMMAND"" syntax) or a motion program statement.

On-Line Command
A homing search move can be initiated with the on-line motor-specific command HOME (short form HM).
This is simply a command to start the homing search; PMAC provides no automatic indication that the
move is completed, unless setup to recognize the in-position (IPOS) interrupt.

Monitoring for Finish
If monitoring the motor from the host or from a PLC program to see if it has finished the homing move,
look at the home complete and desired velocity zero motor status word, accessed either with the ?
command, or with M-Variables. The home complete bit is set to zero on power-up/reset; it is also set to
zero at the beginning of a homing search move, even if a previous homing search move was completed
successfully. It is set to 1 as soon as the trigger is found in a homing search move, before the motor has
come to a stop.

The home search in progress bit simply is the inverse of the home complete bit during the move: it is 1
until the trigger is found, then 0 immediately after. Therefore the monitoring should look also for the
desired velocity zero status bit to become one, which will indicate the end of the move.

Monitoring for Errors
A robust monitoring algorithm will also look for the possibility that the homing search move could end in
an error condition. Often this is just part of the general error monitoring that is done at all times, looking
for overtravel limits, fatal following errors, and amplifier faults. If an error does occur during the homing
move, it is important to distinguish between one that occurs before the trigger has been found, and one
that occurs after. If the error occurs after, PMAC knows where the home position is, and the homing
search does not need to be repeated. Once the error cause has been fixed, the motor can be moved to the
home position with a command such as J=0.

Buffered Program Command
The homing search move can be commanded also from within a motion program with the HOMEn
command, where n is the motor number. Note that this command specifies a motor unlike other motion
program commands that specify an axis move. In a motion program, PMAC’s automatic program
sequencing routines monitor for the end of the move. When the move is successfully completed, program
execution continues with the next command.

PMAC Product Guide

Programming PMAC 61

Multiple homing moves can be started together by specifying a list or range of motor numbers with the
command (e.g. HOME1,3 or HOME2..6). Further program execution will wait for all of these motors to
finish their homing moves. Separate homing commands, even on the same line (e.g. HOME1 HOME2)
will be executed in sequence, with the first finishing before the second starts. It is not possible to execute
partially overlapping homing moves from a single motion program.

Note carefully the difference in syntax between the on-line command and the buffered command. The
on-line command is simply HOME or HM and it acts on the currently addressed motor, so the motor
number must be specified in front of the command (e.g. #1HM). In the buffered command, the motor
number is part of the command, following immediately after HOME or HM letters (e.g. HM1).

Homing from a PLC Program
PMAC PLC programs can command homing search moves by giving on-line commands with the
COMMAND"" statement (e.g. COMMAND"#1HM"). These commands simply start the homing search
move; code must be written to monitor for finishing if that is desired. The motor number must be
specified in the specific command string, or with the ADDRESS#n statement; without this statement,
motor addressing is not modal within PLC programs.

Motion vs. PLC Program Homing
The following table summarizes the differences between homing using Motion programs and PMAC PLC
programs.

Motion Programs PLC Programs
Program execution point stays on the line containing
the Home command until the homing move is finished.

The PLC does not monitor for the start and end of the
homing move automatically.

Home command can be combined with programmed
axis moves.

Axis motion can only be performed through Jog
commands. .

The coordinate system must be ready to run a motion
program.

The coordinate system does not need to be ready to run
a motion program.

Can only home motors defined in the coordinate
system running the program.

Can home any motor not defined in a coordinate
system running a program.

Motors can be homed simultaneously, one after
another, or any combination of the two.

Motors can be homed in any order. This includes
starting one motor in the middle of another motor’s
home move.

The motion program must be started by an on-line
command, a PLC program, or another motion
program.

The PLC can be started by an on-line command, a PLC
program, another motion program, or automatically at
power-up or reset.

Zero-Move Homing
To declare the current position the home position without commanding any movement, use the HOMEZ
(on-line) or HOMEZn (motion program) command. These are similar to the HOME command, except that
they immediately take the current commanded position as the home position. The Ix26 offset is not used
with the HOMEZ command.

Note:

If a following error is received when the HOMEZ command is given, the reported
actual position after the HOMEZ command will not be exactly zero; it will be equal
to the negative of the following error.

 PMAC Product Guide

62 Programming PMAC

Homing Into a Limit Switch
It is possible to use a limit switch as a home switch. However, first disable the limit function of the limit
switch if to finish the move normally. Otherwise, the limit function will abort the homing search move.
Even so, the home position has been set; a J=0 command can then be used to move the motor to the home
position.

Note:

The polarity of the limit switches is the opposite of what is expected. The -LIMn
input should be connected to the limit switch at the positive end of travel; the
+LIMn input should be connected to the limit switch at the negative end of travel.

To disable the limit function of the switch, set bit 17 of variable Ix25 for the motor to 1. For example, if
I125 is normally $C000 (the default), specifying the use of +/-LIM1 for motor 1, setting I125 to $2C000
disables the limit function.

It is a good idea to use the home offset parameter Ix26 to bring the home position out of the limit switch,
so the limits can be re-enabled immediately after the homing search move, without being in the limit.

The following examples show quick routines to do this type of homing. One uses a motion program and
the other a PLC program. The same function can also be done with on-line commands.

;*********** Motion Program Set-up Variables (to be saved) *************
CLOSE
I123=-10 ; Home speed 10 cts/msec negative
I125=$C000 ; Use Flags1 for Motor 1 (limits enabled)
I126=32000 ; Home offset of +2000 counts (enough to take it out

; of the limit)
I902=3 ; Capture on rising flag and rising index
I903=2 ; Use +LIM1 as flag (negative end switch)

;*********** Motion Program to Execute Routine *********************
OPEN PROG 101 CLEAR
I125=$2C000 ; Disable +/-LIM as limits
HOME1 ; Home #1 into limit and offset out of it
I125=$C000 ; Re-enable +/-LIM as limits
CLOSE ; End of program

;*********** PLC Set-up Variables (to be saved) ************************
CLOSE
I123=-10 ; Home speed 10 cts/msec negative
I125=$C000 ; Use Flags1 for Motor 1 (limits enabled)
I126=32000 ; Home offset of +2000 counts (enough to take it out
of the limit)
I902=3 ; Capture on rising flag and rising index
I903=2 ; Use +LIM1 as flag (negative end switch)

M133->X:$003D,13,1 ; Desired Velocity Zero bit
M145->Y:$0814,10,1 ; Home complete bit

PMAC Product Guide

Programming PMAC 63

;*********** PLC program to execute routine *********************
OPEN PLC 10 CLEAR
I125=$2C000 ; Disable +/-LIM as limits
CMD"#1HM" ; Home #1 into limit and offset out of it
WHILE (M145=1) ; Waits for Home Search to start
ENDWHILE
WHILE (M133=0) ; Waits for Home motion to complete
ENDWHILE
I125=$C000 ; Re-enable +/-LIM as limits
DIS PLC10 ; Disables PLC once Home is found
CLOSE ; End of PLC

Multi-Step Homing Procedures
Sometimes a homing procedure is required that cannot be executed with a single PMAC homing move.
In this case, use two (or possibly more) homing search moves, changing the move parameters in between.
Although this can be done with a sequence of on-line commands, it is easier to create a small motion
program to execute the sequence.

Which Direction to Home?
The most common of these situations is the case in which it is not known on which side of the home
trigger at power-up. In this case, move into one of the limit switches to make sure the position is at one
end of travel (this can be done by homing into the limit, much as in the above example). Then do a
homing move the other direction into the real home trigger. A sample Motion Program routine that does
this is:
CLOSE OPEN PROG 102 CLEAR
I223=10..... ; Home speed 10 cts/msec positive direction
I225=$2C004. ; Disable +/-LIM2 as limits
I226=0...... ; No home offset
I907=2...... ; Capture on rising edge of a flag
I908=1...... ; Use -LIM2 as flag (positive end limit!)
HOME2....... ; Home into limit
I223=-10.... ; Home speed 10 cts/msec negative direction
I225=$C004.. ; Re-enable +/-LIM2 as limits
I907=11..... ; Capture on flag low and index channel high
I908=0...... ; Use HMFL2 (home flag) as trigger flag
HOME2....... ; Do actual homing move
CLOSE

A sample PLC Program routine that does this is:
CLOSE
M233->X:$0079,13,1 ; Desired Velocity Zero bit
M245->Y:$08D4,10,1 ; Home complete bit

OPEN PLC 11 CLEAR

I223=10..... ; Home speed 10 cts/msec positive direction
I225=$2C004. ; Disable +/-LIM2 as limits
I226=0...... ; No home offset
I907=2...... ; Capture on rising edge of a flag
I908=1...... ; Use -LIM2 as flag (positive end limit!)
CMD"#2HM"... ; Home into limit
WHILE (M245=1) ; Waits for Home Search to start
ENDWHILE
WHILE (M233=0) ; Waits for Home motion to complete
ENDWHILE

I223=-10.... ; Home speed 10 cts/msec negative direction

 PMAC Product Guide

64 Programming PMAC

I225=$C004.. ; Re-enable +/-LIM2 as limits
I907=11..... ; Capture on flag low and index channel high
I908=0...... ; Use HMFL2 (home flag) as trigger flag
CMD"#2HM" .. ; Do actual homing move
WHILE (M245=1) ; Waits for Home Search to start
ENDWHILE
WHILE (M233=0) ; Waits for Home motion to complete
ENDWHILE
DIS PLC11... ; Disables PLC once Home is found
CLOSE....... ; End of PLC

Already Into Home?
A similar situation occurs when it is known on power-up whether or not the position is already into the
home trigger. Here, the easiest solution is to write a program that evaluates this condition; if it is in the
trigger, it moves out before doing the real homing.

;*************** Motion Program Set-up Variables (to be saved) *********
CLOSE
M320->X:$C008,20,1 ; Variable for HMFL3 input
I325=$C008 ; Use Flags3 for Motor 3

;************** Motion Program to Execute Routine *********************
OPEN PROG 103 CLEAR
IF (M320=1) ; Already in trigger?
 I323=10 ; Home speed 10 cts/msec positive direction
 I326=1600 ; Home offset +100 counts (to make sure clear)
 I912=11 ; Capture on falling flag and rising index
 I913=0 ; Use HMFL3 as flag
 HOME3 ; "Home" out of switch
ENDIF
I323=-10 ; Home speed 10 cts/msec negative direction
I326=0 ; No home offset
I912=3 ; Capture on rising flag and rising index
I913=0 ; Use HMFL3 as flag
HOME3 ; Do actual homing move
CLOSE ; End of program

;***************PLC Set-up variables (to be saved) ********************
CLOSE
M320->X:$C008,20,1 ; Variable for HMFL3 input
I325=$C008 ; Use Flags3 for Motor 3
M333->X:$00B5,13,1 ; Desired Velocity Zero bit
M345->Y:$0994,10,1 ; Home complete bit
M350->D:$009E ; Present Desired Velocity

;**************** PLC Program to Execute Routine *********************
OPEN PLC 12 CLEAR
IF (M320=1) ; Already in trigger?
 I323=10 ; Home speed 10 cts/msec positive direction
 I326=1600 ; Home offset +100 counts (to make sure clear)
 I912=11 ; Capture on falling flag and rising index
 I913=0 ; Use HMFL3 as flag
 CMD"#3HM" ; "Home" out of switch
 WHILE (M345=1) ; Waits for Home Search to start
 ENDWHILE
 WHILE (M333=0) ;Waits for Home motion to complete
 ENDWHILE
ENDIF

PMAC Product Guide

Programming PMAC 65

I323=-10 ; Home speed 10 cts/msec negative direction
I326=0 ; No home offset
I912=3 ; Capture on rising flag and rising index
I913=0 ; Use HMFL3 as flag
CMD"#3HM" ; Do actual homing move
WHILE (M345=1) ; Waits for Home Search to start
ENDWHILE
WHILE (M333=0) ; Waits for Home motion to complete
ENDWHILE
DIS PLC12 ; Disables PLC once Home is found
CLOSE ; End of program

Command and Send Statements
Using the COMMAND or CMD statement, online commands can be issued from a PLC or Motion program
having the same result as if they were issued from a host computer or a terminal window. Certain online
commands might not be valid when issued from a running program. For example, a JOG command to a
motor part of a coordinate system running a motion program will be invalid. Have I6 not set to 2 in early
development so it will be known when PMAC has rejected such a command. Setting I6 to 2 in the actual
application can prevent program hang up from a full response queue or from disturbing the normal host
communications protocol.

Messages to a host computer or terminal window could be issued using the SEND command.

If there is no host on the port to which the message is sent or the host is not ready to read the message, the
message is left in the queue. If several messages back up in the queue this way, the program issuing the
messages will halt execution until the messages are read. This is a common mistake when the SEND
command is used outside of an Edge-Triggered condition in a PLC program. On the serial port, it is
possible to send messages to a non-existent host by disabling the port handshaking with I1=1.

If a program, particularly a PLC program sends messages immediately on power-up/reset, it can confuse a
host-computer program (such as the PMAC Executive Program) that is trying to find PMAC by querying
it and looking for a particular response.

It is possible, particularly in PLC programs, to order the sending of messages or command statements
faster than the port can handle them. Usually, this will happen if the same SEND or CMD command is
executed every scan through the PLC. For this reason, it is good practice to have at least one of the
conditions that causes the SEND or CMD command to execute to be set false immediately to prevent
execution of this SEND or CMD command on subsequent scans of the PLC.

Example:
M187->Y:$0817,17,1 ; &1 In-position bit (AND of motors)
OPEN PLC3 CLEAR
IF (M11=1) ; input is ON
 IF (P11=0) ; input was not ON last time
 P11=1 ; set latch
 COMMAND"&1A" ; ABORT all motion
 WHILE (M187=0) ; wait for motion to stop.
 ENDW
 COMMAND"&1B10R" ; start program 10
 ENDIF
ELSE
 P11=0 ; reset latch
ENDIF
CLOSE

 PMAC Product Guide

66 Programming PMAC

PMAC Position Registers
The PMAC Executive position window or the online P command reports the value of the actual position
register plus the position bias register plus the compensation correction register and if bit 16 of Ix05 is 1
(handwheel offset mode), minus the master position register:
M175->X:$002A,16,1 ; Bit 16 of I105
M162->D:$002B ; #1 Actual position (1/[Ix08*32] cts)
M164->D:$0813 ; #1 Position bias (1/[Ix08*32] cts)
M167->D:$002D ; #1 Present master ((handwheel) pos (1/[Ix07*32] cts
 ; of master or (1/[Ix08*32] cts of slaved motor)
M169->D:$0046 ; #1 Compensation correction

32*I108

M167)*M175M169M164(M162
 P100

−++
=

P100 will report the same value as the online command P or the position window in the PMAC Executive
program.

The addresses given are for Motor 1. For the registers for another motor x, add (x-1)*$3C -- (x-1)*60 --
to the appropriate motor #1 address.)
M161->D:$0028 ; #1 Commanded position (1/[Ix08*32] cts)

The motor commanded position registers contain the value in counts where the motor is commanded to
move. It is set through JOG online commands or axis move commands (X10) inside motion programs.

To read this register in counts: P161 = M161 / (I108*32)
M162->D:$002B ; #1 Actual position (1/[Ix08*32] cts)

The actual position register contains the information read from the feedback sensor after it has been
properly converted through the encoder conversion table and extended from a 24-bit register to a 48-bit
register.

To read this register in counts: P162 = M162 / (I108*32)
M163->D:$080B ; #1 Target (end) position (1/[Ix08*32] cts)

This register contains the most recent programmed position and it is called the target position register. If
I13>0, PMAC is in segmentation mode and the value of M163 corresponds to the last interpolated point
calculated.

To read this register in counts: P163 = M163 / (I108*32)
M164->D:$0813 ; #1 Position bias (1/[Ix08*32] cts)

This register contains the offset specified in the axis definition command #1->X + <offset>

The online command {axis}={constant} or the motion program command PSET adds the specified
offset to the existing M164 offset: M164 = M164 + <new_offset>.

To read this register in counts: P164 = M164 / (I108*32)
M165->L:$081F ; &1 X-axis target position (engineering units)

M165 contains the programmed axis position through a motion program, X10 for example, in engineering
units. It also gets updated by the online command {axis}={constant} or the motion program
command PSET.
M166->X:$0033,0,24,S ; #1 Actual velocity (1/[Ix09*32] cts/cyc)

M166 is the actual velocity register. For display purposes, use the motor filtered actual velocity, M174

To read this register in cts/msec: P166 = M166 * 8388608 / (I109 * 32 * I10 * (I160+1))

PMAC Product Guide

Programming PMAC 67

M167->D:$002D ; #1 Present master ((handwheel) pos
; (1/[Ix07*32] cts of master or (1/[Ix08*32]
; cts of slaved motor)

M167 is related to the master/slave relationship set through Ix05 and Ix06. It contains the present number of
counts the master. To read this register in counts:
P167 = M167 / (I108*32)
or
P167 = M167 / (I107*32)

M169->D:$0046 ; #1 Compensation correction

Calculated leadscrew compensation correction according to actual position (M162) and the leadscrew
compensation table set through the define comp command.

To read this register in counts: P169 = M169 / (I108*32)
M172->L:$082B ; #1 Variable jog position/distance (counts)

Contains the distance for the J=* command.

Example: M172=2000 J=* ;Jog to position 2000 encoder counts
M173->Y:$0815,0,24,S ; #1 Encoder home capture offset (counts)

Contains the home offset from the reset/power-on position. This is important for the capture/compare
features.

Example:
If (M117=1)
 P103=M103-M173 ; Captured position minus offset
endif

M174->Y:$082A,24 ; #1 filtered actual velocity (1/[Ix09*32]
; cts/servo cycle)

These registers contain the actual velocities averaged over the previous 80 real-time interrupt
periods (80*[I8+1] servo cycles); good for display purposes.

To read this register in cts/msec: P174 = M174 * 8388608 / (I109 * 32 * I10 * (I160+1))
M175->D:$0840 ; #1 following error (1/[Ix08*32] cts)

Following error is the difference between motor desired and measured position at any instant. When the
motor is open-loop (killed or enabled), following error does not exist and PMAC reports a value of 0.

32* I108

M167*M175M169M164M162M161
 176P

−++−
=

To read this register in counts: P176 = M175 / (I108*32)

 PMAC Product Guide

68 Programming PMAC

PMAC Product Guide

Motion Programs 69

MOTION PROGRAMS
PMAC can hold up to 256 motion programs at one time. Any coordinate system can run any of these
programs at any time, even if another coordinate system is already executing the same program. PMAC
can run as many motion programs simultaneously as there are coordinate systems defined on the card (up
to eight). A motion program can call any other motion program as a subprogram, with or without
arguments.

PMAC’s motion program language is perhaps best described as a cross between a high-level computer
language like BASIC or Pascal, and G-Code (RS-274) machine tool language. In fact, it can accept
straight G-Code programs directly (provided it has been set up properly). It has the calculational and
logical constructs of a computer language and move specification constructs similar to machine tool
languages. Numerical values in the program can be specified as constants or expressions.

Motion or PLC programs are entered in any text file to be downloaded afterward to PMAC. PEWIN
provides a built-in text editor for this purpose but any other text editor can be used conveniently. Once the
code has been written, it can be downloaded to PMAC using PEWIN.

All PMAC commands can be issued from any terminal window communicating with PMAC. Online
commands allow, for example, to jog motors, change variables, report variables values, start and stop
programs, query for status information and even write short programs and PLCs. In fact, the downloading
process is just a sequence of valid PMAC commands sent line by line from a particular text file.

Coordinate Systems
A coordinate system in PMAC is a grouping of one or more motors for the purpose of synchronizing
movements. A coordinate system (even with only one motor) can run a motion program; a motor cannot.
PMAC can have up to eight coordinate systems, addressed as &1 to &8, in a very flexible fashion (e.g.
eight coordinate systems of one motor each, one coordinate system of eight motors, four coordinate
systems of two motors each, etc.).

In general, to move certain motors in a coordinated fashion, put them in the same coordinate system. To
move motors independently of each other, put them in separate coordinate systems. Different coordinate
systems can run separate programs at different times (including overlapping times) or even run the same
program at different (or overlapping) times.

A coordinate system must be established first by assigning axes to motors in Axis Definition Statements.
A coordinate system must have at least one motor assigned to an axis within that system or it cannot run a
motion program, even non-motion parts of it. When a program is written for a coordinate system and if
simultaneous motions are wanted of multiple motors, their move commands are put on the same line and
the moves will be coordinated.

Axis Definitions
An axis is an element of a coordinate system. It is similar to a motor, but not the same thing. An axis is
referred to by letter. There can be up to eight axes in a coordinate system, selected from X, Y, Z, A, B, C,
U, V, and W. An axis is defined by assigning it to a motor with a scaling factor and an offset (X, Y, and
Z may be defined as linear combinations of three motors, as may U, V, and W). The variables associated
with an axis are scaled floating-point values.

In the vast majority of cases, there will be a one-to-one correspondence between motors and axes. That
is, a single motor is assigned to a single axis in a coordinate system. However, even when this is the case,
the matching motor and axis are not completely synonymous. The axis is scaled into engineering units
and deals only with commanded positions. Except for the PMATCH function, calculations go only from
axis commanded positions to motor commanded positions, not the other way around.

 PMAC Product Guide

70 Motion Programs

More than one motor may be assigned to the same axis in a coordinate system. This is common in gantry
systems, where motors on opposite ends of the crosspiece are always trying to do the same movement.
By assigning multiple motors to the same axis, a single programmed axis move in a program causes
identical commanded moves in multiple motors. Usually, this is done with two motors but up to eight
motors have been used in this manner with PMAC. Remember that the motors still have independent
servo loops, and that the actual motor positions will not necessarily be exactly the same.

An axis in a coordinate system can have no motors attached to it (a phantom axis), in which case
programmed moves for that axis cause no movement, although the fact that a move was programmed for
that axis can affect the moves of other axes and motors. For instance, if sinusoidal profiles are wanted on
a single axis, the easiest way to do this is to have a second, phantom axis and program circularly
interpolated moves.

Axis Definition Statements
A coordinate system is established by using axis definition statements. An axis is defined by matching a
motor (which is numbered) to one or more axes (which are specified by letter).

The simplest axis definition statement is something like #1->X. This simply assigns motor #1 to the X
axis of the currently addressed coordinate system. When an X axis move is executed in this coordinate
system, motor #1 will make the move. The axis definition statement also defines the scaling of the axis’
user units. For instance, #1->10000X also matches motor #1 to the X axis, but this statement sets
10,000 encoder counts to one X-axis user unit (e.g. inches or centimeters). Once the scaling has been
defined in this statement, the axis can be programmed in engineering units without ever needing to deal
with the scaling again.

Permitted Axis Names: X, Y, Z, U, V, W, A, B, C

X,Y,Z: Traditionally Main Linear Axes
• Matrix Axis Definition
• Matrix Axis Transformation
• Circular Interpolation
• Cutter Radius Compensation

A, B, C: Traditionally Rotary Axes
(A rotates about X, B about Y, C about Z)
• Position Rollover (Ix27)

U, V, W: Traditionally Secondary Linear Axes
• Matrix Axis Definition

Writing a Motion Program
1. Open a program buffer with OPEN PROG {constant} where {constant} is an integer from 1

to 32767 representing the motion program to be opened.

2. PMAC can hold up to 256 motion programs at one time. For continuous execution of programs larger
than PMAC’s memory space, a special PROG0, the rotary motion program buffers, allow for the
downloading of program lines during the execution of the program and for the overwriting of already
executed program lines.

3. The CLEAR command empties the currently opened program, PLC, rotary, etc. buffer.

4. Many of the statements in PMAC motion programs are modal in nature. These include move modes,
which specify what type of trajectory a move command will generate; this category includes
LINEAR, RAPID, CIRCLE, PVT, and SPLINE.

PMAC Product Guide

Motion Programs 71

5. Moves can be specified incrementally (distance) or absolutely (location) -- individually selectable by
axis -- with the INC and ABS commands. Move times (TA, TS, and TM) and/or speeds (F), are
implemented in modal commands. Modal commands can precede the move commands they are to
affect, or they can be on the same line as the first of these move commands.

6. The move commands themselves consist of a one-letter axis-specifier followed by one or two values
(constant or expression). All axes specified on the same line will move simultaneously in a
coordinated fashion on execution of the line; consecutive lines execute sequentially (with or without
stops in between, as determined by the mode). Depending on the modes in effect, the specified
values can mean, destination, distance, and/or velocity.

7. If the move times (TA, TS, and TM) and/or speeds (F) are not specifically declared in the motion
program the default parameters from the I-Variables Ix87, Ix88 and Ix89 will be used instead. Do not
to rely on these parameters and to declare the move times in the program. This will keep the move
parameters with the move commands, lessening the chances of future errors and making debugging
easier.

8. In a motion program, PMAC has WHILE loops and IF..ELSE branches that control program flow.
These constructs can be nested indefinitely. In addition, there are GOTO statements, with either
constant or variable arguments (the variable GOTO can perform the same function as a CASE
statement). GOSUB statements (constant or variable destination) allow subroutines to be executed
within a program. CALL statements permit other programs to be entered as subprograms. Entry to
the subprogram does not have to be at the beginning -- the statement CALL 20.15000 causes entry
into Program 20 at line N15000. GOSUB and CALL statements can be nested only 15 deep.

9. The CLOSE statement closes the currently opened buffer. This should be used immediately after the
entry of a motion, PLC, rotary, etc. buffer. If the buffer is left open, subsequent statements that are
intended as on-line commands (e.g. P1=0) will be entered into the buffer instead. It is good practice
to have CLOSE at the beginning and end of any file to be downloaded to PMAC. When PMAC
receives a CLOSE command, it automatically appends a RETURN statement to the end of the open
program buffer. If any program or PLC in PMAC is improperly structured (e.g. no ENDIF or
ENDWHILE to match an IF or WHILE), PMAC will report an ERR003 at the CLOSE command for
any buffer until the problem is fixed.

Example:
close ; Close any buffer opened
delete gather ; Erase unwanted gathered data
undefine all ; Erase coordinate definitions in all coordinate systems

#1->2000X ; Motor #1 is defined as axes X

OPEN PROG 1 CLEAR ; Open buffer to be written
LINEAR ; Linear interpolation
INC ; Incremental mode
TA100 ; Acceleration time is 100 msec
TS0 ; No S-curve acceleration component
F50 ; Feedrate is 50 Units per Ix90 msec
X1 ; One unit of distance, 2000 encoder counts
CLOSE ; Close written buffer, program one

 PMAC Product Guide

72 Motion Programs

Running a Motion Program
1. Select the coordinate system where the motion program will be running. Issue the & command

followed by the coordinate system number, e.g. &1 for the coordinate system one.

2. Select the program that to run with the B{constant} command, where the {constant}
represents the number of the motion program buffer. Use the B command to change motion programs
and after any motion program buffer has been opened. If repeatedly running the same motion
program without modification, it is not necessary to use it. When PMAC finishes executing a motion
program, the program counter for the coordinate system is set to point to the beginning of that
program automatically, ready to run it again.

3. Once pointing to the motion program to run, issue the command to start execution of the program. To
execute the program continuously, use the R command (<CTRL-R> for all coordinate systems
simultaneously). The program will execute all the way through unless stopped by command or error
condition.

4. To execute just one move or a small section of the program, use the S command (<CTRL-S> for all
coordinate systems simultaneously). The program will execute to the first move DWELL, or DELAY,
or if it first encounters a BLOCKSTART command, it will execute to the BLOCKSTOP command.

5. When a run or step command is issued, PMAC checks the coordinate system to make sure it is in
proper working order. If it finds anything in the coordinate system is not set up properly, it will reject
the command, sending a <BELL> command back to the host. If I6 is set to 1 or 3, it will report an
error number as well telling the reason the command was rejected. PMAC will reject a run or step
command for any of the following reasons:

• A motor in the coordinate system has both overtravel limits tripped (ERR010)
• A motor in the coordinate system is currently executing a move (ERR011)
• A motor in the coordinate system is not in closed-loop control (ERR012)
• A motor in the coordinate system in not activated {Ix00=0} (ERR013)
• There are no motors assigned to the coordinate system (ERR014)
• A fixed (non-rotary) motion program buffer is open (ERR015)
• No motion program has been pointed to (ERR016)
• After a / or \ stop command, a motor in the coordinate system is not at the stop point (ERR017)

6. Before starting the program, issue a CTRL+A command to PMAC to ensure that all the motors will be
potentially in closed loop and that all previous motions are aborted. Also, if in doubt, the functioning
of each motor can be checked individually prior to run a program by means of Jog commands. For
example, #1J^2000 will make motor 1 move 2000 encoder counts and that would confirm if the
motors are able to run motion programs or not.

7. All motors in the addressed coordinate system must be ready to run a motion program. Depending on
Ix25, even if one motor defined in the coordinate system is not closing the loop, all motors in the
coordinate system can be brought down impeding of running any motion program.

8. Sometimes the feedrate override for the current addressed coordinate system is set at zero and no
motion will occur as a result. Check the feedrate override parameter by issuing a &1% command on
the terminal window (replace 1 for the appropriate coordinate system number). If it is zero or too low,
set it to an appropriate value. The &1%100 command will set it to 100 %.

PMAC Product Guide

Motion Programs 73

9. For troubleshooting purposes, change the feedrate override to a lower than 100% value. If the
program is run for the first time, a preceding %10 command can be issued to run the motion program
in slow motion. Running the program slowly will allow observing the programmed path more clearly,
it will demand less calculation time from PMAC and it will prevent damages due to potentially wrong
acceleration and/or feedrate parameters.

10. A motion program can be stopped by sending a &1a or a CTRL+A command which will stop any
motion taking place in PMAC.

11. If the motion of any axis becomes uncontrollable and should be stopped, a CTRL+K command can be
issued killing all the motors in PMAC (disabling the amplifier enable line if connected). However, the
motor will come to a stop in an uncontrollable way and might proceed to move due to its own inertia.

12. In addition, a motion program can be stopped by issuing a CTRL+Q command. The last programmed
moves in the buffer will be completed before the program quits execution. It can be resumed by
issuing an R command alone without first pointing to the beginning of the buffer by the B command.

Subroutines and Subprograms
It is possible to create subroutines and subprograms in PMAC motion programs to design well-structured
modular programs with re-usable subroutines. The GOSUBx command in a motion program causes a
jump to line label Nx of the same motion program. Program execution will jump back to the command
immediately following the GOSUB when a RETURN command is encountered. This creates a subroutine.

The CALLx command in a motion program causes a jump to PROG x, with a jump back to the command
immediately following the CALL when a RETURN command is encountered. If x is an integer, the jump
is to the beginning of PROG x; if there is a fractional component to x, the jump is to line label
N(y*100,000), where y is the fractional part of x. This structure permits the creation of special
subprograms, either as a single subroutine, or as a collection of subroutines, that can be called from other
motion programs.

The PRELUDE command allows creating an automatic subprogram call before each move command or
other letter-number command in a motion program.

Passing Arguments to Subroutines
These subprogram calls are made more powerful by use of the READ statement. The READ statement in
the subprogram can go back up to the calling line and pick off values (associated with other letters) to be
used as arguments in the subprogram. The value after an A would be placed in variable Q101 for the
coordinate system executing the program, the value after a B would be placed in Q102, and so on (Z
value goes in Q126). Letters N or O cannot be passed.

This structure is useful particularly for creating machine-tool style programs in which the syntax must
consist solely of letter-number combinations in the parts program. Since PMAC treats the G, M, T, and D
codes as special subroutine calls, the READ statement can be used to let the subroutine access values on
the part-program line after the code.

The READ statement also provides the capability of seeing what arguments have actually been passed.
The bits of Q100 for the coordinate system are used to note whether arguments have been passed
successfully; bit 0 is 1 if an A argument has been passed, bit 1 is 1 if a B argument has been passed, and
so on, with bit 25 set to 1 if a Z argument has been passed. The corresponding bit for any argument not
passed in the latest subroutine or subprogram call is set to 0.

 PMAC Product Guide

74 Motion Programs

Example:
close delete gather undefine all
#1->2000X
open prog1 clear
LINEAR INC TA100 TS0 F50 ;Mode and timing parameters
gosub 100 H10 ;Subroutine call passing parameter H with value 10
return ;End of the main program section (execution ends)
n100 ;Subroutines section. First subroutine labeled
100
read(h) ;Read the H parameter value passed
IF (Q100 & $80 > 0) ;If the H parameter has been passed …
 X(Q108) ;Use the H parameter value contained in Q108
endif
return ;End of the subroutine labeled 100
close ;End of the motion program code

How PMAC Executes a Motion Program
Basically, a PMAC program exists to pass data to the trajectory generator routines that compute the series
of commanded positions for the motors every servo cycle. The motion program must be working ahead
of the actual commanded move to keep the trajectory generators fed with data.

PMAC processes program lines either zero, one, or two moves (including DWELLs and DELAYs) ahead.
Calculating one move ahead is necessary in order to be able to blend moves together; calculating a second
move ahead is necessary if proper acceleration and velocity limiting is to be done, or a three-point spline
is to be calculated (SPLINE mode).

For linear blended moves with I13 (move segmentation time) equal to zero (disabled), PMAC calculates
two moves ahead, because the velocity and acceleration limits are enabled here. In all other cases, PMAC
is calculating one move ahead.

No Moves Ahead Two Moves Ahead One Move Ahead
RAPID LINEAR with I13=0 LINEAR with I13>0
HOME SPLINE1 CIRCLE

DWELL PVT
b1s (step through the program)

Ix92=1 (blending disabled)
When a RUN command is given and every time the actual execution of programmed moves progresses
into a new move, a flag is set saying it is time to do more calculations in the motion program for that
coordinate system. At the next RTI, if this flag is set, PMAC will start working through the motion
program processing each command encountered. This can include multiple modal statements, calculation
statements, and logical control statements. Program calculations will continue (which means no
background tasks will be executed) until one of the following conditions occurs:

1. The next move, a DWELL command or a PSET statement is found and calculated
2. End of, or halt to the program (e.g. STOP) is encountered
3. Two jumps backward in the program (from ENDWHILE or GOTO) are performed
4. A WAIT statement is encountered (usually in a WHILE loop)

If calculations stop on condition 1 or 2, the calculation flag is cleared and will not be set again until actual
motion progresses into the next move (1) or a new RUN command is given (2). If calculations stop on
conditions 3 or 4, the flag remains set, so calculations will resume at the next RTI. In these cases, it is an
empty (no-motion) loop. The motion program acts similar to a PLC 0 during this period

If PMAC cannot finish calculating the trajectory for a move by the time execution of that move is
supposed to begin, PMAC will abort the program, showing a run-time error in its status word.

PMAC Product Guide

Motion Programs 75

Linear Blended Moves
The move time is set directly by TM or indirectly based on the distances and feedrate (F) parameters set:

TM100

X3 Y4
or FRAX(X,Y)

X3 Y4 F50 msec 100
50

5000

50

2423I190
TM ==

+⋅
=

If the move time calculated above is less than the TA time set, the move time used will be the TA time
instead. In this case, the programmed TA (or 2*TS if TA<2*TS) results in the minimum move time of a
linearly interpolated move.
If the TA programmed results are less than twice the TS programmed, TA<2*TS, the TA time used will
be 2*TS instead.
The acceleration time TA of a blended move cannot be longer than two times the previous TM minus the
previous TA, otherwise the value 2*(TM- ½ TA) will be used as the current TA instead.
The safety variables Ix16 and Ix17 will override these parameters if they are found to violate the
programmed limits.
• If TM < TA, TM = TA

• If TA < 2*TS, TA = 2*TS

• If TAi+1 > 2*(TMi- ½ TAi), TAi+1 = 2*(TMi - ½ TAi)

Example:

To illustrate how PMAC blends linear moves, a series of velocity vs. time profiles will be shown. The
moves are defined with zero S-curve components. The concepts described here could be used for non-
zero S-curve linear moves.
1. Consider the following motion program code:

close
delete gather
undefine all
&1
#1->2000x

OPEN PROG 1 CLEAR
LINEAR ; Linear mode
INC ; Incremental mode
TA100 ; The acceleration time is 100 msec, TA1
TS0 ; No S-curve component
TM250 ; Move time is 250 msec, TM1
X10 ; Move distance is 10 units, 20000 counts
TA250 ; Acceleration \ deceleration of the blended

; move is 250 msec , TA2
X40 ; Move distance is 40 units, 80000 counts

CLOSE

2. The two move commands are plotted without blending, placing a DWELL0 command in between the
two moves:

 PMAC Product Guide

76 Motion Programs

3. The two moves are now plotted with the blending mode activated. To find out the blending point,

trace straight lines through the middle point of each acceleration lines of both velocity profiles:

Notes about Linear Interpolation Moves
1. The total move time is given by: msec 675 125250 250 50

2
2TA

2TM1TM
2
1TA

=+++=+++

2. The acceleration of the second blended move can be extended only up to a certain limit, 2*(TM- ½ TA):
PMAC looks two moves ahead of actual move execution to perform its acceleration limit and can recalculate
these two moves to keep the accelerations under the Ix17 limit. However, there are cases where more than
two moves, some much more than two, would have to be recalculated in order to keep the accelerations under
the limit. In these cases, PMAC will limit the accelerations as much as it can, but because the earlier moves
have already been executed, they cannot be undone, and therefore the acceleration limit will be exceeded.

3. When performing a blended move that involves a change of direction, the end point might not be

reached.
Example:
TA100
TM250

PMAC Product Guide

Motion Programs 77

X10 ; This would reach only to position = 9
250 . 4

10 . 100
10 =−

X-10

In order to reach the desired position and since the move involves a change in direction and stop,
place a DWELL0 command between moves. This command will disable blending for that particular
move:
TA100
TM250
X10
DWELL0
X-10

4. Since the value of TA determines the minimum time in which a programmed move can be executed,
it can limit the maximum move velocity and therefore the programmed feedrate might not be reached.
This is seen in triangular velocity profile moves types, especially when a sequence of short distance
moves is programmed.

Example:
close
delete gather
undefine all
&1
#1->2000X
I190=1000

OPEN PROG 1 CLEAR
LINEAR ; Linear mode
INC ; Incremental mode
TA100 ; Acceleration time is 100 msec, TA1
TS0 ; No S-curve component
F40 ; Feedrate is 40 length_units / second

X3 ; cmse 75
40

3000

40

 I190 . 3
TM ===

CLOSE

Since the calculated TM for the given feedrate is 75 msec and the programmed TA for this move is 100
msec, the TM used will be 100 msec instead. This yields the following feedrate value instead of the
programmed one:

second

distance of units
 30

100

3000

100

I190 . 3
F ===

 PMAC Product Guide

78 Motion Programs

To be able to reach the desired velocity, a longer move can be performed split into two sections.
The first move will be executed using a suitable TA to get the motor to move from rest. The
second move will have a lower acceleration time TA in order to decrease the move time TM and
so reach the programmed feedrate.
OPEN PROG 1 CLEAR

LINEAR
INC
TS0
F40
TA100
X3
TA75
X3
CLOSE

5. All the previous analysis was performed assuming a zero S-curve component. A move executed with
an S-curve component will be similar in shape but with rounded sections at the beginning and end of
the acceleration lines.

PMAC Product Guide

Motion Programs 79

Circular Interpolation
PMAC allows circular interpolation on the X, Y, and Z axes in a coordinate system. As with linear
blended moves, TA and TS control the acceleration to and from a stop and between moves. Circular
blended moves can be feedrate-specified (F) or time-specified (TM), just as with linear moves. It is
possible to change back and forth between linear and circular moves without stopping. This is
accomplished by entering the LINEAR command when linear interpolation is needed and the CIRCLE1
or CIRCLE2 command for circular interpolation.

1. PMAC performs arc moves by segmenting the arc and performing the best cubic fit on each segment.

I-Variable I13 determines the time for each segment. I13 must be set greater than zero to put PMAC
into this segmentation mode in order for arc moves to be done. If I13 is set to zero, circular arc
moves will be done in linear fashion.

The practical range of I13 for the circular interpolation mode is 5-10 msec. A value of 10 msec is
recommended for most applications. A lower than 10 msec I13 value will improve the accuracy of
the interpolation (calculating points of the curve more often) but will also consume more of the
PMAC’s total computational power.

2. When PMAC is segmenting moves automatically (I13 > 0) which is required for Circular
Interpolation, the Ix17 accelerations limits and the Ix16 velocity limits are not observed.

3. Any axes used in the circular interpolation are automatically feedrate axes for circular moves, even if
they were not so specified in an FRAX command. Other axes may or may not be feedrate axes. Any
non-feedrate axes commanded to move in the same move command will be linearly interpolated so as
to finish in the same time. This permits easy helical interpolation.

4. The plane for the circular arc must have been defined by the NORMAL command (the default --
NORMAL K-1 -- defines the XY plane). This command can define only planes in XYZ-space, which
means that only the X, Y, and Z axes can be used for circular interpolation. Other axes specified in
the same move command will be interpolated linearly to finish in the same time. The most commonly
used planes are:
NORMAL K-1 ; XY plane -- equivalent to G17
NORMAL J-1 ; ZX plane -- equivalent to G18
NORMAL I-1 ; YZ plane -- equivalent to G19

5. To put the program in circular mode, use the CIRCLE1 command for clockwise arcs (G02
equivalent) and CIRCLE2 for counterclockwise arcs (G03 equivalent). LINEAR will restore it to
linear blended moves. Once in circular mode, a circular move is specified with a move command
specifying the move endpoint and either the vector to the arc center or the distance (radius) to the
center. The endpoint may be specified either as a position or as a distance from the starting point,
depending on whether the axes are in absolute (ABS) or incremental (INC) mode (individually
specifiable).

 PMAC Product Guide

80 Motion Programs

 X{Data} Y{Data} R{Data} ;Radius of the circle is given
 X{Data} Y{Data} I{Data} J{Data} ;Center coordinates of the circle are given

6. If the vector method of locating the arc center is used, the vector is specified by its I, J, and K
components (I specifies the component parallel to the X axis, J to the Y axis, and K to the Z axis).
This vector can be specified as a distance from the starting point (i.e. incrementally), or from the
XYZ origin (i.e. absolutely). The choice is made by specifying R in an ABS or INC statement (e.g.
ABS (R) or INC (R)). This affects I, J, and K specifiers together. (ABS and INC without
arguments affect all axes, but leave the vectors unchanged). The default is for incremental vector
specification.

7. PMAC’s convention is to take the short arc path if the R value is positive, and the long arc path if R is
negative:

• If the value of R is positive, the arc to the move endpoint is the short route (<=180 degrees).
• If the value of R is negative, the arc to the move endpoint is the long route (>=180 degrees).

8. When performing a circular interpolation, the individual axes describe a position vs. time profile

close to a sine and cosine shape. This is true also for their velocity and acceleration profiles.
Therefore, circular interpolation makes an ideal feature to describe trigonometric profiles. Further, the
period (and so frequency) of the sine or cosine waves can be set by the total move time given by
TA+TM.

close
delete gather
undefine all
&1
#2->2000Y ;X is phantom
open prog1 clear
inc
inc (r)
ta300
ts0
tm1000 ;TA+TM is period
i13=10
normal k-1 ;X-Y plane
circle1 ;clockwise
x0 y0 i10 ;complete circle
close
&1b1r

PMAC Product Guide

Motion Programs 81

Example:
I13=10 ;Move Segmentation Time
NORMAL K-1 ;XY plane
INC ;Incremental End Point definition
INC (R) ;Incremental Center Vector
definition
CIRCLE 1 ;Clockwise circle
X20 Y0 I10 J0 ;Arc move

Note:

One of the functions of the calculator built-in in the EZ-PMAC Setup Software
calculates the radius and center of a circular path given the coordinates of three
points that belong to it.

Splined Moves
PMAC can perform cubic splines (cubic in terms of the position vs. time equations) to blend together a
series of points on an axis. Splining is particularly suited to odd (non-cartesian) geometries, such as radial
tables and rotary-axis robots where there are odd axis profile shapes even for regular tip movements.

In SPLINE1 mode, a long move is split into equal-time segments, each of TA time. Each axis is given a
destination position in the motion program for each segment with a normal move command line such as
X1000Y2000. Looking at the move command before this and the move command after this, PMAC
creates a cubic position vs. time curve for each axis so that there is no sudden change of either velocity or
acceleration at the segment boundaries. The commanded position at the segment boundary may be
relaxed slightly to meet the velocity and acceleration constraints.

PMAC can work only with integer (millisecond) values for the TA segment times. If a non-integer value
is specified for the TA time, PMAC will round it to the nearest integer automatically. It will not report an
error. This rounding will change the speeds and times for the trajectory.

At the beginning and end of a series of splined moves, PMAC adds a zero-distance segment of TA time
for each axis automatically and performs the spline between this segment and the adjacent one. This
results in S-curve acceleration to and from a stop.

PMAC’s SPLINE2 mode is very similar to the SPLINE1 mode, except that the requirement that the TA
spline segment time remain constant is removed.

PVT-Mode Moves
For more direct control over the trajectory profile, PMAC offers Position-Velocity-Time (PVT) mode
moves. In these moves, the axis states are specified directly at the transitions between moves (unlike in
blended moves). This requires more calculation by the host, but allows tighter control of the profile
shape. For each piece of a move, the end position or distance, the end velocity, and the piece time are
specified.

PMAC is put in this mode using the PVT{data} program statement where {data} is a constant,
variable, or expression representing the piece time in milliseconds. This value should be an integer; if it
is not, PMAC will round it to the nearest integer. The piece time may be changed between pieces, either
with another PVT{data} statement, or with a TA{data} statement. The program is taken out of this
mode with another move mode statement (e.g. LINEAR, RAPID, CIRCLE, SPLINE).

 PMAC Product Guide

82 Motion Programs

A PVT mode move is specified for each axis to be moved with a statement of the form
{axis}{data}:{data}, where {axis} is a letter specifying the axis, the first {data} is a value
specifying the end position or the piece distance, depending on whether the axis is in absolute or
incremental mode, respectively, and the second {data} is a value representing the ending velocity.

The units for position or distance are the user length or angle units for the axis, as set in the AXIS
DEFINITION statement. The units for velocity are defined as length units divided by time units, where
the length units are the same as those for position or distance, and the time units are defined by variable
Ix90 for the coordinate system (feedrate time units). The velocity specified for an axis is a signed
quantity.

From the specified parameters for the move piece and the beginning position and velocity (from the end
of the previous piece), PMAC computes the only third-order position trajectory path to meet the
constraints. This results in linearly changing acceleration, a parabolic velocity profile, and a cubic
position profile for the piece.

Since the a non-zero end velocity for the move can be specified (directly or indirectly), it is not a good
idea to step through a program of transition-point moves and great care must be exercised in downloading
these moves in real time. With the use of the BLOCKSTART and BLOCKSTOP statements surrounding a
series of PVT moves, the last of which has a zero end velocity, it is possible to use a STEP command to
execute only part of a program.

The PVT mode is the most useful for creating arbitrary trajectory profiles. It provides a building block
approach to putting together parabolic velocity segments to create whatever overall profile is desired.
The following PVT Segment Shapes diagram shows common velocity segment profiles. PVT mode can
create any profile that any other move mode can.

PVT mode provides excellent contouring capability, because it takes the interpolated commanded path
exactly through the programmed points. It creates a path known as a Hermite Spline. LINEAR and
SPLINE modes are second and third order B-splines, respectively, which pass to the inside of
programmed points. Compared to PMAC’s SPLINE mode, PVT produces a more accurate profile.

PMAC Product Guide

Motion Programs 83

Replace I190 for the appropriate Ix90 variable according to coordinate system x.

Example:
close delete gather undefine all
&1 #1->2000X

OPEN PROG 1 CLEAR
INC
PVT300 ;Time is 300 msec per section

X5:50 ; user_units 5
3000

15000
3
msec 300

msec I190
user_units 50P ==⋅=

X5:0 ; user_units 5
3000

15000
3
msec 300

msec I190
user_units 50P ==⋅=

CLOSE

 PMAC Product Guide

84 Motion Programs

Other Programming Features
Internal Timebase, the Feedrate Override
Each coordinate system has its own time base that helps control the speed of interpolated moves in that
coordinate system.

If Ix93 is set at default, this parameter can be changed by different means:

• 1000 where ,% << nn Online or CMD command that runs all motion commands in slow motion.
• 225100 where ,% ≤< nn Online or CMD command that runs all motion commands proportionally
 faster.
• 0% Online or CMD command that freezes all motions and timing in that
 coordinate system.
• 100% Online or CMD command that restores the real-time reference (1 msec = 1 msec).
• M197 = I10 Suggested M-Variable for time base change. Equal to I10 is 100%, equal to
 0 is 0%.

The variable Ix94 controls the rate at which the time base changes:
23

2

2t

I10
Ix94

⋅
= , where t is the slew rate

time in msec.

Synchronous M-Variable Assignment
The scan of a motion program and execution of the commands in it are governed by the lookahead
feature. PMAC will calculate move commands ahead of time for a proper blending and will execute every
instruction in between immediately.

The fact that the program lines are executed ahead of time would make an M-Variable assignment
asynchronous to the motion profiles unless a double equal sign is used. M1==1, for example, will
indicate to PMAC that the assignment must take place at the blending point between the previous move
encountered and the next. In LINEAR and CIRCLE mode moves, this blending occurs V*TA/2 distance
ahead of the specified intermediate point, where V is the commanded velocity of the axis, and TA is the
acceleration (blending) time.

Axis Transformation Matrices
PMAC provides the capability to perform matrix transformation operations on the X, Y, and Z axes of a
coordinate system. These operations have the same mathematical functionality as the matrix forms of the
axis definition statements, but these can be changed on the fly in the middle of programs; the axis
definition statements should be fixed for a particular application. The matrix transformations permit
translation, rotation, scaling, mirroring, and skewing of the X, Y, and Z axes.

They can be useful for English/metric conversion, floating origins, making duplicate mirror images, and
repeating operations with angle offsets, etc. The matrices are implemented by the use of Q-Variables and
the DEFINE TBUF, TSEL, TINIT, ADIS, IDIS, AROT and IROT commands.

Learning a Motion Program
It is possible to have PMAC learn lines of a motion program using the on-line LEARN command. In this
operation, the axes are moved to the desired position and the command is given to PMAC. PMAC then
adds a command line to the open motion program buffer that represents this position. This process can be
repeated to learn a series of points. The motors can be open loop or closed loop as they are moved
around.

PMAC Product Guide

PLC Programs 85

PLC PROGRAMS
PMAC will stop the scanning of the motion program lines when enough move commands are calculated
ahead of time. This feature is called look-ahead and it is necessary to properly blend the moves together
and to observe the motion safety parameters. In the following example, PMAC calculates up to the third
move and will stop the program scanning until the first move is completed; that is, when more move
planning is required:

Example:
OPEN PROG 1 CLEAR ; Open program buffer
I13=0 ; Two moves ahead of calculation
LINEAR INC TA100 TS0 F50 ; Mode commands
X1 ; First Move
X1 ; Second Move
X1 ; Third Move
M1=1 ; This line will be executed only after the

; first move is completed
CLOSE ; Close written buffer, program one

In contrast, enabled PLCs are continuously executed from beginning to end regardless of what any other
PLC or motion program is doing. PLCs are called asynchronous because are designed for actions that are
asynchronous to the motion.

In addition, they are called PLC programs because they perform many of the same functions as hardware
programmable logic controllers. PLC programs are numbered 0 through 31.

PLC programs 1-31 are executed in background. Each PLC program executes one scan (to the end or to
an ENDWHILE statement) uninterrupted by any other background task (although it can be interrupted by
higher priority tasks). In between each PLC program, PMAC will do its general housekeeping and
respond to a host command, if any.

At power-on\reset PLCC programs run after the first PLC program runs. These are the suggested uses of
all the available PLC buffers:

• PLC0: PLC program 0 is a special fast program that operates at the end of the servo interrupt cycle
with a frequency specified by variable I8 (every I8+1 servo cycles). This program is meant for a few
time-critical tasks and it should be kept small, because its rapid repetition can steal time from other
tasks. A PLC 0 that is too large can cause unpredictable behavior and can even trip PMAC’s
watchdog timer by starving background tasks of time to execute.

• PLC1: This is the first code that PMAC will run on power-up, assuming that I5 was saved with a
value of 2 or 3. This makes PLC1 the appropriate PLC to initialize parameters, perform commutated
motors phase search and run motion programs. PLC1 can also disable other PLCs before they start
running and can disable itself at the end of its execution.

• PLC2: Since PLC1is suggested as an initialization PLC (and can run potentially only once on power-
up), PLC2 is the first PLC in the remaining sequence from 2 to 31. This makes PLC2 the ideal place
to copy digital input information from I\O expansion boards like the ACC-34 into its image variables.
This way, PLCs 3 to 30 can use the input information, writing the necessary output changes to the
outputs image variables.

• PLC3 to PLC30: PLC programs are useful particularly for monitoring analog and digital inputs,
setting outputs, sending messages, monitoring motion parameters, issuing commands as if from a
host, changing gains, and starting and stopping moves. By their complete access to PMAC variables
and I/O and their asynchronous nature, they become powerful adjuncts to the motion control
programs.

 PMAC Product Guide

86 PLC Programs

• PLC31: This is the last executed PLC in the sequence from 1 to 31. PLC31 is recommended for
copying the output image variable (changed in lower number PLCs executed previously) into the
actual outputs of an I\O expansion board (e.g., ACC-34A).

Entering a PLC Program
• PLCs are programmed in the same way as motion programs are in a text editor window for later

downloading to PMAC.

• Before starting to write the PLC, make sure that memory has not been tied up in data gathering or
program trace buffers by issuing DELETE GATHER and DELETE TRACE commands.

• Open the buffer for entry with the OPEN PLC n statement, where n is the buffer number. Next, if
there is anything currently in the buffer that should not be kept, it should be emptied with the CLEAR
statement (PLC buffers may not be edited on the PMAC itself; they must be cleared and re-entered).
If the buffer is not cleared, new statements will be added onto the end of the buffer.

• When finished, close the buffer with the CLOSE command. Opening a PLC program buffer
automatically disables that program. After it is closed, it remains disabled, but it can be re-enabled
again with the ENABLE PLC n command, where n is the buffer number (0--31). In addition, I5 must
be set properly for a PLC program to operate.

• At the closing, PMAC checks to make sure all IF branches and WHILE loops have been terminated
properly. If not, it reports an error and the buffer is inoperable. Correct the PLC program in the host
and re-enter it (clearing the erroneous block in the process). This process is repeated for all of the
PLC buffers to be used.

• Because all PLC programs in PMAC’s memory are enabled at power-on/reset, save I5 as 0 in
PMAC’s memory when developing PLC programs. This will allow PMAC to be reset and not have
PLCs running (an enabled PLC runs only if I5 is set properly) and recover more easily from a PLC
programming error.

Structure example:
CLOSE
DELETE GATHER
DELETE TRACE
OPEN PLC n CLEAR
 {PLC statements}
CLOSE
ENABLE PLC n

• To erase an uncompiled PLC program, open the buffer, clear the contents, and then close the buffer
again. This can be done with three commands on one line:
OPEN PLC 5 CLEAR CLOSE

PLC Program Structure
The important thing to remember in writing a PLC program is that each PLC program is effectively in an
infinite loop; it will execute over and over again until told to stop. (These are called PLC because of the
similarity in how they operate to hardware Programmable Logic Controllers -- the repeated scanning
through a sequence of operations and potential operations.)

PMAC Product Guide

PLC Programs 87

Calculation Statements
Much of the action taken by a PLC is done through variable value assignment statements:
{variable}={expression}. The variables can be I, P, Q, or M types and the action thus taken can
affect many things inside and outside the card. Perhaps the simplest PLC program consists of one line:

P1=P1+1

Every time the PLC executes, usually hundreds of times per second, P1 will increment by one.

Of course, these statements can get a lot more involved. The statement:
P2=M162/(I108*32*10000)*COS (M262/(I208*32*100))

can be converting radial (M162) and angular (M262) positions into horizontal position data, scaling at the
same time. Because it updates this frequently, whoever needs access to this information (e.g. host
computer, operator, motion program) can be assured of having current data.

Conditional Statements
Most action in a PLC program is conditional, dependent on the state of PMAC variables, such as inputs,
outputs, positions, counters, etc. Action can be level-triggered or edge-triggered; both can be done, but
the techniques are different.

Level-Triggered Conditions
A branch controlled by a level- triggered condition is easier to implement. Taking the incrementing
variable example and making the counting dependent on an input assigned to variable M11, we have:
IF (M11=1)
 P1=P1+1
ENDIF

As long as the input is true, P1 will increment several hundred times per second. When the input goes
false, P1 will stop incrementing.

Edge-Triggered Conditions
To increment P1 once for each time M11 goes true (triggering on the rising edge of M11 sometimes
called a one-shot or latched). A compound condition is needed to trigger the action, then as part of the
action, set one of the conditions false, so the action will not occur on the next PLC scan. The easiest way
to do this is through the use of a shadow variable which will follow the input variable value. Action is
taken only when the shadow variable does not match the input variable. The code could become:
IF (M11=1)
 IF (P11=0)
 P1=P1+1
 P11=1
 ENDIF
ELSE
 P11=0
ENDIF

Make sure that P11 can follow M11 both up and down. Set P11 to 0 in a level-triggered mode.

 PMAC Product Guide

88 PLC Programs

WHILE Loops
Normally a PLC program executes all the way from beginning to end within a single scan. The exception
to this rule occurs if the program encounters a true WHILE condition. In this case, the program will
execute down to the ENDWHILE statement and exit this PLC. After cycling through all of the other
PLCs, it will re-enter this PLC at the WHILE condition statement, not at the beginning. This process will
repeat as long as the condition is true. When the WHILE condition goes false, the PLC program will skip
past the ENDWHILE statement and proceed to execute the rest of the PLC program.

To increment the counter as long as the input is true and prevent execution of the rest of the PLC
program, program:
WHILE (M11=1)
 P1=P1+1
ENDWHILE

This structure makes it easier to hold up PLC operation in one section of the program, so other branches
in the same program do not have to have extra conditions so they do not execute when this condition is
true. Contrast this to using an IF condition (see above).

COMMAND and SEND statements
One of the most common uses of PLCs is to start motion programs and Jog motors by means of command
statements.

Some COMMAND action statements should be followed by a WHILE condition to ensure they have taken
effect before proceeding with the rest of the PLC program. This is true if a second COMMAND action
statement that requires the first COMMAND action statement to finish will follow. (Remember, COMMAND
action statements are processed only during the communications section of the background cycle.) To
stop any motion in a coordinate system and start motion program 10, the following PLC can be used:
M187->Y:$0817,17,1 ; &1 In-position bit (AND of motors)
OPEN PLC3 CLEAR
IF (M11=1) ; input is ON
 IF (P11=0) ; input was not ON last time
 P11=1 ; set latch
 COMMAND"&1A" ; ABORT all motion
 WHILE (M187=0) ; wait for motion to stop.
 ENDW
 COMMAND"&1B10R" ; start program 10
 ENDIF
ELSE
 P11=0 ; reset latch
ENDIF
CLOSE

Any SEND, COMMAND, or DISPLAY action statement should be done only on an edge-triggered
condition, because the PLC can cycle faster than these operations can process their information and the
communications channels can get overwhelmed if these statements get executed on consecutive scans
through the PLC.
IF (M11=1) ; input is ON
 IF (P11=0) ; input was not ON last time
 COMMAND"#1J+" ; JOG motor
 P11=1 ; set latch
 ENDIF
ELSE
 P11=0 ; reset latch
ENDIF

PMAC Product Guide

PLC Programs 89

Timers
Timing commands like DWELL or DELAY are reserved only for motion programs and cannot be used for
timing purposes on PLCs. Instead, PMAC has four 24-bit timers that you can write to and count down
once per servo cycle. These timers are at registers X:$0700, Y:$0700, X:$0701, and Y:$0701. Usually a
signed M-Variable is assigned to the timer; a value is written to it representing the desired time in servo
cycles (multiply milliseconds by 8,388,608/I10); then the PLC waits until the M-Variable is less than 0.

Example:
M90->X:$0700,0,24,S ; Timer register 1 (8388608/I10 msec)
M91->Y:$0700,0,24,S ; Timer register 2 (8388608/I10 msec)
M92->X:$0701,0,24,S ; Timer register 3 (8388608/I10 msec)
M93->Y:$0701,0,24,S ; Timer register 4 (8388608/I10 msec)
OPEN PLC3 CLEAR
M1=0 ; Reset Output1 before start
M90=1000*8388608/I10 ; Set timer to 1000 msec, 1 second
WHILE (M90>0) ; Loop until counts to zero
ENDWHILE
M1=1 ; Set Output 1 after time elapsed
DIS PLC3 ; disables PLC3 execution (needed in this example)
CLOSE

If more timers are needed, use memory address X:0. This 24-bit register counts up once per servo cycle.
Store a starting value for this, and then at each scan, subtract the starting value from the current value and
compare the difference to the amount of time to wait.

Example:
M0->X:$0,24 ; Servo counter register
M85->X:$07F0,24 ; Free 24-bit register
M86->X:$07F1,24 ; Free 24-bit register
OPEN PLC 3 CLEAR
M1=0 ; Reset Output1 before start
M85=M0 ; Initialize timer
M86=0
WHILE(M86<1000) ; Time elapsed less than specified time?
 M86=M0-M85
 M86=M86*I10/8388608 ; Time elapsed so far in milliseconds
ENDWHILE
M1=1 ; Set Output 1 after time elapsed
DISABLEPLC3 ; disables PLC3 execution (needed in this example)
CLOSE

Even if the servo cycle counter rollovers (start from zero again after the counter is saturated), by
subtracting into another 24-bit register, rollover is handled gracefully.

Rollover example:

M0 = 1000
M85 = 16777000
M86 = 1216

Bit 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
M0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0
M85 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0
M86 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0

Carry-out bit

 PMAC Product Guide

90 PLC Programs

PMAC Product Guide

Troubleshooting 91

TROUBLESHOOTING
PMAC is a highly reliable device and has several safety mechanisms to prevent continuous damage and
malfunctions. When PMAC shuts-down or an erratic behavior is observed, the following reset procedure
should be tried.

Resetting PMAC to Factory Defaults
1. If PMAC is communicating with the host computer, skip steps 2-7 on this list.
2. Turn off PMAC or the host computer where PMAC is installed.
3. Remove all cables connected to PMAC leaving connected only the serial port and power cables, if

present.
4. Check that all jumpers are at the default configuration or changed properly to accommodate the

particular setup for the machine. Make sure that jumper E50 is properly installed; otherwise any
SAVE command issued to PMAC will not have any effect.

5. Place the jumper E51 in PMAC (1) or jumper E3 on PMAC2. This is a hardware re-initialization
jumper.

6. After power-up, try establishing communications again with a reliable software package like the
PEWIN program provided by Delta Tau.

7. On power-up and with the re-initialization jumper installed, some PMACs with the flash memory
option will be in a mode called bootstrap. This means that it will accept a binary file downloaded to
change its internal firmware. If this is the case, follow the instructions on the PEWIN screen to
disable the downloading process (usually by pressing CTRL+R).

8. Try communications with PEWIN and type the following commands when the terminal is
successfully opened (follow the communications troubleshooting section below in case
communications are still not established):
$$$*** ;Global reset
P0..1023=0 ;Reset P-Variables values
Q0..1023=0 ;Reset Q-Variables values
M0..1023->* M0..1023=0 ;Reset M-Variables definitions and values
UNDEFINE ALL ;Undefine coordinate systems
SAVE ;Save this initial, clean configuration

9. If the re-initialization jumper was installed, remove it at this time. Restore PMAC in the computer
and power it up.

10. Try communications again and configure PMAC for the application. Make sure that a backup file is
saved in the host computer with all the parameters and programs that PMAC needs to run the
application. Furthermore, since the host computer can also fail and be replaced, save the configuration
file both in the host computer and in a floppy disk stored in a safe place. This file must be
downloaded and a SAVE command must be issued to PMAC.

The Watchdog Timer (Red LED)
The PMAC motion control board has an on-board watchdog timer (sometimes called a dead-man timer or
a get-lost timer) circuit whose job it is to detect a number of conditions that could result in dangerous
malfunctions and shut down the card to prevent a malfunction. The philosophy behind the use of this
circuit is that it is safer to have the system not operate at all than to have it operate improperly.

Because the watchdog timer wants to fail and many components of the board, both hardware and
software, must be working properly to keep it from failing, it may not be obvious immediately what the
cause of a watchdog timer failure is.

 PMAC Product Guide

92 Troubleshooting

The hardware circuit for the watchdog timer requires that two basic conditions be met to keep it from
tripping. First, it must see a DC voltage greater than 4.75V. If the supply voltage is below this value, the
circuit’s relay will trip. This prevents corruption of registers due to insufficient voltage. The second
necessary condition is that the timer must see a square wave input (provided by the PMAC software) of a
frequency greater than 25 Hz. If the card, for whatever reason due either to hardware or software
problems, cannot set and clear this bit repeatedly at this frequency or higher, the circuit's relay will trip.

Every RTI, PMAC reads the 12-bit watchdog timer register (Y register $1F) and decrements the value by
8 -- this toggles bit 3. If the resulting value is not less than zero, it copies the result into a register that
forces the bit 3 value onto the watchdog timer. Repeated, this process provides a square-wave input to the
watchdog timer.

In the background, PMAC executes one scan through an individual PLC program, then checks to see if
there are any complete commands, responding if there are, then executes the housekeeping functions.
This cycle is repeatedly endlessly.

Most of the housekeeping functions are safety checks such as following error limits and overtravel limits.
When it is done with these checks, PMAC sets the 12-bit watchdog timer register back to its maximum
value. As long as this occurs regularly at least every 512 RTI cycles, the watchdog timer will not trip.

The purpose of this two-part control of the timer is to make sure all aspects of the PMAC software are
being executed, both in foreground (interrupt-driven) and background. If anything keeps either type of
routine from executing, the watchdog will fail quickly.

The only recovery for this failure assuming the 5V power supply is satisfactory, is to hardware reset
PMAC.

Establishing Communications
Either the Executive or Setup program can be used to establish initial communications with the card.
Both programs have menus that tell the PC where to expect to find the PMAC and how to communicate
with it at that location. If it is told to look for PMAC on the bus, it must also be told PMAC’s base
address on the bus (this was set up with jumpers on PMAC). If it is told to look for PMAC on a COM
port, tell it the baud rate (this was set up with jumpers or switches on the PMAC).

Once the program knows where and how to communicate with PMAC, it will attempt to find PMAC at
that address by sending a query command and waiting for the response. If it gets the expected type of
response, it will report that it has found PMAC and can proceed.

If it does not get the expected type of response after several attempts, it will report that it has not found
PMAC. Check the following:

General
1. Is the green LED (power indicator) on PMAC’s CPU board ON, as it should be? If it is not, find out

why PMAC is not getting a +5V voltage supply.

2. Is the red LED (watchdog timer indicator) on PMAC’s CPU board OFF, as it should be? If it is ON,
make sure PMAC is getting very close to 5V supply -- at less than 4.75V, the watchdog timer will
trip, shutting down the card. The voltage can be probed at pins 1 and 3 of the JMACH connector. If
the voltage is satisfactory, inspect PMAC to see that all inter-board connections and all socketed ICs
are well seated. If the card will not run with the red LED off, contact the factory.

PMAC Product Guide

Troubleshooting 93

Bus Communications
1. Do the bus address jumpers (E91-E92, E66-E71) set an address that matches the bus address that the

Executive program is trying to communicate with?

2. Is there something else on the bus at the same address? Try changing the bus address to see if
communications can be established at a new address. Address 768 (300 hex) is usually open.

Serial Communications
1. Is the proper port on the PC being used? Make sure if the Executive program is addressing the

COM1 port, that the COM1 connector has been cabled out.

2. Does the baud rate specified in the Executive program match the baud rate setting of the E44-E47
jumpers on PMAC?

3. With a breakout box or oscilloscope, make sure there is action on the transmit lines from the PC
while typing into the Executive program. If not, there is a problem on the PC end.

4. Probe the return communication line while giving PMAC a command that requires a response (e.g.
<CONTROL-F>). If there is no action, change jumpers E9-E16 on PMAC to exchange the send and
receive lines. If there is action but the host program does not receive characters, RS-232 may be
receiving circuitry that does not respond at all to PMAC’s RS-422 levels. If there is another model
of PC, try using it as a test (most models accept RS-422 levels quite well). If the computer will not
accept the signals, a level-conversion device, such as Delta Tau's Accessory-26 may be needed.

Motor Parameters
1. No movement at all. Check the following:

a. Are both limits held low to AGND and sourcing current out of the pins?
b. Is there proper supply to A+15V, A-15V, and AGND?
c. Is the proportional gain (Ix30) greater than zero?
d. Can any output at the DAC pin be measured when an O command has been given?

e. Is the following error limit being tripped? Increase the fatal following error limit (Ix11) by setting
it to a more appropriate value and try to move again.
2. Movement, but sluggish. Check the following:

a. Is proportional gain (Ix30) too low? Try increasing it (as long as stability is kept).
b. Is the big step limit (Ix67) too low? Try increasing it to 8,000,000 -- near the maximum -- to

eliminate any effect.
c. Is the output limit (Ix69) too low? Try increasing it to 32,767 (the maximum) to make sure

PMAC can output adequate voltage.
d. Can an integrator help? Try increasing integral gain (Ix33) to 10,000 or more, and the integration

limit (Ix63) to 8,000,000.
3. Runaway condition. Check the following:
a. Is there feedback? Check that position changes can be read in both directions.

b. Does the feedback polarity match output polarity? Recheck the polarity match as explained
above.

4. Brief movement, then stop. Check the following:
a. Is the following error limit being tripped? Increase the fatal following error limit (Ix11) by setting

it to a more appropriate value, and try to move again.

If holding position well, but cannot move the motor, the hardware limits are not being held low. Check
which limits I125 is addressed to (usually +/-LIM1), then make sure those points are held low (to
AGND), and sourcing current (unscrew the wire from the terminal block and put your ammeter in series
with this circuit if you need to confirm this). Refer to the Installing and Configuring PMAC section for
details on checking the limit inputs.

 PMAC Product Guide

94 Troubleshooting

If the motor dies after giving it a jog command, the fatal following error limit has been exceeded. If this
has happened, it is either because a move has been requested that is more than the system can physically
do (if so, reduce I122), or because it is badly tuned (if this is the case, increase proportional gain I130).
To restore closed-loop control, issue the J/ command.

Motion Programs
If the program does not run at all, there are several possibilities:

1. Can the program be listed? In terminal mode, type LIST PROG 1 (or whichever program), and see
if it is there. If not, try to download it to the card again.

2. Is the program buffer closed? Type A just in case the program is running; type CLOSE to close any
open buffer; type B1 (or the program number) to point to the top of the program; and type R to try
to run it again.

3. Can each motor in the coordinate system be jogged in both directions? If not, review that motor’s
setup.

4. Have any motors been assigned to the coordinate system that is not set up yet? Every motor in the
coordinate system must have its limits held low, even if there is no real motor attached.

Try the following steps for any other motion program problem:

1. Type &1%100 in the terminal window.
2. Check that one of the motors to be used in the motion program can be jogged.
3. Type the following commands in a text editor to be downloaded to PMAC:

close ; Close any buffer opened
delete gather ; Erase unwanted gathered data
undefine all ; Erase coordinate definitions in all
coordinate systems
#1->2000X ; Replace #1 for the motor you want to

use and
 ; 2000 by the appropriate

scale factor for the
 ; number of counts per user

units
OPEN PROG 1 CLEAR ; Prepare buffer to be written
LINEAR ; Linear interpolation
INC ; Incremental mode
TA500 ; Acceleration time is 500 msec
TS0 ; No S-curve acceleration component
TM2000 ; Total move time is 500 + 2000=2500 msec
X1 ; One unit of distance, 2000 encoder counts
CLOSE ; Close written buffer, program one

4. To run it, press CTRL+A and then type B1R in the terminal window.
5. Repeat steps 2 through 4 for all the motors to be run in the actual motion program.

A good method to test motion programs is to run them at lower than one hundred percent override rate.
Any value for n from 1 to 100 in the %n online command will run the motion programs slower, increasing
the chances of success of execution. For example, in the terminal window type: &1 %75 B1R.

If a program runs successfully at lower feedrate override values there could be two reasons why it fails at
100%: either there is insufficient calculation time for the programmed moves or the acceleration and\or
velocity parameters involved are unsuitable for the machine in consideration. Look for further details in
the entitled PMAC Tasks section.

PMAC Product Guide

Troubleshooting 95

PLC Programs
PLCs and PLCCs are one of the most common sources for communication or watchdog timer failures.

Any SEND, COMMAND, or DISPLAY action statement should be done only on an edge-triggered condition
because the PLC can cycle faster than these operations can process their information, and the
communications channels can get overwhelmed if these statements get executed on consecutive scans
through the PLC.
IF (M11=1) ; input is ON
 IF (P11=0) ; input was not ON last time
 COMMAND"#1J+" ; JOG motor
 P11=1 ; set latch
 ENDIF
ELSE
 P11=0 ; reset latch
ENDIF

PLC0 or PLCC0 should be used only for a few tasks (usually a single task) that must be done at a higher
frequency than the other PLC tasks. The PLC 0 will execute every real-time interrupt as long as the tasks
from the previous RTI have been completed. PLC 0 is potentially the most dangerous task on PMAC as
far as disturbing the scheduling of tasks is concerned. If it is too long, it will starve the background tasks
for time. The first thing to notice is that communications and background PLC tasks will become
sluggish. In the worst case, the watchdog timer will trip, shutting down the card, because the
housekeeping task in background did not have the time to keep it updated.

Because all PLC programs in PMAC’s memory are enabled at power-on/reset, save I5 as 0 in PMAC’s
memory when developing PLC programs. This will allow PMAC to be reset and no PLCs running (an
enabled PLC runs only if I5 is set properly) and recover more easily from a PLC programming error.

As an example, type these commands in the terminal window. After that, open a watch window and
monitor for P1 to be counting up:
OPEN PLC1 CLEAR ; Prepare buffer to be written
P1=P1+1 ; P1 continuously incrementing
CLOSE ; Close written buffer, PLC1
I5=2

Press <CTRL+D> and type ENA PLC1.

 PMAC Product Guide

96 Troubleshooting

PMAC Product Guide

I-Variables 97

I-VARIABLES
On PMAC, I-Variables (Initialization, or Set-up, Variables) determine the personality of the
controller for a given application. They are at fixed locations in memory and have pre-defined
meanings. Most are integer values and their range varies depending on the particular variable.
There are 1024 I-Variables, from I0 to I1023, and they are organized as follows:

 I0 -- I75: General card setup (global)
 I76 -- I99: Dual-speed resolver setup
 I100 -- I186: Motor #1 setup
 I187 -- I199: Coordinate System 1 setup
 I200 -- I286: Motor #2 setup
 I287 -- I299: Coordinate System 2 setup
 ...
 I800 -- I886: Motor #8 setup
 I887 -- I899: Coordinate System 8 setup
 I900 -- I979: Encoder 1 - 16 setup (in groups of 5)
 I980 -- I1023: Reserved for future use

In this section, some I-Variables might be expressed as Ix00. In the case of a motor I-Variable, x stands
for the motor number in the range of 1 through 8. In the case of a Coordinate System I-Variable, x stands
for the coordinate system number, also in the range of 1 through 8.

Note:

The PMAC motion controller is rich in features and expansion capabilities.
Because this manual illustrates the implementation of PMAC in a typical
application, some of the PMAC advanced I-Variables are not described. Further
information of all the PMAC I-Variables can be obtained from the PMAC
Software Reference manual.

Global I-Variables
I1 Serial Port Mode
Range: 0 .. 3
Default: 0
Units: none

This parameter controls two aspects of how PMAC uses its serial port. The first aspect is whether PMAC
uses the CS (CTS) handshake line to decide if it can send a character out the serial port. The second
aspect is whether PMAC will require software card addressing, permitting multiple cards to be
daisychained on a single serial line.

There are four possible values of I1, covering all the possible combinations:

Setting Meaning
0 CS handshake used; no software card address required
1 CS handshake not used; no software card address required
2 CS handshake used; software card address required
3 CS handshake not used; software card address required

When CS handshaking is used (I1 is 0 or 2), PMAC waits for CS to go true before it will send a character.
This is the normal setting for real serial communications to a host; it allows the host to hold off PMAC
messages until it is ready.

 PMAC Product Guide

98 I-Variables

When CS handshaking is not used (I1 is 1 or 3), PMAC disregards the state of the CS input and
always sends the character immediately. This mode permits PMAC to output messages, values,
and acknowledgments over the serial port even when there is nothing connected which can be
valuable in stand-alone and PLC-based applications where there are SEND and CMD statements in
the program. If these strings cannot be sent out the serial port, they can back up, stopping
program execution.

When software addressing is not used (I1 is 0 or 1), PMAC assumes that it is the only card on the
serial line, so it always acts on received commands, sending responses back over the line as
appropriate.

When software addressing is used (I1 is 2 or 3), PMAC assumes that there are other cards on the
line, so it requires that it be addressed (with the @{card} command) before it responds to
commands. The {card} number in the command must match the card number set up in hardware
on the card with jumpers or DIP switches.

I5 PLC Programs On/Off
Range: 0 .. 3
Default: 0
Units: none

This parameter controls which PLC programs may be enabled. There are two types of PLC programs: the
foreground program (PLC 0) which operates at the end of servo interrupt calculations with a repetition
rate determined by I8 (PLC 0 should be used only for time-critical tasks and should be short); and the
background programs (PLC 1 to PLC 31) which cycle repeatedly in background as time allows. I5
controls these as follows:

Setting Meaning
0 Foreground PLC off; background PLC off
1 Foreground PLC on; background PLC off
2 Foreground PLC off; background PLC on
3 Foreground PLC on; background PLC on

Note that an individual PLC program must be enabled to run -- a proper value of I5 merely permits it to
be run. Any PLC program that exists at power-up or reset is automatically enabled (even if the saved
value of I5 does not permit it to run immediately); also, the ENABLE PLC n command enables the
specified programs. A PLC program is disabled either by the DISABLE PLC n command, or by the
OPEN PLC n command. A CLOSE command does not re-enable the PLC program automatically -- it
must be done explicitly.

I6 Error Reporting Mode
Range: 0 .. 3
Default: 3
Units: none

This parameter reports how PMAC reports errors in command lines. When I6 is set to 0 or 2, PMAC
reports any error only with a <BELL> character. When I6 is 0, the <BELL> character is given for invalid
commands issued both from the host and from PMAC programs (using CMD"{command}"). When I6
is 2, the <BELL> character is given only for invalid commands from the host; there is no response to
invalid commands issued from PMAC programs. (In no mode is there a response to valid commands
issued from PMAC programs.

PMAC Product Guide

I-Variables 99

When I6 is set to 1 or 3, an error number message can be reported along with the <BELL> character. The
message comes in the form of ERRnnn<CR>, where nnn represents the three-digit error number. If I3 is
set to 1 or 3, there is a <LF> character in front of the message.

When I6 is set to 1, the form of the error message is <BELL>{error message}. This setting is the
best for interfacing with host-computer driver routines. When I6 is set to 3, the form of the error message
is <BELL><CR>{error message}. This setting is appropriate for use with the PMAC Executive
Program in terminal mode.

Currently, the following error messages can be reported:

Error Problem Solution
ERR001 Command not allowed during program

execution
(Should halt program execution before issuing
command)

ERR002 Password error (Should enter the proper password)
ERR003 Data error or unrecognized command (Should correct syntax of command)

ERR004 Illegal character: bad value (>127 ASCII) or
serial parity/framing error

(Should correct the character and/or check for
noise on the serial cable)

ERR005 Command not allowed unless buffer is open (Should open a buffer first)

ERR006 No room in buffer for command (Should allow more room for buffer --
DELETE or CLEAR other buffers)

ERR007 Buffer already in use (Should CLOSE currently open buffer first)
ERR008 MACRO Link Error Register X:$0798 holds the error value

ERR009
Program structural error (e.g. ENDIF without
IF) (Should correct structure of program)

ERR010 Both over-travel limits set for a motor in the
C.S. (Should correct or disable limits)

ERR011 Previous move not completed (Should Abort it or allow it to complete)
ERR012 A motor in the coordinate system is open-loop (Should close the loop on the motor)

ERR013 A motor in the coordinate system is not
activated

(Should set Ix00 to 1 or remove motor from
C.S.)

ERR014 No motors in the coordinate system (Should define at least one motor in C.S.)

ERR015 Not pointing to valid program buffer (Should use B command first, or clear out
scrambled buffers)

ERR016
Running improperly structured program (e.g.
missing ENDWHILE) (Should correct structure of program)

ERR017
Motor(s) in C.S. not at halted position to
restart after / or \ command

(Should move motor(s) back to halted position
with J=)

I7 In-Position Number of Cycles
Range: 0 .. 255
Default: 0
Units: Background computation cycles (minus one)

This parameter permits the user to define the number of consecutive scans that PMAC motors must
satisfy all in-position conditions before the motor in-position bit is set true. This ensures that the motor is
truly settled in the end position before executing the next operation, on or off PMAC. The number of
consecutive scans required is equal to I7 + 1.

PMAC scans for the in-position condition of each active motor during the housekeeping part of every
background cycle which occurs between each scan of each enabled uncompiled background PLC (PLC 1-
31). All motors in a coordinate system must have true in-position bits for the coordinate-system in-
position bit to be set true.

 PMAC Product Guide

100 I-Variables

I8 Real Time Interrupt Period
Range: 0 .. 255
Default: 2
Units: Servo Interrupt Cycles

This parameter controls how often certain time-critical tasks, such as PLC 0 and checking for motion
program move planning, are performed. A value of 2 means that they are performed after every third
servo interrupt, 3 means every fourth interrupt, etc. Usually, this can be left at the default value. In some
advanced applications that push PMAC’s speed capabilities, tradeoffs between performance of these tasks
and the calculation time they take may have to be evaluated before setting this parameter.

Note:

A large PLC 0 with a small value of I8 can cause severe problems because PMAC
will attempt to execute the PLC program every I8 cycle. This can starve
background tasks, including communications, background PLCs, and even
updating of the watchdog timer, for time, leading to erratic performance or
possibly even shutdown.

In multiple-card PMAC applications where it is very important that motion programs on the two cards
start as closely together as possible, I8 should be set to 0. In this case, no PLC 0 should be running when
the cards are awaiting a RUN command. At other times I8 may be set greater than 0 and PLC 0 re-
enabled.

I9 Full/Abbreviated Program Listing Form
Range: 0 .. 3
Default: 2
Units: none

Setting Meaning
0 Short form, decimal address I-Variable return
1 Long form, decimal address I-Variable return
2 Short form, hex address I-Variable return
3 Long form, hex address I-Variable return

When this parameter is 0 or 2, programs are sent back in abbreviated form for maximum compactness,
and when I-variable values or M-Variable definitions are requested, only the values or definitions are
returned, not the full statements. When this parameter is 1 or 3, programs are sent back in full form for
maximum readability. Also, I-Variable values and M-Variable definitions are returned as full command
statements, which is useful for archiving and later downloading.

When this parameter is 0 or 1, I-variable values that specify PMAC addresses are returned in decimal
form. When it is 2 or 3, these values are returned in hexadecimal form (with the $ prefix). Any I-
Variable values can be sent to PMAC either in hex or decimal, regardless of the I9 setting. This does not
affect how I-Variable assignment statements inside PMAC motion and PLC programs are reported when
the program is listed.

Example:
With I9=0:
I125 ; Request address I-variable value
49152 ; PMAC reports just value, in decimal
M101-> ; Request M-Variable definition
X:$C001,24,S ; PMAC reports just definition
LIST PROG 1 ; Request listing of program
LIN ; PMAC reports program short form
X10

PMAC Product Guide

I-Variables 101

DWE1000
RET

With I9=1:
I125 ; Request address I-variable value
I125=49152 ; PMAC reports whole statement, in decimal
M101-> ; Request M-Variable definition
M101->X:$C001,24,S ; PMAC reports whole statement
LIST PROG 1 ; Request listing of program
LINEAR ; PMAC reports program long form
X10
DWELL1000
RETURN

With I9=2:
I125 ; Request address I-variable value
$C000 ; PMAC reports just value, in hexadecimal

With I9=3:
I125 ; Request address I-variable value
I125=$C000 ; PMAC reports whole statement, in hexadecimal

I13 Programmed Move Segmentation Time
Range: 0 .. 8,388,607
Default: 0
Units: msec

When greater than zero, this parameter puts PMAC into a mode (segmentation mode) where all LINEAR
and CIRCLE moves are done as a continuous cubic spline in which the move segments are of the time
length specified by the parameter in this variable (this is not the same thing as SPLINE mode moves).
This mode is required for applications using CIRCLE mode moves.

Segmentation mode (I13 greater than 0) is required to support any of the following PMAC features:

• Circular interpolation
• Cutter radius compensation
• / Program stop command
• \ Program hold command
• Rotary buffer blend on-the-fly

If none of these features is required, keep I13 at 0.

Typical values of I13 for segmentation mode are 5 to 10 msec. The smaller the value, the tighter the fit to
the true curve, but the more computation is required for the moves and the less is available for
background tasks. If I13 is set too low, PMAC will not be able to do all of its move calculations in the
time allotted and it will stop the motion program with a run-time error.

Note:

When I13=0, moves are done without this ongoing spline technique and CIRCLE
mode moves are done as LINEAR mode moves.

 PMAC Product Guide

102 I-Variables

I15 Degree/Radian Control for User Trig Functions
Range: 0 .. 1
Default: 0 (degrees)
Units: none

This parameter controls whether the angle values for trigonometric functions in user programs (motion
and PLC) and on-line commands are expressed in degrees (I15=0) or radians (I15=1).

I50 Rapid Move Mode Control
Range: 0 .. 1
Default: 1
Units: none

This parameter determines which variables are used for speed of RAPID mode moves. When I50 is set to
0, the jog parameter for each motor (Ix22) is used. When I50 is set to 1, the maximum velocity parameter
for each motor (Ix16) is used instead. Regardless of the setting of I50, the jog acceleration parameters
Ix19-Ix21 control the acceleration.

I52 \ Program Hold Slew Rate
Range: 0 .. 8,388,607
Default: 37,137
Units: I10 units / segmentation period

This parameter controls the slew rate to a stop on a \ program hold command and the slew rate back up to
speed on a subsequent R command, for all coordinate systems, provided PMAC is in a segmented move
(LINEAR or CIRCLE mode with I13>0). If PMAC is not in a segmented move (I13=0, or other move
mode), the \ command acts just like an H feed hold command, with Ix95 controlling the slew rate.

The units of I52 are the units of I10 (1/8,388,608 msec) per segmentation period (I13 msec). To calculate
how long it takes to stop on a \ command and to restart on the next R command, use the formula

T (msec) = I10 * I13 / I52

To calculate the value of I52 for a given start/stop time, use the formula

I52 = I10 * I13 / T (msec)

Example:
To execute a full stop in one second with the default servo update time (I10 = 3,713,707) and a move
segmentation time of 10 msec, I52 should set to 3,713,707 * 10 / 1000 = 37,137.

I53 Program Step Mode Control
Range: 0 .. 1
Default: 0
Units: none

This parameter controls the action of a STEP (S) command in any coordinate system on PMAC. At the
default I53 value of zero, a STEP command causes program execution through the next move, DELAY, or
DWELL command in the program, even if this takes multiple program lines.

When I53 is set to 1, a STEP command causes program execution of only a single program line, even if
there is no move or DWELL command on that line. If there is more than one DWELL or DELAY command
on a program line, a single STEP command will execute only one of the DWELL or DELAY commands.

Regardless of the setting of I53, if program execution on a Step command encounters a BLOCKSTART
statement in the program, execution will continue until a BLOCKSTOP statement is encountered.

PMAC Product Guide

I-Variables 103

Motor Definition I-Variables
Ix00 Motor x Activate
Range: 0 .. 1
Default: I100=1; I200 .. I800=0
Units: none

This parameter determines whether the motor is de-activated (=0) or activated (=1). If activated, position,
servo, and trajectory calculations are done for the motor. An activated motor may be enabled -- either in
open or closed loop -- or "disabled" (killed), depending on commands or events.

If Ix00 is 0, not even the position calculations for that motor are done, so a P command would not reflect
position changes. Any PMAC motor not used should be de-activated, so PMAC does not waste time
doing calculations for that motor. If fewer motors are activated, the faster the servo update time will be.

Ix01 Motor x PMAC-Commutation Enable
Range: 0 .. 1
Default: 0
Units: none

This parameter determines whether PMAC will perform commutation calculations for the motor and
provide two analog outputs (Ix01=1), or not perform commutation and provide only one analog output
(Ix01=0). If a multi-phase motor is used, but is commutated in the amplifier, Ix01 should be set to 0.

Ix02 Motor x Command Output (DAC) Address
Range: Extended legal PMAC X and Y addresses
Default:

Motor I-Variable Hex Decimal DAC
Motor 1 I102 $C003 49155 (=DAC1)
Motor 2 I202 $C002 49154 (=DAC2)
Motor 3 I302 $C00B 49163 (=DAC3)
Motor 4 I402 $C00A 49162 (=DAC4)

Units: Extended legal PMAC X and Y addresses

This parameter tells the PMAC where (what address) to put the output command for motor x. The
address may be specified as either a decimal or hexadecimal value. Usually, the output is directed
towards a DAC register.

Non-PMAC-Commutated Motors: If PMAC is not performing the commutation for motor x, Ix02
should point directly to the DAC register in the DSP-GATE. Typically DACx is used for motor x, but
this is not required. The addresses of DAC1 – DAC4 are given in the default table above.

Extended Addressing: The destination address of the output command occupies bits 0 to 15 of Ix02
(range $0000 to $FFFF, or 0 to 65535). With bit 16 equal to zero -- the normal case -- the output is
signed: a negative output for a negative value, and a positive output for a positive value. Setting bit 16 to
1 provides a couple of interesting output options, as explained below. In the extended version, it is
obviously easier to specify this parameter in hexadecimal form.

Note:

With I9 at 2 or 3, the value of this variable will be reported back to the host in
hexadecimal form.

 PMAC Product Guide

104 I-Variables

Magnitude and Direction Output: However, if bit 16 of Ix02 -- value 65536 -- equals 1, and Ix01=0
(no PMAC commutation), then the output is the absolute value (magnitude) of what is calculated, and the
sign (direction) bit is output on the AENAn/DIRn line of the set of flags pointed to by Ix25 (polarity is
determined by jumper E17). In this case, bit 16 of Ix25 should be set also to 1 to disable the amplifier-
enable function for that line.

This magnitude-and-direction mode is suited for driving servo amplifiers that expect this type of input
and for driving voltage-to-frequency (V/F) converters, such as PMAC’s ACC-8D Option 2 board for
running stepper motor drivers. For example, if using PMAC and an ACC-8D Option 2 to run a four-axis
stepper systems, set up the variables in the following way:

I102=$1C003 I125=$1C000
I202=$1C002 I225=$1C004
I302=$1C00B I325=$1C008
I402=$1C00A I425=$1C00C

Direct Micro Step Output: If bit 16 of Ix02 -- value 65536 -- equals 1, and Ix01=1 (PMAC
commutation), then the output is set up for direct micro stepping phase control using PMAC’s
commutation algorithms. Just as in the closed-loop commutation case (see above), bits 0-15 should point
to the low address of an adjacent pair of DACs.

X-Register Output: If bit 19 of Ix02 is set to 1, the command outputs are written to the X-registers of
the specified address instead of the Y-registers. If bit 19 is at the default of 0, the command outputs are
written to the normal Y-registers. Writing to X-registers has two main uses. First, some MACRO nodes
are in X-registers. Second, for cascaded loops, the output of one loop can become the input to another
loop, and master or feedback inputs are expected in X-registers.

Ix03 Motor x Position Loop Feedback Address
Range: Extended legal PMAC X addresses
Default:

Variable Hex Decimal Encoder
I103 $0720 (1824) (=converted ENC1)
I203 $0721 (1825) (=converted ENC2)
I303 $0722 (1826) (=converted ENC3)
I403 $0723 (1827) (=converted ENC4)

Units: Extended legal PMAC X addresses

This parameter tells the PMAC where to look for its feedback to close the position loop for motor x.
Usually it points to an entry in the Encoder Conversion Table where the values from the encoder counter
registers have been processed at the beginning of each servo cycle (possibly to include sub-count data).
This table starts at address $0720 (1824 decimal). It is shipped from the factory configured as shown in
the default table above.

For a motor with dual feedback (motor and load), use Ix03 to point to the encoder on the load and Ix04 to
point to the encoder on the motor.

If the position loop feedback device is the same device as is used for commutation (with PMAC doing the
commutation), then it must also be specified for commutation with Ix83. However, Ix83 should specify
the address of the encoder counter itself, not the converted data of the table.

PMAC Product Guide

I-Variables 105

Hardware Home Position Capture: The source address of the position information occupies bits 0 to
15 of Ix03 (range $0000 to $FFFF, or 0 to 65535). With bit 16 equal to zero -- the normal case -- position
capture on homing is done with the hardware capture register associated with the flag inputs pointed to by
Ix25. In this case, it is important to match the encoder number, the address pointed to with Ix03, with the
flag number, the address pointed to with Ix03 (e.g. ENC1 -- CHA1 & CHB1 -- with HMFL1 and LIM1).

Software Home Position Capture: If bit 16 (value 65536) is set to one, the position capture on homing
is done through software, and the position source does not have to match the input flag source. This is
important particularly for parallel-data position feedback, such as from a laser interferometer (which is
incremental data and requires homing). For example, if motor #1 used parallel feedback from a laser
interferometer processed as the first (triple) entry in the conversion table, the key I-Variables would be:

I103=$10722 I125=$C000
This would permit homing on interferometer data with HMFL1 triggering.

Note:

In the extended version, it is easier to specify this parameter in hexadecimal form.
With I9 at 2 or 3, the value of this variable will be reported back to the host in
hexadecimal form.

Capture on Following Error: If bit 17 of Ix03 is set to 1, then the trigger for position capture of this
motor is a true state on the warning following error status bit for the motor. If bit 17 is at the default of 0,
the trigger for position capture is the capture flag of the flag registers as set by Ix25. The trigger is used
in two types of moves: homing search moves and programmed move-until-triggers. If bit 17 is set to 1,
the triggered position must be software captured, so bit 16 must also be set to 1 to specify software
captured bit position.

Ix04 Motor x Velocity Loop Feedback Address
Range: Legal PMAC X addresses
Default: Same as Ix03
Units: Legal PMAC X addresses

This parameter holds the address of the position feedback device that PMAC uses for its velocity-loop
feedback information. For a motor with only a single feedback device (the usual case), this must be the
same as Ix03. For a motor with dual feedback (motor and load), use Ix04 to point to the encoder on the
motor, and Ix03 to point to the encoder on the load.

If the velocity-loop feedback device is the same device as is used for commutation (if PMAC is doing the
commutation), then both Ix04 and Ix83 (commutation feedback address) must reference the same device.
However, Ix04 typically points to the converted data -- a register in the Encoder Conversion table -- while
Ix83 must point directly to the DSPGATE encoder register.

The instructions for setting this parameter are identical to those for Ix03, except that there are no address
extension bits.

Note:
When planning which channels to use when connecting the position and velocity
encoders, remember that the channel pointed to by Ix25 is used for the Overtravel,
Amplifier Fault, and Home Flag inputs.

 PMAC Product Guide

106 I-Variables

Ix05 Motor x Master (Handwheel) Position Address
Range: Legal PMAC X addresses
Default: $073F (1855) (= zero register at end of conversion table)
Units: Legal PMAC X addresses

This parameter tells the PMAC where to look for the position of the master, or handwheel encoder for
motor x. Usually this is an entry in the Encoder Conversion Table that holds processed information from
an encoder channel. The instructions for setting this parameter are identical to those for Ix03, except the
extended bits mean different things. The default value permits handwheel input from the JPAN connector
(jumpered into the ENC2 counter with E22 and E23).

Following Modes: The source address of the position information occupies bits 0 to 15 of Ix05 (range
$0000 to $FFFF, or 0 to 65535). With bit 16 equal to zero -- the normal case -- position following is done
with the actual position reported for the motor reflecting the change due to the following. With bit 16 --
value 65536 -- equal to one, the actual position reported for the motor does not reflect the change due to
the following (offset mode). This mode can be useful for part offsets, and for superimposing programmed
and following moves. For example, to have motor #1 following encoder 2 in offset mode, I105 should be
set to $10721.

In the extended version, it is obviously easier to specify this parameter in hexadecimal form. With I9 at 2
or 3, the value of this variable will be reported back to the host in hexadecimal form.

Note:
It is important not to have the same source be both the master and the feedback for
an individual motor. If this is the case, with Ix06=1 to enable following, the motor
will run away (it is like a puppy chasing its tail -- it cannot catch up to its desired
position because its desired position keeps moving ahead of it). This case can
easily occur for motor 2 with the default values of I203 and I205 specifying the
same address.

To ensure that following cannot occur by accident, change Ix05 so it points to a register that cannot
change. This way, even if the following function gets turned on, for instance by the motor selector inputs
on the JPAN connector, no following can occur. The best registers to use for this purpose are the unused
ones at the end of the conversion table. With the default table setup, choose any register between $072A
and $073F (1834 to 1855 decimal). If extending the table, choose a register between the end of the table
and $073F.

Ix06 Motor x Master (Handwheel) Following Enable
Range: 0 .. 1
Default: 0
Units: none

This parameter disables or enables motor x’s position following function. A value of 0 means disabled; a
value of 1 means enabled. Following mode is specified by high bits of Ix05.

This parameter can be changed on-line through hardware inputs on the JPAN connector. The FPDn/
motor/coordinate-system select lines (low-true BCD-coded) can turn Ix06 on and off. On power-up or
reset, if I2 was saved as zero, Ix06 for the selected motor is set to one and Ix06 for all other motors is set
to zero regardless of the values that were saved. When the select switch is changed, Ix06 for the de-
selected motor is set to zero and Ix06 for the selected motor is set to 1.

PMAC Product Guide

I-Variables 107

Ix07 Motor x Master (Handwheel) Scale Factor
Range: 8,388,608 .. 8,388,607
Default: 96
Units: none

This parameter controls with what scaling the master (handwheel) encoder gets extended into the full-
length register. In combination with Ix08, it also controls the following ratio of motor x (delta-motor-x =
[Ix07/Ix08] * delta-handwheel-x) for position following (electronic gearing). For following, Ix07 and
Ix08 can be thought of as the number of teeth on meshing gears in a mechanical coupling.

Ix07 can be changed on the fly to permit real-time changing of the following ratio, but Ix08 may not.

Ix08 Motor x Position Scale Factor
Range: 0 .. 8,388,607
Default: 96
Units: none

This parameter controls how the position encoder counter gets extended into the full-length register. For
most purposes, this is transparent and does not need to be changed from the default.

There are two reasons to change this from the default value. First, because it is involved in the gear ratio
of the position following function -- the ratio is Ix07/Ix08 -- this might be changed (usually raised) to get
a more precise ratio.

The second reason to change this parameter (usually lowering it) is to prevent internal saturation at very
high gains or count rates (velocity). PMAC’s filter will saturate when the velocity in counts/sec
multiplied by Ix08 exceeds 768M (805,306,368). This only happens in rare applications -- the count rate
must exceed 8.3 million counts per second before the default value of Ix08 gives a problem.

When changing this parameter, make sure the motor is killed (disabled). Otherwise, a sudden jump will
occur, because the internal position registers will have changed. This means that this parameter should
not be changed in the middle of an application. If a real-time change in the position-following gear ratio
is desired, Ix07 should be changed.

In most practical cases, Ix08 should not be set above 1000 because higher values can make the servo filter
saturate too easily. If Ix08 is changed, Ix30 should be changed inversely to keep the same servo
performance (e.g. if Ix08 is doubled, Ix30 should be halved).

Ix09 Motor x Velocity Loop Scale Factor
Range: 0 .. 8,388,607
Default: 96
Units: none

This parameter controls how the encoder counter used to close the velocity servo loop gets extended into
the full-length register. For most purposes, this is transparent and does not need to be changed from the
default. This parameter should not be changed in the middle of an application, because it scales many
internal values. If the same sensor is used to close both the position and velocity loops (Ix03=Ix04), Ix09
should be set equal to Ix08.

If different sensors are used, Ix09 should be set such that the ratio of Ix09 to Ix08 is inversely
proportional to the ratio of the velocity sensor resolution (at the load) to the position sensor resolution.

 PMAC Product Guide

108 I-Variables

Example:
If a 5000 line/inch (20,000 cts/in) linear encoder is used for position feedback, and a 500 line/rev (2000
cts/rev) rotary encoder is used for velocity loop feedback, and there is a 5-pitch screw, the effective
resolution of the velocity encoder is 10,000 cts/in (2000x5), half of the position sensor resolution, so Ix09
should be set to twice Ix08.

If the value computed this way for Ix09 does not come to an integer, use the nearest integer value.

Motor Safety I-Variables
Ix11 Motor x Fatal (Shutdown) Following Error Limit
Range: 0 .. 8,388,607
Default: 32000 (2000 counts)
Units: 1/16 Count

This parameter sets the magnitude of the following error for motor x at which operation will shut down.
When the magnitude of the following error exceeds Ix11, motor x is disabled (killed). If the motor’s
coordinate system is executing a program at the time, the program is aborted. It is optional whether other
PMAC motors are disabled when this motor exceeds its following error limit; bits 21 and 22 of Ix25
control what happens to the other motor (the default is that all PMAC motors are disabled).

A status bit for the motor, and one for the coordinate system (if the motor is in one) are set. If this
coordinate system is hardware-selected on JPAN (with I2=0), or software-addressed by the host (with
I2=1), the ERLD/ output on JPAN, and the EROR input to the interrupt controller (except for PMAC-
VME) are triggered.

Setting Ix11 to zero disables the fatal following error limit for the motor. This may be desirable during
initial development work, but not in an actual application. A fatal following error limit is an important
protection against various types of faults, such as loss of feedback that cannot be detected directly and
that can cause severe damage to people and equipment.

Note:

The units of Ix11 are 1/16 of a count. Therefore, this parameter must hold a value
16 times larger than the number of counts at which the limit will occur. For
example, if the limit is to be 1000 counts, Ix11 should be set to 16,000.

Ix12 Motor x Warning Following Error Limit
Range: 0 .. 8,388,607
Default: 16000 (1000 counts)
Units: 1/16 Counts

This parameter sets the magnitude of the following error for motor x at which a warning flag goes true. If
this limit is exceeded, status bits are set for the motor and the motor’s coordinate system (if any). The
coordinate system status bit is the logical OR of the status bits of all the motors in the coordinate system.

Setting this parameter to zero disables the warning following error limit function. If this parameter is set
greater than the fatal following error limit (Ix11), the warning status bit will never go true because the
fatal limit will disable the motor first.

If bit 17 of Ix03 is set to 1, the motor can be triggered for homing search moves, jog-until-trigger moves,
and motion program move-until-trigger moves when the following error exceeds Ix12. This is known as
torque-mode triggering because the trigger will occur at a torque level corresponding to the Ix12 limit.

PMAC Product Guide

I-Variables 109

At any given time, one coordinate system’s status bit can be output to several places; which system
depends on what coordinate system is hardware-selected on the panel input port if I2=0, or what
coordinate system is software-addressed from the host (&n) if I2=1. The outputs that work in this way
are F1LD/ (pin 23 on connector J2), F1ER (line IR3 into the programmable interrupt controller (PIC) on
PMAC-PC, line IR6 into the PIC on PMAC-STD) and, if E28 connects pins 1 and 2, FEFCO/ (on the
JMACH connectors).

Note:

The units of Ix12 are 1/16 of a count. Therefore, this parameter must hold a value
16 times larger than the number of counts at which the limit will occur. For
example, if the limit is to be 1000 counts, Ix12 should be set to 16,000.

Ix13 Motor x Positive Software Position Limit
Range: ± 247
Default: 0
Units: Encoder Counts

This parameter sets the position for motor x which if exceeded in the positive direction causes a
deceleration to a stop (controlled by Ix15) and allows no further positive position increments or positive
output commands as long as the limit is exceeded. If this value is set to zero, there is no positive software
limit (to set 0 as a limit, use 1). This limit is de-activated automatically during homing search moves,
until the home trigger is found. It is active during the post-trigger move.

Starting in firmware 1.15, bit 17 of Ix25 does not de-activate the software limits. Permanent de-activation
is done by setting the value of the software limit to zero.

This limit is referenced to the most recent power-up zero position or homing move zero position. The
physical position at which this limit occurs is not affected by axis offset commands (e.g. PSET, X=),
although these commands will change the reported position value at which the limit occurs.

Ix14 Motor x Negative Software Position Limit
Range: ± 247
Default: 0 (Disabled)
Units: Encoder Counts

This parameter sets the position for motor x which if exceeded in the negative direction causes a
deceleration to a stop (controlled by Ix15) and allows no further negative position increments or negative
output commands as long as the limit is exceeded. If this value is set to zero, there is no negative
software limit (to set 0 as a limit, use -1). This limit is de-activated automatically during homing search
moves, until the trigger is found. It is active during the post-trigger move.

Starting in firmware 1.15, bit 17 of Ix25 does not de-activate the software limits. Permanent de-activation
is done by setting the value of the software limit to zero.

This limit is referenced to the most recent power-up zero position or homing move zero position. The
physical position at which this limit occurs is not affected by axis offset commands (e.g. PSET, X=),
although these commands will change the reported position value at which the limit occurs.

 PMAC Product Guide

110 I-Variables

Ix15 Motor x Deceleration Rate on Position Limit or Abort
Range: Positive floating point
Default: 0.25
Units: Counts/msec2

This parameter sets the rate of deceleration that motor x will use if it exceeds a hardware or software
limit, or has its motion aborted by command (A or <CONTROL-A>). Usually, this value should be set
to a value near the maximum physical capability of the motor. It is not a good idea to set this value past
the capability of the motor because doing so increases the likelihood of exceeding the following error
limit, which stops the braking action and could allow the axis to coast into a hard stop.

Note:

Do not set this parameter to zero or the motor will continue indefinitely after an
abort or limit.

Example:
If the motor had 125 encoder lines (500 counts) per millimeter and it should decelerate at 4000 mm/sec2,
set Ix15 to 4000 mm/sec2 *500 cts/mm * sec2/1,000,000 msec2 = 2 cts/msec2.

Ix16 Motor x Maximum Permitted Motor Program Velocity
Range: Positive floating point
Default: 32.0
Units: Counts/msec

This parameter sets a limit to the allowed velocity for LINEAR mode programmed moves for motor x,
provided I13 equals zero (no move segmentation). If a blended move command in a motion program
requests a higher velocity of this motor, all motors in the coordinate system are slowed down
proportionately so that motor x will not exceed this parameter, yet the path will not be changed. This
limit does not affect transition-point, circular, or splined moves. The calculation does not take into
account any feedrate override (% value other than 100).

Note:
If PMAC’s circular interpolation function is used at all, then I13 must be greater
than zero and Ix16 will not be active as a velocity limit.

This parameter also sets the speed of a programmed RAPID mode move for the motor, provided that
variable I50 is set to 1 (if I50 is set to 0, jog speed parameter Ix22 is used instead). This happens
regardless of the setting of I13.

Ix17 Motor x Maximum Permitted Motor Program Acceleration
Range: Positive floating point
Default: 0.5
Units: counts/msec

2

This parameter sets a limit to the allowed acceleration in LINEAR-mode blended programmed moves for
motor x, provided I13 equals zero (no move segmentation). If a LINEAR move command in a motion
program requests a higher acceleration of this motor given its TA and TS time settings, the acceleration
for all motors in the coordinate system is stretched out proportionately so that motor x will not exceed this
parameter, yet the path will not be changed.

Because PMAC cannot look ahead through an entire move sequence, it sometimes cannot anticipate
enough to keep acceleration within this limit. Refer to LINEAR-mode trajectories in the Writing a
Motion Program in this manual.

PMAC Product Guide

I-Variables 111

Warning:
Do not set both the TA and TS times to zero, or a division-by-zero error will occur
in the move calculations, possibly causing erratic movement.

It is possible to have this limit govern the acceleration for all LINEAR-mode moves by setting very low
TA and TS times. The minimum acceleration time settings that should be used are TA1 with TS0.

When moves are broken into small pieces and blended together, this limit can affect the velocity, because
it limits the calculated deceleration for each piece, even if that deceleration is never executed, because it
blends into the next piece.

This limit does not affect PVT, CIRCLE, RAPID, or SPLINE moves. The calculation does not take into
account any feedrate override (%value other than 100).

If PMAC’s circular interpolation function is used at all, then I13 must be greater than zero, and Ix17 will
not be active as an acceleration limit.

Example:
Given axis definitions of #1->10000X, #2->10000Y, an Ix17 for each motor of 0.25 and the
following motion program segment:
INC F10 TA200 TS0
X20
Y20

the rate of acceleration from the program at the corner for motor #2 (X) is ((0-10)units/sec * 10000
cts/unit * sec/1000msec) / 200 msec = -0.5 cts/msec2. The acceleration of motor #2 (Y) is +0.5
cts/msec2. Since this is twice the limit, the acceleration will be slowed so that it takes 400 msec.

With the same setup parameters, and the following program segment:
INC F10 TA200 TS0
X20 Y20
X-20 Y20

the rate of acceleration from the program at the corner for motor #1 (X) is ((-7.07-7.07)units/sec * 10000
cts/unit * sec/1000msec) / 200 msec = -0.707 cts/msec2. The acceleration of motor #2 (Y) is 0.0. Since
motor #1 exceeds its limit the acceleration time will be lengthened to 200 * 0.707/0.25 = 707 msec.

Note that in the second case, the acceleration time is made longer (the corner is made larger) for what is
an identically shaped corner (90o). In a contouring XY application, this parameter should not be relied
upon to produce consistently sized corners.

Ix19 Motor x Maximum Permitted Motor Jog/Home Acceleration
Range: Positive floating point
Default: 0.015625
Units: counts/msec

2

This parameter sets a limit to the commanded acceleration magnitude for jog and home moves, and for
RAPID-mode programmed moves of motor x. If the acceleration times in force at the time (Ix20 and
Ix21) request a higher rate of acceleration, this rate of acceleration will be used instead. The calculation
does not take into account any feedrate override (%value other than 100).

Warning:

Do not set both Ix20 and Ix21 to 0, or a division-by-zero error will result in the
move calculations, possibly causing erratic operations.

 PMAC Product Guide

112 I-Variables

Since jogging movesare not coordinated between motors, mostprefer to specify jog acceleration by rate,
not time. To do this, simply set Ix20 and Ix21 low enough that the Ix19 limit is always used. The
minimum acceleration time settings that should be used are Ix20=1 and Ix21=0.

The default limit of 0.015625 counts/msec2 is quite low and probably will limit acceleration to a lower
value than is desired in most systems; most will eventually raise this limit. This low default was used for
safety reasons.

Example:

With Ix20 (accel time) at 100 msec, Ix21 (S-curve time) at 0, and Ix22 (jog speed) at 50 counts/msec, a
jog command from stop would request an acceleration of (50 cts/msec) / 100 msec, or 0.5 cts/msec2. If
Ix19 were set to 0.25, the acceleration would be done in 200 msec, not 100 msec.

With the same parameters in force, an on-the-fly reversal from positive to negative jog would request an
acceleration of (50-(-50) cts/msec) / 100 msec, or 1.0 cts/msec2. The limit would extend this acceleration
period by a factor of 4, to 400 msec.

Motor Movement I-Variables
Ix20 Motor x Jog/Home Acceleration Time
Range: 0 .. 8,388,607
Default: 0 (so Ix21 controls)
Units: msec

This parameter establishes the time spent in acceleration in a jogging, homing, or programmed RAPID -
mode move (starting, stopping, and changing speeds). However, if Ix21 (jog/home S-curve time) is
greater than half this parameter, the total time spent in acceleration will be two times Ix21. Therefore, if
Ix20 is set to 0, Ix21 alone controls the acceleration time in pure S-curve form. In addition, if the
maximum acceleration rate set by these times exceeds what is permitted for the motor (Ix19), the time
will be increased so that Ix19 is not exceeded.

Warning:
Do not set both Ix20 and Ix21 to 0 simultaneously, even if relying on Ix19 to limit
the acceleration or a division-by-zero error will occur in the jog move calculations,
possibly resulting in erratic motion.

A change in this parameter will not take effect until the next move command. For instance, for a different
deceleration time in a jog move, specify the acceleration time, command the jog, change the deceleration
time, then command the jog move again (e.g. J=), or at least the end of the jog (J/).

Ix21 Motor x Jog/Home S-Curve Time
Range: 0 .. 8,388,607
Default: 50
Units: msec

This parameter establishes the time spent in each half of the S for S-curve acceleration in a jogging,
homing, or RAPID-mode move (starting, stopping, and changing speeds). If this parameter is more than
half of Ix20, the total acceleration time will be two times Ix21, and the acceleration time will be pure S-
curve (no constant acceleration portion). If the maximum acceleration rate set by Ix20 and Ix21 exceeds
what is permitted for the motor (Ix19), the time will be increased so that Ix19 is not exceeded.

PMAC Product Guide

I-Variables 113

Warning:
Do not set both Ix20 and Ix21 to 0 simultaneously, even relying on Ix19 to limit
the acceleration or a division-by-zero error will occur in the jog move calculations,
possibly resulting in erratic motion.

A change in this parameter will not take effect until the next move command. For instance, if a different
deceleration time is needed from the acceleration time in a jog move, specify the acceleration time,
command the jog, change the deceleration time, then command the jog move again (e.g. J=), or at least
the end of the jog (J/).

Ix22 Motor x Jog Speed
Range: Positive floating point
Default: 32.0
Units: Counts / msec

This parameter establishes the commanded speed of a jog move or a programmed RAPID-mode move (if
I50=0) for motor x. Direction of the jog move is controlled by the jog command.

A change in this parameter will not take effect until the next move command. For instance, if you wanted
to change the jog speed on the fly, start the jog move, change this parameter, then issue a new jog
command.

Ix23 Motor x Homing Speed and Direction
Range: Floating point
Default: 32.0
Units: Counts / msec

This parameter establishes the commanded speed and direction of a homing-search move for motor x.
Changing the sign reverses the direction of the homing move -- a negative value specifies a home search
in the negative direction; a positive value specifies the positive direction.

Ix25 Motor x Limit/Home Flag/Amp Flag Address
Range: Extended legal PMAC X addresses
Default:

Variable Hex Decimal Limit and Flag Set
I125 $C000 (49152) (LIM1, HMFL1…)
I225 $C004 (49156) (LIM2, HMFL2…)
I325 $C008 (49160) (LIM3, HMFL3…)
I425 $C00C (49164) (LIM4, HMFL4…)

Units: Extended legal PMAC X addresses

This parameter tells PMAC what set of flags it will look to for motor x’s overtravel limit switches, home
flag, amplifier-fault flag, amplifier-enable output, and index channel. Typically, these are the flags
associated with an encoder input; specifically, those of the position feedback encoder for the motor. If
dual-loop feedback is used (Ix03 and Ix04 are different) Ix25 should be set to match the position-loop
encoder, not the velocity-loop.

Note:

To use PMAC’s Hardware Position Capture for homing search moves, the channel
number of the flags specified by Ix25 must match the channel number of the
encoder specified by Ix03 for position-loop feedback.

 PMAC Product Guide

114 I-Variables

The overtravel-limit inputs specified by this parameter must be held low in order for motor x to be able to
command movement. The polarity of the amplifier-fault input is determined by a high-order bit of this
parameter (see below). The polarity of the home-flag input is determined by Encoder/Flag I-Variables 2
and 3 for the specified encoder. The polarity of the amplifier-enable output is determined by Jumper E17.

Extended Addressing: The source address of the flag information occupies bits 0 to 15 of Ix25 (range
$0000 to $FFFF, or 0 to 65535). If this is all that is specified -- that is, all higher bits are zero -- then all
of the flags are used, and used in the normal mode (low-true FAULT, disabling all motors). If higher bits
are set to one, some of the flags are not used, or used in an alternate manner, as documented below.

In the extended versions, it is easier to specify this parameter in hexadecimal form. With I9 at 2 or 3, the
value of this variable will be reported back to the host in hexadecimal form.

5
0 1 0 1

2
0 0 01

C
01 01

0
0 0

0
0 0

4
0 00 0 0

Hex($)

Bin

Modes PMAC address of flags

=0 Use amplifier enable function
=1 Do not use amplifier enable function
=0 Enable position limits
=1 Disable position limits

=0 Enable amplifier fault input
=1 Disable amplifier fault input

=00 Kill all PMAC motors on fault or F.E.
=01 Kill all C.S. motors on fault or F.E.
=1x Kill this motor only on fault or F.E.

=0 Low true fault input
=1 High true fault input

Ix25 - Motor x Flag Address and Modes

0 0 1

Amplifier Enable Use Bit: With bit 16 equal to zero -- the normal case -- the AENAn/DIRn output is
used as an amplifier-enable line: off when the motor is killed, on when it is enabled. Voltage polarity is
determined by jumper(s) E17.

If bit 16 (value $10000, or 65536) is set to one (e.g. I125=$1C000), this output is not used as an
amplifier-enable line. This permits use of the line as a direction bit for applications requiring magnitude-
and direction outputs, such as driving steppers through voltage-to-frequency converters. (Setting bit 16 of
Ix02 to 1 enables use of this output as a direction bit.) General-purpose use of this output is also possible
by assigning an M-Variable to it.

Overtravel Limit Use Bit: With bit 17 equal to zero -- the normal case -- the +/-LIMn inputs must be
held low to permit commanded motion in the appropriate direction. If there are not actual (normally
closed or normally conducting) limit switches, the inputs must be hardwired to ground.

PMAC Product Guide

I-Variables 115

Note:
The direction sense of the limit inputs is the opposite of what many people
consider intuitive. That is, the +LIMn input, when taken high (opened), stops
commanded motion in the negative direction; the -LIMn input, when taken high,
stops commanded motion in the positive direction. It is important to confirm the
direction sense of the limit inputs in actual operation.

If bit 17 (value $20000, or 131072) is set to one (e.g. I125=$2C000), motor x does not use these inputs as
overtravel limits. This can be done temporarily, as when using a limit as a homing flag. If the limit
function is not used at all, these inputs can be used as general-purpose inputs by assigning M-Variables to
them.

Starting in firmware 1.15, bit 17 of Ix25 does not affect the software overtravel limits. To activate the
software overtravel limits, set the value of Ix13 and/or Ix14 to a non-zero value. To de-activate, set their
values to zero.

Amplifier Fault Use Bit: If bit 20 of Ix25 is 0, the amplifier-fault input function through the FAULTn
input is enabled. If bit 20 (value $100000, or 1,048,576) is 1 (e.g. I125=$10C000), this function is
disabled. General-purpose use of this input is then possible by assigning an M-Variable to the input.

Action-on-Fault Bits: Bits 21 (value $200000, or 2,097,152) and 22 (value $400000, or 4,194,344) of
Ix25 control what action is taken on an amplifier fault for the motor, or on exceeding the fatal following
error limit (Ix11) for the motor:

Bit 22 Bit 21 Function
Bit 22=0 Bit 21=0 Kill all PMAC motors
Bit 22=0 Bit 21=1 Kill all motors in same coordinate system
Bit 22=1 Bit 21=0 Kill only this motor
Bit 22=1 Bit 21=1 Kill only this motor

Regardless of the setting of these bits, a program running in the coordinate system of the offending motor
will be halted on an amplifier fault or the exceeding of a fatal following error limit.

Amplifier-Fault Polarity Bit: Bit 23 (value 8,388,608) of Ix25 controls the polarity of the amplifier
fault input. A zero in this bit means a low-true input (low means fault); a one means high true (high
means fault). The input is pulled high internally, so if no line is attached to the input, and bit 20 of Ix25 is
zero (enabling the fault function), bit 23 of Ix25 must be zero to permit operation of the motor.

First Hex Digit: In the hexadecimal form, bits 20 to 23 combine to form a single hexadecimal digit. For
reference, the possible values and their meanings are:

Hex Digit Function
$0: Low-true amp fault enabled; all motors killed on fault or excess following error (default)
$1: Amp fault disabled; all motors killed on excess following error
$2: Low-true amp fault enabled: coordinate system motors killed on fault or excess following

error
$3: Amp fault disabled; coordinate system motors killed on excess following error
$4: Low-true amp fault enabled; only this motor killed on fault or excess following error
$5: Amp fault disabled; only this motor killed on excess following error
$6: Low-true amp fault enabled; only this motor killed on fault or excess following error
$7: Amp fault disabled; only this motor killed on excess following error
$8: High-true amp fault enabled; all motors killed on fault or excess following error (default)
$9: Amp fault disabled; all motors killed on excess following error
$A: High-true amp fault enabled: coordinate system motors killed on fault or excess following

error
$B: Amp fault disabled; coordinate system motors killed on excess following error

 PMAC Product Guide

116 I-Variables

$C: High-true amp fault enabled; only this motor killed on fault or excess following error
$D: Amp fault disabled; only this motor killed on excess following error
$E: High-true amp fault enabled; only this motor killed on fault or excess following error
$F: Amp fault disabled; only this motor killed on excess following error

Examples:
1. Motor 1 using flags 1 with amp-enable output, and low-true amp fault disabling all motors:

I125=$00C000 or I125=$C000
2. Motor 1 using flags 1 with direction output, and low-true amp fault disabling all motors:

I125=$01C000
3. Motor 1 using flags 1 with amp-enable output, and low-true amp fault disabling only coordinate

system motors: I125=$20C000
4. Motor 1 using flags 1 with direction output, and amp-fault disabled, with excess following error

disabling all Coordinate System motors: I125=$31C000
5. Motor 1 using flags 5 with amp-enable output, and high-true amp fault disabling only this motor:

I125=$C0C010

Ix26 Motor x Home Offset
Range: -8,388,608 .. 8,388,607
Default: 0
Units: 1/16 Count
This is the relative position of the end of the homing cycle to the position at which the home trigger was
made. That is, the motor will command a stop at this distance from where it found the home flags and
call this commanded location as motor position zero.

This permits the motor zero position to be at a different location from the home trigger position,
particularly useful when using an overtravel limit as a home flag (offsetting out of the limit before re-
enabling the limit input as a limit). If large enough (greater than 1/2 times home speed times acceleration
time) it permits a homing move without any reversal of direction.

Note:
The units of this parameter are 1/16 of a count, so the value should be 16 times the
number of counts between the trigger position and the home zero position.

Example:
To make motor zero position as 500 counts in the negative direction from the home trigger position, set
Ix26 to -500 * 16 = -8000.
Ix27 Motor x Position Rollover Range
Range: 0 .. 8,388,607
Default: 0
Units: Counts
This parameter permits position rollover on a PMAC rotary axis by telling PMAC how many encoder
counts are in one revolution of the rotary axis. This lets PMAC handle rollover properly. When Ix27 is
greater than zero, and motor x is assigned to a rotary axis (A, B, or C), rollover is active. With rollover
active, for a programmed axis move in Absolute (ABS) mode, the motor will take the shortest path around
the circular range defined by Ix27 to get to the destination point.

Axis moves in Incremental (INC) mode are not affected by rollover. When Ix27 is set to 0, there is no
rollover. Rollover should not be attempted for axes other than A, B, or C. Jog moves are not affected by
rollover. Reported motor position is not affected by rollover. (To obtain motor position information
rolled over to within one motor revolution, use the modulo (remainder) operator, either in PMAC or in the
host computer: e.g. P4=(M462/(I408*32))%I427)

PMAC Product Guide

I-Variables 117

Example:
Motor #4 drives a rotary table with 36,000 counts per revolution. It is defined to the A-axis with #4-
>100A (A is in units of degrees). I427 is set to 36000. With motor #4 at zero counts (A-axis at zero
degrees), an A270 move in a program is executed in Absolute mode. Instead of moving the motor from 0
to 27,000 counts, which it would have done with I427=0, PMAC moves the motor from 0 to -9,000
counts, or -90 degrees, which is equivalent to +270 degrees on the rotary table.

Ix28 Motor x In-position Band
Range: 0 .. 8,388,607
Default: 160 (10 counts)
Units: 1/16 Count

This is the magnitude of the maximum following error at which motor x will be considered in position
when not performing a move. Several things happen when the motor is in-position. First, a status bit in
the motor status word is set. Second, if all other motors in the same coordinate system are also in-
position, a status bit in the coordinate system status word is set. Third, for the hardware-selected (FPD0/-
FPD3/) coordinate system -- if I2=0 -- or for the software addressed (&n) coordinate system -- if I2=1 --
outputs to the control panel port and to the interrupt controller are set.

Technically, five conditions must be met for a motor to be considered in-position:

1. The motor must be in closed-loop control.
2. The desired velocity must be zero.
3. The magnitude of the following error must be less than this parameter.
4. The move timer must not be active.
5. The above four conditions must all be true for (I7+1) consecutive scans.

The move timer is active during any programmed or non-programmed move including DWELLs and
DELAYs in a program – to make this bit to come true during a program, program an indefinite wait
between some moves by keeping the program trapped in a WHILE loop that has no moves or DWELLs.
More sophisticated in-position functions (for instance, ones that require several consecutive scans within
the band) can be implemented using PLC programs. See the program examples section.

Note:

The units of this parameter are 1/16 of a count, so the value should be 16 times the
number of counts in the in-position band.

Example:
M140->Y:$0814,0 ; Motor 1 in-position bit
...
WHILE (M140=0) WAIT ; Delay indefinitely until in-position is true
M1=1 ; Set output once in-position

Ix29 Motor x Output - or First Phase - DAC Bias
Range: -32,768 .. 32,767
Default: 0
Units: DAC Bits

This parameter is the digital equivalent of an offset potentiometer on the analog output. It can be used to
correct for differences in zero-reference between PMAC’s analog output and the amplifier’s analog input.
This offset is active in both closed-loop and open-loop modes, even when the motor is killed.

For a motor not commutated by PMAC (Ix01=0), this is the value that is added onto the output of the
servo algorithm or the open loop output value (including the zero output when the motor is killed) before
it is sent to the DAC.

 PMAC Product Guide

118 I-Variables

If the analog output is unidirectional (bit 16 of Ix02 is 1), this bias term is added before the absolute value
function is performed. It is used if there is a directional bias on the motor. In this type of motor, Ix79
(offset after absolute value) is used to control output deadband or dithering.

For a PMAC-commutated motor (Ix01=1), this is the value that is added onto the B-phase output of the
commutation algorithm. This is the DAC with the lower address (higher-numbered, i.e. DAC 2 of a DAC
1 and DAC 2 pair) of the adjacent DAC pair used for commutation. Ix79 is added onto the other phase
output (higher-addressed, lower-numbered DAC) of the commutation algorithm. In addition to the
primary use of compensating for analog offsets, it can be used in certain phasing search or phasing
direction algorithms for permanent-magnet brushless motors because it drives the motor like a stepper
motor.

Ix29 can be used to create a torque offset for a motor not commutated by PMAC. For a motor
commutated by PMAC, use the "Output Offset" register Y:$0045, etc., instead (it is also suitable for a
motor not commutated by PMAC).

Servo Control I-Variables
The servo control variables in the range Ix30-Ix69 have different meanings on a PMAC with the Option 6
Extended Servo Algorithm. For a PMAC with Option 6, refer to the manual for Option 6 for descriptions
of the variables in this range.

Ix30 Motor x PID Proportional Gain
Range: -8,388,608 .. 8,388,607
Default: 2000
Units: (Ix08/219) DAC bits/Encoder count

This term provides a control output proportional to the position error (commanded position minus actual
position) of motor x. It acts effectively as an electronic spring. The higher Ix30 is, the stiffer the spring
is. Too low a value will result in sluggish performance. Too high a value can cause a buzz from constant
over-reaction to errors.

If Ix30 is set to a negative value, this has the effect of inverting the command output polarity for motors
not commutated by PMAC, when compared to a positive value of the same magnitude. This can
eliminate the need to exchange wires to get the desired polarity. On a motor that is commutated by
PMAC, changing the sign of Ix30 has the effect of changing the commutation phase angle by 180o.
Negative values of Ix30 cannot be used with the auto tuning programs in the PMAC Executive program.

Warning:

Changing the sign of Ix30 on a motor that has been closing a stable servo loop will
cause an unstable servo loop, leading to a probable runaway condition.

Usually, this parameter is set initially using the Tuning utility in the PMAC Executive Program. It may
be changed on the fly at any time to create types of adaptive control.

Note:

The default value of 2000 for this parameter is exceedingly weak for most systems
(all but the highest resolution velocity-loop systems), causing sluggish motion
and/or following error failure. Most users will immediately want to raise this
parameter significantly even before starting serious tuning.

If the servo update time is changed, Ix30 will have the same effect for the same numerical value.
However, smaller update times (faster update rates) should permit higher values of Ix30 (stiffer systems)
without instability problems.

PMAC Product Guide

I-Variables 119

Ix31 Motor x PID Derivative Gain
Range: - 8,388,608 .. 8,388,607
Default: 1280
Units: (Ix30*Ix09)/226 DAC bits/(Counts/cycle)

This term subtracts an amount from the control output proportional to the measured velocity of motor x.
It acts effectively as an electronic damper. The higher Ix31 is, the heavier the damping effect is.

If the motor is driving a properly tuned tachometer-loop (velocity) amplifier, the amplifier will provide
sufficient damping, and Ix31 should be set to zero. If the motor is driving a current-loop (torque)
amplifier, or if PMAC is commutating the motor, the amplifier will provide no damping, and Ix31 must
be greater than zero to provide damping for stability.

On a typical system with a current-loop amplifier and PMAC's default servo update time (~440 µsec), an
Ix31 value of 2000 to 3000 will provide a critically damped step response.

If the servo update time is changed, Ix31 must be changed proportionately in the opposite direction to
keep the same damping effect. For instance, if the servo update time is cut in half, from 440 µsec to 220
µsec, Ix31 must be doubled to keep the same effect.

Usually, this parameter is set initially using the Tuning utility in the PMAC Executive Program. It may
be changed on the fly at any time to create types of adaptive control.

Ix32 Motor x PID Velocity Feedforward Gain
Range: 0 .. 8,388,607
Default: 1280
Units: (Ix30*Ix08)/2

26
 DAC bits/(counts/cycle)

This term adds an amount to the control output proportional to the desired velocity of motor x. It is
intended to reduce tracking error due to the damping introduced by Ix31, analog tachometer feedback, or
physical damping effects.

If the motor is driving a current-loop (torque) amplifier, Ix32 will usually be equal to (or slightly greater
than) Ix31 to minimize tracking error. If the motor is driving a tachometer-loop (velocity) amplifier,
typically Ix32 will be substantially greater than Ix31 to minimize tracking error.

If the servo update time is changed, Ix32 must be changed proportionately in the opposite direction to
keep the same effect. For instance, if the servo update time is cut in half, from 440 µsec to 220 µsec, Ix32
must be doubled to keep the same effect.

Usually, this parameter is set initially using the Tuning utility in the PMAC Executive Program. It may
be changed on the fly at any time to create types of adaptive control.

Ix33 Motor x PID Integral Gain
Range: 0 .. 8,388,607
Default: 0
Units: (Ix30*Ix08)/2

42
 DAC bits/(counts*cycles)

This term adds an amount to the control output proportional to the time integral of the position error for
motor x. The magnitude of this integrated error is limited by Ix63. With Ix63 at a value of zero, the
contribution of the integrator to the output is zero, regardless of the value of Ix33.

No further errors are added to the integrator if the output saturates (if output equals Ix69), and, if Ix34=1,
when a move is being commanded (when desired velocity is not zero). In both of these cases, the
contribution of the integrator to the output remains constant.

 PMAC Product Guide

120 I-Variables

If the servo update time is changed, Ix33 must be changed proportionately in the same direction to keep
the same effect. For instance, if the servo update time is cut in half, from 440 µsec to 220 µsec, Ix33
must be cut in half to keep the same effect.

Usually, this parameter is set initially using the Tuning utility in the PMAC Executive Program. It may
be changed on the fly at any time to create types of adaptive control.

Ix34 Motor x PID Integration Mode
Range: 0 .. 1
Default: 1
Units: none

This parameter controls when the position-error integrator is turned on. If it is 1, position error
integration is performed only when PMAC is not commanding a move (when desired velocity is zero). If
it is 0, position error integration is performed all the time.

If Ix34 is 1, it is the input to the integrator that is turned off during a commanded move, which means the
output control effort of the integrator is kept constant during this period (but is generally not zero). This
same action takes place whenever the total control output saturates at the Ix69 value.

Usually, this parameter is set initially using the Tuning utility in the PMAC Executive Program. When
performing the feedforward tuning part of that utility, it is important to set Ix34 to 1 so the dynamic
behavior of the system may be observed without integrator action. Ix34 may be changed on the fly at any
time to create types of adaptive control.

Ix35 Motor x PID Acceleration Feedforward Gain
Range: 0 .. 8,388,607
Default: 0
Units: (Ix30*Ix08)/226 DAC bits/(counts/cycle2)

This term adds an amount to the control output proportional to the desired acceleration for motor x. It is
intended to reduce tracking error due to inertial lag.

If the servo update time is changed, Ix35 must be changed by the inverse square to keep the same effect.
For instance, if the servo update time is cut in half, from 440 µsec to 220 µsec, Ix35 must be quadrupled
to keep the same effect.

Usually, this parameter is set initially using the Tuning utility in the PMAC Executive Program. It may
be changed on the fly at any time to create types of adaptive control.

Ix68 Motor x Friction Feedforward
Range: -32,768 .. 32,767
Default: 0
Units: DAC bits

This parameter adds a bias term to the servo loop output of motor x that is proportional to the sign of the
commanded velocity. That is, if the commanded velocity is positive, Ix68 is added to the output. If the
commanded velocity is negative, Ix68 is subtracted from the output. If the commanded velocity is zero,
no value is added to or subtracted from the output.

This parameter is intended primarily to help overcome errors due to mechanical friction. It can be
thought of as a friction feedforward term. Because it is a feedforward term that does not utilize any
feedback information, it has no direct effect on system stability. It can be used to correct the error
resulting from friction, especially on turnaround, without the time constant and potential stability
problems of integral gain.

PMAC Product Guide

I-Variables 121

If PMAC is commutating this motor, this correction is applied before the commutation algorithm, and so
will affect the magnitude of both analog outputs.

Note:

This direction-sensitive bias term is independent of the constant bias introduced by
Ix29 and/or Ix79.

Example:
Starting with a motor at rest, if Ix68 = 1600, then as soon as a commanded move in the positive direction
is started, a value of +1600 (~0.5V) is added to the servo loop output. As soon as the commanded
velocity goes negative, a value of -1600 is added to the output. When the commanded velocity becomes
zero again, no bias is added to the servo output as a result of this term.

Ix69 Motor x Output Command (DAC) Limit
Range: 0 .. 32,767
Default: 20,480 (~6.25V)
Units: DAC bits

This parameter defines the magnitude of the largest output that can be sent from the control loop. If a
larger value is calculated, it is clipped to this number. The analog outputs on PMAC are 16-bit DACs
which map a numerical range of -32,768 to +32,767 into a voltage range of -10V to +10V relative to
analog ground (AGND).

If using differential outputs (DAC+ and DAC-), the voltage between the two outputs is twice the voltage
between an output and AGND. (To limit the voltage between DAC+ and DAC- to 10V, Ix69 should be
16,384.)

This parameter provides a torque limit in systems with current- loop amplifiers, or a velocity limit with
tachometer-based amplifiers. Note that if this limit kicks in for any amount of time, the following error
will start increasing. When Ix69 is actually limiting the output, the integrator in the PID loop will turn off
for anti-windup protection.

When using PMAC to do internal open-loop micro stepping (using its own commutation algorithms, not
external V/F converters), the servo loop is writing to an internal register, not directly to the DACs. In this
case, more than a +/-32K limit is allowed. The value of Ix69 that should be used for this micro stepping
is 524,287 (219-1).

Ix80 Motor x Power-Up Mode
Range: 0 .. 3
Default: 0
Units: none

This parameter controls the power-up mode for motor x. It controls whether the motor is enabled or
killed on power-up/reset (P/R), and if the motor is commutated by PMAC (Ix01=1) and requires a
phasing search (Ix78=0; Ix81=0), it controls which type of phasing search is done. The possible values of
Ix80, and the effects they have, are:

0 Killed on P/R Two guess phasing search (on $ command only)
1 Enabled on P/R Two guess phasing search (automatically on P/R)
2 Killed on P/R Stepper motor phasing search (on $ command only)
3 Enabled on P/R Stepper motor phasing search (automatically on P/R)

With Ix80=0 or 2, a command must be given to enable the motor. For a PMAC-commutated motor, the $
command must be given to start up the commutation algorithms, performing the phasing search if
necessary, then leaving the motor in closed-loop servo control at zero commanded velocity.

 PMAC Product Guide

122 I-Variables

For non-PMAC-commutated motors, a J/ (jog stop) or $ (motor reset) command (for the motor), an A
(abort) command (for all motors in the coordinate system), or a <CTRL-A> (abort all) command (for all
PMAC motors) must be given to put the motor in closed-loop servo control.

If Ix80 is 1 or 3, the motor is enabled automatically at power-up/reset and put in closed-loop servo control
at zero commanded velocity. If a phasing search is required, it is done automatically during the power-
up/reset cycle.

If Ix80 is 0 or 1 and a phasing search is required, PMAC will use the two-guess phasing search method,
which is very quick and requires little movement, but is not as reliable in the presence of significant
external loads such as friction and gravity.

If Ix80 is 2 or 3 and a phasing search is required, PMAC will use the stepper-motor phasing search
method, which is takes more time and causes more movement, but is more reliable in the presence of
significant external loads.

Warning:

An unreliable phasing search method can lead to a runaway condition. Test your
phasing search method carefully to make sure it works properly under all
conceivable conditions. Make sure your Ix11 fatal following error limit is active
and as tight as possible so the motor will be killed quickly in the event of a serious
phasing search error.

If Ix80 is 1 or 3, and the motor is disabled right after the power-up/reset cycle, the motor is either being
killed by an automatic PMAC safety feature (fatal following error, amplifier fault, or phasing search
error) or by a kill command from a PLC program.

Coordinate System I-Variables
Ix87 Coordinate System x Default Program Acceleration Time
Range: 0 .. 8,388,607
Default: 0 (so Ix88 controls)
Units: msec

This parameter sets the default time for commanded acceleration for programmed blended LINEAR and
CIRCLE mode moves in coordinate system x. It also provides the default segment time for SPLINE
mode moves. The first use of a TA statement in a program overrides this value.

Even though this parameter makes it possible not to specify acceleration time in the motion program, use
TA in the program and not rely on this parameter, unless keeping to a syntax standard that does not
support this (e.g. RS-274 G-Codes). Specifying acceleration time in the program along with speed and
move modes makes it much easier for later debugging.

If the specified S-curve time (see Ix88, below) is greater than half the specified acceleration time, the time
used for commanded acceleration in blended moves will be twice the specified S-curve time.

The acceleration time is also the minimum time for a blended move; if the distance on a feedrate-
specified (F) move is so short that the calculated move time is less than the acceleration time, or the time
of a time-specified (TM) move is less than the acceleration time, the move will be done in the
acceleration time instead. This will slow down the move

The acceleration time will be extended automatically when any motor in the coordinate system is asked to
exceed its maximum acceleration rate (Ix17) for a programmed LINEAR-mode move with I13=0 (no
move segmentation).

PMAC Product Guide

I-Variables 123

Make sure that the specified acceleration time (Ix87 or 2*Ix88) is greater than zero, even if planning to
rely on the maximum acceleration rate parameters. A specified acceleration time of zero will cause a
divide-by-zero error. The minimum specified time should be Ix87=1, Ix88=0.

Ix88 Coordinate System x Default Program S-Curve Time
Range: 0 .. 8,388,607
Default: 50
Units: msec

This parameter set the default time in each half of the S in S-curve acceleration for programmed blended
LINEAR and CIRCLE mode moves in coordinate system x. It does not affect SPLINE, PVT, or RAPID
mode moves. The first use of a TS statement in a program overrides this value.

Even though this parameter makes it possible not to specify acceleration time in the motion program, use
TA in the program and not rely on this parameter, unless keeping to a syntax standard that does not
support this (e.g. RS-274 G-Codes). Specifying acceleration time in the program along with speed and
move modes makes it much easier for later debugging.

If Ix88 is zero, the acceleration is constant throughout the Ix87 time and the velocity profile is
trapezoidal. If Ix88 is greater than zero, the acceleration will start at zero and linearly increase through
Ix88 time, then stay constant (for time TC) until Ix87-Ix88 time, and linearly decrease to zero at Ix87 time
(that is Ix87=2*Ix88 - TC). If Ix88 is equal to Ix87/2, the entire acceleration will be spec in S-curve form
(Ix88 values greater than Ix87/2 override the Ix87 value; total acceleration time will be 2*Ix88).

The acceleration time will be extended automatically when any motor in the coordinate system is asked to
exceed its maximum acceleration rate (Ix17) for a programmed LINEAR mode move with I13=0 (no
move segmentation).

Make sure the specified acceleration time (TA or 2*TS) is greater than zero, even if planning to rely on
the maximum acceleration rate parameters (Ix17). A specified acceleration time of zero will cause a
divide-by-zero error. The minimum specified time should be TA1 TS0.

Ix89 Coordinate System x Default Program Feedrate/Move Time
Range: Positive floating point
Default: 1000.0
Units: (user position units)/(feedrate time units) for feedrate

 msec for move time

This parameter sets the default feedrate (commanded speed) for programmed LINEAR and CIRCLE
mode moves in coordinate system x. The first use of an F or TM statement in a motion program overrides
this value. The velocity units are defined by the position and time units, as defined by axis definition
statements and Ix90. After power-up/reset, the coordinate system is in feedrate mode, not move time
mode.

Do not rely on this parameter but declare the feedrate in the program. This will keep the move parameters
with the move commands lessening the chances of future errors and making debugging easier.

When polled, Ix89 will report the value from the most recently executed F or TM command in that
coordinate system.

 PMAC Product Guide

124 I-Variables

Ix90 Coordinate System x Feedrate Time Units
Range: Positive floating point
Default: 1000.0 (velocity time units are seconds)
Units: msec
This parameter defines the time units used in commanded velocities (feedrates) in motion programs
executed by coordinate system x. Velocity units are comprised of length units divided by time units. The
length units are determined in the axis definition statements for the coordinate system. Ix90 sets the time
units. Ix90 itself has units of milliseconds, so if Ix90 is 60,000, the time units are 60,000 milliseconds, or
minutes. The default value of Ix90 is 1000 msec, specifying velocity time units of seconds.
This affects two types of motion program values: F values (feedrate) for LINEAR- and CIRCLE-mode
moves; and the velocities in the actual move commands for PVT-mode moves.
Example:
If position units have been set as centimeters by the axis definition statements and feedrate values should
be specified in cm/sec, this parameter would be set to 1000.0 (time units = sec).
If position units have been set as degrees by the axis definition statements feedrate values should be
specified in deg/min, this parameter would be set to 60,000.0 (time units = minutes).
If a spindle is rotating at 4800 rpm, with a linear axis specified in inches linear speed should be specified
in inches per spindle revolution, Ix90 would be set to 12.5 ([1 min/4800 rev] * [60,000 msec/ min] = 12.5
msec/rev).
Ix91 Coordinate System x Default Working Program Number
Range: 0 .. 32,767
Default: 0
Units: Motion Program Numbers
This parameter tells PMAC which motion program to run in this coordinate system when commanded to
run from the control-panel input (START/ or STEP/ line taken low). It performs the same function for a
hardware run command as the B command does for a software run command (R). It is intended primarily
for stand-alone PMAC applications. The first use of a B command from a host computer for this
coordinate system overrides this parameter.
Ix92 Coordinate System x Move Blend Disable
Range: 0 .. 1
Default: 0
Units: none
If this parameter is set to 0, programmed blended moves (LINEAR, SPLINE, and CIRCLE-mode) are
blended together with no intervening stop. Upcoming moves are calculated during the current moves. If
this parameter is set to 1, there is a brief stop in between each programmed move (it effectively adds a
DWELL 0 command) during which the next move is calculated. The calculation time for the next move
is determined by I11.
This parameter is acted upon only when the R or S command is given to start program execution. To
change the mode of operation while the program is running, the continuous motion request coordinate
system status bit (bit 4 of X:$0818 etc.) must be changed. The polarity of this bit is opposite that of Ix92.
Ix94 Coordinate System x Time Base Slew Rate (and Limit)
Range: 0 .. 8,388,607
Default: 1644
Units: 2

-23
msec/ servo cycle

This parameter controls the rate of change of the coordinate system’s time base. It effectively works in
two slightly different ways depending on the source of the time base information.

PMAC Product Guide

I-Variables 125

If the source of the time base is the % command register, then Ix94 defines the rate at which the % (actual
time base) value will slew to a newly commanded value. If the rate is too high and the % value is
changed while axes in the coordinate system are moving, there will be a virtual step change in velocity.
For these types of applications, Ix94 is set relatively low (often 1000 to 5000) to provide smooth changes.
The default Ix94 value of 1644 when used on a card set up with the default servo cycle time of 442 µsec,
provides a transition time between %0 and %100 of one second.
If there is a hardware source (as defined by Ix93), the commanded time-base value changes every servo
cycle and the rate of change of the commanded value is limited typically by hardware considerations (e.g.
inertia). In this case, Ix94 effectively defines the maximum rate at which the % value can slew to the new
hardware-determined value and the actual rate of change is determined by the hardware. To keep
synchronous to a hardware input frequency, as in a position-lock cam, Ix94 should be set high enough so
that the limit is never activated. However, following motion can be smoothed significantly with a lower
limit if total synchronicity is not required.
Ix95 Coordinate System x Feed Hold Deceleration Rate
Range: 0 .. 8,388,607
Default: 1644
Units: 2

-23
msec/servo cycle

This parameter controls the rate at which the axes of the coordinate system stop if a feed hold command
(H) is given, and the rate at which they start up again on a succeeding run command (R or S). A feed hold
command is equivalent to a %0 command except that it uses Ix95 for its slew rate instead of Ix94. Having
separate slew parameters for normal time-base control and for feed hold commands allows both
responsive ongoing time-base control (Ix94 relatively high) and well-controlled holds (Ix95 relatively
low).
The default Ix95 value of 1644, when used on a card set up with the default servo cycle time of 442 µsec,
provides a transition time between %100 and %0 (feed hold) of one second.
Ix96 Coordinate System x Circle Error Limit
Range: Positive floating point
Default: 0 (function disabled)
Units: User length units
In a circular arc move, a move distance that is more than twice the specified radius will cause a
computation error because a proper path cannot be found. Sometimes, due to round-off errors, a distance
slightly larger than twice the radius is given (for a half-circle move that this will not create an error
condition.
This parameter is used to set an error limit on the amount so that the move distance is greater than twice
the radius. If the move distance is greater than 2R, but by less than this limit, the move is done in a spiral
fashion to the endpoint, and no error condition is generated. If the distance error is greater than this limit,
a run-time error will be generated and the program will stop. If this variable is set to 0, the error
generation is disabled and any move distance greater than 2R is done in a spiral fashion to the endpoint.
Example:
Given the program segment
INC CIRCLE1 F2
X7.072 Y7.072 R5

Technically, no circular arc path can be found because the distance is SQRT(7.0722+7.0722) = 10.003,
which is greater than twice the radius of 5. However, as long as Ix96 is greater than 0.003, PMAC will
create a near-circular path to the end point.

 PMAC Product Guide

126 I-Variables

Encoder/Flag Setup I-Variables
One PMAC can have up to 16 incremental encoder channels -- four per gate array IC. Each encoder and
its related flags and registers are set up using (up to) five I-Variables. The encoders and their flags are
numbered 1 to 16, matching the numbers of their pinouts (e.g. CHA1, CHB1, and CHC1 belong to
encoder 1.) The encoder I-Variables are assigned to the different encoders as follows:
I900 - I904 -- Encoder 1
I905 - I909 -- Encoder 2
I910 - I914 -- Encoder 3
I915 - I919 -- Encoder 4
 ...
I970 - I974 -- Encoder 15
I975 - I979 -- Encoder 16
An encoder is assigned to a motor for position, velocity (feedback), handwheel (master), or feedpot
(frequency control) by using the appropriate motor I-Variables (see above).
I900, I905, ... I975 Encoder n Decode Control Encoder I-Variable 0
Range: 0 .. 15
Default: 7
Units: none

This parameter controls how the input signal for Encoder n is decoded into counts. As such, this defines
the sign and magnitude of a count. The following settings may be used to decode an input signal.

Value Meaning
0 Pulse and direction CW
1 x1 quadrature decode CW
2 x2 quadrature decode CW
3 x4 quadrature decode CW
4 Pulse and direction CCW
5 x1 quadrature decode CCW
6 x2 quadrature decode CCW
7 x4 quadrature decode CCW

In any of the quadrature decode modes, PMAC is expecting two input waveforms on CHAn and CHBn,
each with approximately 50% duty cycle and approximately one-quarter of a cycle out of phase with each
other. "Times-one" (x1) decode provides one count per cycle; x2 provides two counts per cycle; and x4
provides four counts per cycle. The vast majority of users select x4 decode to get maximum resolution.

The clockwise (CW) and counterclockwise (CCW) options simply control which direction counts up. If
using the wrong direction sense, simply change to the other option (e.g. from 7 to 3 or vice versa).

Warning:
Changing the direction sense of the encoder decode for a motor that is servoing
properly will result in unstable positive feedback and a dangerous runaway
condition in the absence of other changes (for motors not commutated by PMAC
from the same encoder). The output polarity must be changed as well to re-
establish polarity match for stable negative feedback.

In the pulse-and-direction decode modes, PMAC is expecting the pulse train on CHAn, and the direction
(sign) signal on CHBn. If the signal is unidirectional, the CHBn input can be tied high (to +5V) or low
(to GND) or if set up by E18-E21, E24-E27 for single-ended (non-differential) input, left to float high.

Any spare encoder counters may be used as fast and accurate timers by setting this parameter in the 8 to
15 range. In this range, any input signal is ignored. The following settings may be used in timer mode:

PMAC Product Guide

I-Variables 127

Setting Meaning
8 Timer counting up at SCLK/10
9 Timer counting up at SCLK/10

10 Timer counting up at SCLK/5
11 Timer counting up at SCLK/2.5
12 Timer counting down at SCLK/10
13 Timer counting down at SCLK/10
14 Timer counting down at SCLK/5
15 Timer counting down at SCLK/2.5

These timers are particularly useful when the related capture and compare registers are utilized for precise
event marking and control, including triggered time base. The SLCK frequency is determined by the
crystak clock frequency and E34-E38.

I902, I907, ... I977 Encoder n Position Capture Control Encoder I-Variable 2
Range: 0 .. 15
Default: 1
Units: none

This parameter determines which signal or combination of signals (and which polarity) triggers a position
capture of the counter for encoder n. If a flag input (home, limit, or fault) is used, I903 (etc.) determines
which flag. Proper setup of this variable is essential for a successful home search which depends on the
position-capture function. The following settings may be used:

Setting Meaning
0 Software Control
1 Rising edge of CHCn (third channel)
2 Rising edge of Flag n (as set by Flag Select)
3 Rising edge of [CHCn AND Flag n] -- Low true index, high true Flag
4 Software Control
5 Falling edge of CHCn (third channel)
6 Rising edge of Flag n (as set by Flag Select)
7 Rising edge of [CHCn/ AND Flag n] -- Low true index, high true Flag
8 Software Control
9 Rising edge of CHCn (third channel)

10 Falling edge of Flag n (as set by Flag Select)
11 Rising edge of [CHCn AND Flag n/] -- High true index, low true Flag
12 Software Control
13 Falling edge of CHCn (third channel)
14 Falling edge of Flag n (as set by Flag Select)
15 Rising edge of [CHCn/ AND Flag n/] -- Low true index, low true Flag

Note that several of these values are redundant. To do a software-controlled position capture, preset this
parameter to 0 or 8; when the parameter is then changed to 4 or 12, the capture is triggered (this is not of
much practical use, but can be valuable for testing the capture function).

 PMAC Product Guide

128 I-Variables

I903, I908, ... I978 Encoder n Flag Select Control Encoder I-Variable 3
Range: 0 .. 3
Default: 0
Units: none

This parameter determines which of the Flag inputs will be used for position capture (if one is used -- see
I902 etc.):

Setting Meaning
0 HMFLn (Home Flag n)
1 -LIMn (Positive Limit Signal n)
2 +LIMn (Negative Limit Signal n)
3 FAULTn (Amplifier Fault Signal n)

Typically, this parameter is set to zero because in actual use, the +/-LIMn and FAULTn flags create other
effects that usually interfere with what is trying to be accomplished by the position capture. To capture
on the +/-LIMn or FAULTn flags, either disable their normal functions with Ix25 or use a channel n
where none of the flags is used for the normal axis functions.

The direction sense of the limit inputs is the opposite of what many people consider intuitive. That is, the
+LIMn input, when taken high (opened), stops commanded motion in the negative direction; the -LIMn
input, when taken high, stops commanded motion in the positive direction. It is important to confirm the
direction sense of the limit inputs in actual operation.

PMAC Product Guide

Online Commands 129

ONLINE COMMANDS
The PMAC motion controller is rich in features and expansion capabilities. Because this manual
illustrates the implementation of PMAC in a typical application, some of the PMAC advanced online
commands are not described. Further information of all the PMAC online commands can be obtained
from the PMAC Software Reference manual.

<CONTROL-A>
Function: Abort all programs and moves.
Scope: Global
Syntax: ASCII Value 1D; $01

This command aborts all motion programs and stops all non-program moves on the card. It also brings
any disabled or open loop motors to an enabled zero-velocity closed-loop state. Each motor will
decelerate at a rate defined by its own motor I-Variable Ix15. However, a multi-axis system may not stay
on its programmed path during this deceleration.

A <CTRL-A> stop to a program will not be recovered from gracefully because the axes will in general
not stop at a programmed point. The next programmed move will not behave properly unless a PMATCH
command is given or I14 is set to 1 (these cause PMAC to use the aborted position as the move start
position). Alternately, an on-line J= command may be issued to each motor to cause it to move to the
end point that was programmed when the abort occurred. Then the program(s) can be resumed with an R
(run) command.

To stop a motion sequence in a manner that can be recovered from easily, use the Quit (Q or <CTRL-Q>)
or the Hold (H or <CTRL-O>) command.

When PMAC is set up to power on with all motors killed (Ix80 = 0), this command can be used to enable
all of the motors (provided that they are not commutated by PMAC -- in that case, each motor should be
enabled with the $ command).

For multiple cards on a single serial daisy chain, this command affects all cards on the chain, regardless of
the current software addressing.

<CONTROL-B>
Function: Report status word for all motors.
Scope: Global
Syntax: ASCII Value 2D; $02

This command causes PMAC to report the status words for all of the motors to the host in hexadecimal
ASCII form, 12 characters per motor starting with motor #1, with the characters for each motor separated
by spaces. The characters reported for each motor are the same as if the ? command had been issued for
that motor.

The detailed meanings of the individual status bits are shown under the ? command description.

For multiple cards on a single serial daisy chain, this command affects only the card currently addressed
in software (@n).

Example:
<CTRL-B>
812000804001 812000804001 812000A04001 812000B04001 050000000000 050000000000
050000000000 050000000000<CR>

 PMAC Product Guide

130 Online Commands

<CONTROL-C>
Function: Report all coordinate system status words
Scope: Global
Syntax: ASCII Value 3D, $03

This command causes PMAC to report the status words for all of the coordinate systems to the host in
hexadecimal ASCII form, 12 characters per coordinate system starting with coordinate system 1 with the
characters for each coordinate system separated by spaces. The characters reported for each coordinate
system are the same as if the ?? command had been issued for that coordinate system.

The detailed meanings of the individual status bits are shown under the ?? command description.

For multiple cards on a single serial daisy-chain, this command affects only the card currently addressed
in software (by the @n command).

Example:
<CTRL-C>
A80020020000 A80020020000 A80020020000 A80020020000 A80020000000 A80020000000
A80020000000 A80020000000<CR>

<CONTROL-D>
Function: Disable all PLC programs
Scope: Global
Syntax: ASCII Value 4D; $04

This command causes all PLC programs to be disabled (i.e. stop executing). This is the equivalent of
DISABLE PLC 0..31 and DISABLE PLCC 0..31. It is useful especially if a CMD or SEND
statement in a PLC has run amok.

For multiple cards on a single serial daisy chain, this command affects all cards on the chain, regardless of
the current software addressing.

Example:
TRIGGER FOUND
TRIGTRIGER FOTRIGGER FOUND
TRTRIGTRIGGER FOUND (Out-of-control SEND message from PLC)
<CTRL-D> (Command to disable the PLCs)
............................ (No more messages; can now edit PLC)

<CONTROL-F>
Function: Report following errors for all motors.
Scope: Global.
Syntax: ASCII Value 6D; $06

This command causes PMAC to report the following errors of all motors to the host. The errors are
reported in an ASCII string, each error scaled in counts, rounded to the nearest tenth of a count. A space
character is returned between the reported errors for each motor.

Refer to the on-line F command for more detail as to how the following error is calculated.

For multiple cards on a single serial daisy chain, this command affects only the card currently addressed
in software (by the @n command).

Example:
<CTRL-F>
0.5 7.2 -38.3 1.7 0 0 0 0<CR>

PMAC Product Guide

Online Commands 131

<CONTROL-G>
Function: Report global status word
Scope: Global
Syntax: ASCII Value 7D; $07

This command causes PMAC to report the global status words to the host in hexadecimal ASCII form,
using 12 characters. The characters sent are the same as if the ??? command had been sent, although no
command acknowledgement character (<ACK> or <LF>, depending on I3) is sent at the end of the
response.

The detailed meanings of the individual status bits are shown under the ??? command description.

For multiple cards on a single serial daisy-chain, this command affects only the card currently addressed
in software (by the @n command).

Example:
<CTRL-G>
003000400000<CR>

<CONTROL-H>
Function: Erase last character.
Scope: Global
Syntax: ASCII Value 8D; $08 (<BACKSPACE>).

This character, usually entered by typing the <BACKSPACE> key when talking to PMAC in terminal
mode, causes the most recently entered character in PMAC’s command-line-receive buffer to be erased.

<CONTROL-I>
Function: Repeat last command line.
Scope: Global
Syntax: ASCII Value 9D; $09 (<TAB>).

This character, sometimes entered by typing the <TAB> key, causes the most recently sent alphanumeric
command line to PMAC to be re-commanded. It provides a convenient way to quicken a repetitive task,
particularly when working interactively with PMAC in terminal mode. Other control-character
commands cannot be repeated with this command.

Note:

Most versions of the PMAC Executive Program trap a <CTRL-I> or <TAB> for
their own purposes, and do not send it on to PMAC, even when in terminal mode.

Example:
This example shows how the tab key can be used to look for some event:
PC<CR>
P1:10<CR>
<TAB>
P1:10<CR>
<TAB>
P1:10<CR>
<TAB>

P1:11<CR>

 PMAC Product Guide

132 Online Commands

<CONTROL-K>
Function: Kill all motors
Scope: Global
Syntax: ASCII Value 11D; $0B

This command kills all motor outputs by opening the servo loop, commanding zero output, and taking the
amplifier enable signal (AENAn) false (polarity is determined by jumper E17) for all motors on the card.
If any motion programs are running, they will be aborted automatically. (For the motor-specific K (kill)
command, if the motor is in a coordinate system that is executing a motion program, the program
execution must be stopped with either an A (abort) or Q (quit) command before PMAC will accept the K
command.)

For multiple cards on a single serial daisy chain, this command affects all cards on the chain, regardless of
the current software addressing.

<CONTROL-M>
Function: Enter command line
Scope: Gobal
Syntax: ASCII Value 13D; $0D (<CR>)

This character, commonly known as <CR> (carriage return), causes the alphanumeric characters in the
PMAC’s command-line-receive buffer to be interpreted and acted upon. (Control-character commands
do not require a <CR> character to execute.)

Note that for multiple PMACs daisy-chained together on a serial interface, this will act on all cards
simultaneously, not just the software-addressed card. For simultaneous action on multiple cards, it is best
to load up the command-line-receive buffers on all cards before issuing the <CR> character.

Example:
#1J+<CR>
P1<CR>
@0&1B1R@1&1B7R<CR> (This causes card 0 on the serial daisychain to
............................ have its CS 1 execute PROG 1 and card 1 to
............................ have its CS 1 execute PROG 7 simultaneously.)

<CONTROL-O>
Function: Feed hold on all coordinate systems
Scope: Global
Syntax: ASCII Value 15D; $0F

This command causes all coordinate systems in PMAC to undergo a feed hold. A feed hold is much like
a %0 command where the coordinate system is brought to a stop without deviating from the path it was
following, even around curves. However, with a feed hold, the coordinate system slows down at a slew
rate determined by Ix95, and can be started up again with an R (run) command. The system then speeds
up at the rate determined by Ix95, until it reaches the desired % value (from internal or external timebase).
From then on, any timebase changes occur at a rate determined by Ix94.

For multiple cards on a single serial daisy chain, this command affects all cards on the chain, regardless of
the current software addressing.

On a flash memory PMAC that is in bootstrap mode (powered up with E51 ON), the <CTRL-O>
command puts PMAC into its firmware reload command. All subsequent characters sent to PMAC are
interpreted as bytes of machine code for PMAC’s operational firmware, overwriting the existing
operational firmware in flash memory.

PMAC Product Guide

Online Commands 133

<CONTROL-P>
Function: Report positions of all motors
Scope: Global
Syntax: ASCII Value 16D; $10

This command causes the positions of all motors to be reported to the host. The positions are reported as
an ASCII string, scaled in counts, rounded to the nearest tenth of a count, with a space character in
between each motor’s position.

The position window in the PMAC Executive program works by repeatedly sending the <CTRL-P>
command and rearranging the response into the window.

PMAC reports the value of the actual position register plus the position bias register plus the
compensation correction register, and if bit 16 of Ix05 is 1 (handwheel offset mode), minus the master
position register.

For multiple cards on a single serial daisy chain, this command affects only the card currently addressed
in software (by the @n command).

Example:
<CTRL-P>
9999.5 10001.2 5.7 -2.1 0 0 0 0<CR>

<CONTROL-Q>
Function: Quit all executing motion programs
Scope: Global
Syntax: ASCII Value 17D; $11

This command causes any and all motion programs running in any coordinate system to stop executing
after the moves that have been calculated are finished already. Program execution may be resumed from
this point with the R (run) or S (step) commands.

For multiple cards on a single serial daisy chain, this command affects all cards on the chain, regardless of
the current software addressing.

<CONTROL-R>
Function: Begin execution of motion programs in all coordinate systems
Scope: Global
Syntax: ASCII Value 18D; $12

This command is the equivalent of issuing the R (run) command to all coordinate systems in PMAC.
Each active coordinate system (i.e. one that has at least one motor assigned to it) that is to run a program
must be pointing to a motion program already (initially this is done with a B{prog num} command).

For multiple cards on a single serial daisy chain, this command affects all cards on the chain, regardless of
the current software addressing.

For a flash memory PMAC that is in bootstrap mode (powered up with E51 ON), the <CTRL-R>
command puts PMAC into normal operational mode, but with factory default I-Variables, conversion
table settings, and VME/DPRAM addresses.

Example:
&1B1&2B500<CR>
<CTRL-R>

 PMAC Product Guide

134 Online Commands

<CONTROL-S>
Function: Step working motion programs in all coordinate systems
Scope: Global
Syntax: ASCII Value 19D; $13

This command is the equivalent of issuing an S (step) command to all of the coordinate systems in
PMAC. Each active coordinate system (i.e. one that has at least one motor assigned to it) that is to run a
program must be pointing to a motion program already (initially this is done with a B{prog num}
command).

A program that is not running will execute all lines down to and including the next motion command
(move or dwell), or if it encounters a BLOCKSTART command first, all lines down to and including the
next BLOCKSTOP command.

If a program is already running in continuous execution mode (from an R command), an S command will
put the program in single-step mode, stopping execution after the next motion command. In this
situation, it has exactly the same effect as a Q (quit) command.

For multiple cards on a single serial daisy chain, this command affects all cards on the chain, regardless of
the current software addressing.

<CONTROL-V>
Function: Report velocity of all motors
Scope: Global
Syntax: ASCII Value 22D; $16

This command causes PMAC to report the velocities of all motors to the host. The velocity units are in
encoder counts per servo cycle, rounded to the nearest tenth. The <F7> velocity window in the PMAC
Executive program works by repeatedly issuing the <CTRL-V> command and displaying the response on
the screen.

To scale these values into counts/msec, multiply the response by 8,388,608*(Ix60+1)/I10 (servo
cycles/msec).

Note:

The velocity values reported here are obtained by subtracting positions of
consecutive servo cycles. As such, they can be very noisy. For purposes of
display, it is probably better to use averaged velocity values held in registers
Y:$082A, Y:$08EA, etc., accessed with M-Variables.

For multiple cards on a single serial daisy chain, this command affects only the card currently addressed
in software (@n).

<CONTROL-X>
Function: Cancel in-process communications
Scope: Global
Syntax: ASCII Value 24D; $18

This command causes the PMAC to stop sending any messages that it had started to send, even multi-line
messages. This also causes PMAC to empty the command queue from the host, so it will erase any
partially sent commands.

PMAC Product Guide

Online Commands 135

It can be useful to send this before sending a query command for which an exact response format is
expected if not sure what PMAC has been doing before, because it makes sure nothing else comes
through before the expected response. As such, it is often the first character sent to PMAC from the host
when trying to establish initial communications.

Note:

This command empties the command queue in PMAC RAM, but it cannot erase
the one or two characters already in the response port. A robust algorithm for
clearing responses would include two-character read commands that can time-out
if necessary.

For multiple cards on a single serial daisy chain, this command affects all cards on the chain, regardless of
the current software addressing.

<CONTROL-Y>
Function: Report last command line
Scope: Global
Syntax: ASCII Value 25D; $19

This causes PMAC to report the last command line to the host (with no trailing <CR>) and to re-enter the
line into the command queue ready to execute upon the next receipt of <CR>. When communicating
with PMAC in terminal mode, the last command can be recalled and edited using the backspace and
typing in desired changes. The command will be re-executed when the host sends a <CR>.

Examples:
P123=5<CR>.. Set the first value
P124=7<CR> Set the second value
P123<CR> Query the first value
5.......................... PMAC responds with value
<CTRL-Y> Tell PMAC to report last command
P123 PMAC reports last command
<BACKSPACE>4<CR> Modify to P124 and send
7........... PMAC tells value of P124

<CONTROL-Z>
Function: Set PMAC in serial port communications mode
Scope: Global
Syntax: ASCII Value 26D; $1A

This command causes the PMAC’s serial port to become the active communications output port. All
PMAC responses directed to the host will be sent over the serial port. This mode will continue until a
command is received over the bus (parallel) port which will make the bus port the active communications
output port. PMAC powers up/resets with the serial port the active port.

If trying to establish communications with PMAC over the serial port, it is a good idea to send this
character before any query commands to make sure PMAC will try to respond over the serial port.

Regardless of which is the active output port, PMAC can accept commands over either port. It is the
user's responsibility not to garble commands by simultaneously commanding over both ports.

Examples:
Serial host sends: P1
PMAC responds to serial port: 12
Bus host sends: P1=P1+1
Serial host sends: P1

 PMAC Product Guide

136 Online Commands

PMAC responds to bus port: 13
(Serial host gets no response)
Serial host sends: <CTRL-Z>P1
PMAC responds to serial port: 13

Function: Report currently addressed motor
Scope: Global
Syntax: #

This causes PMAC to return the number of the motor currently addressed by the host -- the one which
acts upon motor-specific commands from the host.

Note that a different motor may be hardware selected from the control panel port for motor-specific
control panel inputs and that different motors may be addressed from programs within PMAC for
COMMAND statements.

Examples:
Ask PMAC which motor is addressed
2 PMAC reports that motor 2 is addressed

#{constant}
Function: Address a motor
Scope: Global
Syntax: #{constant}

where
{constant} is an integer from 1 to 8, representing the number of the motor to be addressed.

This command makes the motor specified by {constant} the addressed motor (the one on which on-
line motor commands will act). The addressing is modal, so all further motor-specific commands will
affect this motor until a different motor is addressed. At power-up/reset, Motor 1 is addressed.

Note that a different motor may be hardware selected simultaneously from the control panel port for
motor-specific control panel inputs, and that different motors may be addressed from programs within
PMAC for COMMAND statements.

Example:
#1J+ Command Motor 1 to jog positive
J- Command Motor 1 to jog negative
#2J+ Command Motor 2 to jog positive
J/ Command Motor 2 to stop jogging

#{constant}->
Function: Report the specified motor’s coordinate system axis definition
Scope: Coordinate-system specific
Syntax : #{constant}->

where
{constant} is an integer from 1 to 8 representing the number of the motor whose axis definition is
requested

PMAC Product Guide

Online Commands 137

This command causes PMAC to report the current axis definition of the specified motor in the currently
addressed coordinate system. If the motor has not been defined to an axis in the currently addressed
system, PMAC will return a 0 (even if the motor has been assigned to an axis in another coordinate
system). A motor can have an axis definition in only one coordinate system at a time.

Examples:
&1 ; Address Coordinate System 1
#1-> ; Request Motor 1 axis definition in Coordinate System 1
10000X.............. ; PMAC responds with axis definition
&2 ; Address Coordinate System 2
#1-> ; Request Motor 1 axis definition in Coordinate System 2
0 ; PMAC shows no definition in this Coordinate System
UNDEFINE ALL

#{constant}->0
Function: Clear axis definition for specified motor
Scope: Coordinate-system specific
Syntax #{constant}->0

where
{constant} is an integer from 1 to 8 representing the number of the motor whose axis definition is to
be cleared.

This command clears the axis definition for the specified motor if the motor has been defined to an axis in
the currently addressed coordinate system. If the motor is defined to an axis in another coordinate
system, this command will not be effective. This allows the motor to be redefined to another axis in this
coordinate system or a different coordinate system.

Compare this command to UNDEFINE, which erases all the axis definitions in the addressed coordinate
system, and to UNDEFINE ALL, which erases all the axis definitions in all coordinate systems.

Examples:
This example shows how the command can be used to move a motor from one coordinate system to
another:
&1 ; Address Coordinate System 1
#4-> ; Request definition of #4
5000A ; PMAC responds
#4->0 ; Clear definition
&2 ; Address Coordinate System 2
#4->5000A....... ; Make new definition in Coordinate System 2

#{constant}->{axis definition}
Function: Assign an axis definition for the specified motor
Scope: Coordinate-system specific
Syntax: #{constant}->{axis definition}

where
{constant} is an integer from 1 to 8 representing the number of the motor whose axis definition is to
be made.
{axis definition} consists of:
1 to 3 sets of [{scale factor}]{axis}, separated by the + character, in which the optional
{scale factor} is a floating-point constant representing the number of motor counts per axis unit
(engineering unit). If none are specified, PMAC assumes a value of 1.0.

 PMAC Product Guide

138 Online Commands

{axis} is a letter (X, Y, Z, A, B, C, U, V, W) representing the axis to which the motor is to be matched.
[+{offset}] (optional) is a floating-point constant representing the difference between axis zero
position and motor zero (home) position, in motor counts. If none are specified, PMAC assumes a value
of 0.0.

Note:
No space is allowed between the motor number and the arrow double character.

This command assigns the specified motor to a set of axes in the addressed coordinate system. It also
defines the scaling and starting offset for the axis or axes.
In the vast majority of cases, there is a one-to-one matching between PMAC motors and axes, so this axis
definition statement uses only one axis name for the motor.
Typically, a scale factor is used with the axis character, so that axis moves can be specified in standard
units (e.g. millimeters, inches, degrees). This number is what defines what the units will be for the axis.
If no scale factor is specified, a user unit for the axis is one motor count. Occasionally an offset
parameter is used to allow the axis zero position to be different from the motor home position. (This is the
starting offset; it can later be changed in several ways, including the PSET, {axis}=, ADIS, and IDIS
commands).
If the specified motor is assigned currently to an axis in a different coordinate system, PMAC will reject
this command (reporting an ERR003 if I6=1 or 3). If the specified motor is currently assigned to an axis
in the addressed coordinate system, the old definition will be overwritten by this new one.
To undo a motor’s axis definition, address the coordinate system in which it has been defined and use the
command #{constant}->0. To clear all of the axis definitions within a coordinate system, address
the coordinate system and use the UNDEFINE command. To clear all axis definitions in all coordinate
systems, use UNDEFINE ALL.
For more sophisticated systems, two or three cartesian axes may be defined as a linear combination of the
same number of motors. This allows coordinate system rotations and orthogonality corrections, among
other things. One to three axes may be specified (if only one, it amounts to the simpler definition above).
All axes specified in one definition must be from the same triplet set of cartesian axes: XYZ or UVW. If
this multi-axis definition is used, a command to move an axis will result in multiple motors moving.
Examples:
#1->X....... ; User units = counts
#4->2000 A.. ; 2000 counts/user unit
#8->3333.333Z-666.667 ; Non-integers OK

#3->Y ; Two motors may be assigned to the same axis;
#2->Y ; both motors move when a Y move is given

#1->8660X-5000Y ;This provides a 30o rotation of X and Y...
#2->5000X+8660Y ;with 10000 cts/unit -- this rotation does
#3->2000Z-6000 ;not involve Z, but it could have

This example corrects a Y axis 1 arc minute out of square:
#5->100000X ;100000 cts/in
#6->-29.1X+100000Y ;sin and cos of 1/60

PMAC Product Guide

Online Commands 139

$
Function: Reset motor
Scope: Motor specific
Syntax: $
This command causes PMAC to initialize the addressed motor, performing any required commutation
phasing and full reading of an absolute position sensor, leaving the motor in a closed-loop zero-velocity
state. (For a non-commutated motor with an incremental encoder, the J/ command may also be used.)
This command is necessary to initialize a PMAC-commutated motor after power-up/reset if Ix80 for the
motor is set to 0. If Ix80 is 1, the initialization will be done automatically during the power-up/reset
cycle.
This command will not be accepted if the motor is executing a move.
Example:
I180 ; Request value of #1 power-on mode variable
0.......................... ; PMAC responds with 0; powers on un-phased and killed
$$$..................... ; Reset card; motor is left in killed state
#1$..................... ; Initialize motor, phasing and reading as necessary

$$$
Function: Full card reset
Scope: Global
Syntax: $$$

This command causes PMAC to do a full card reset. The effect of $$$ is equivalent to that of cycling
power on PMAC, or taking the INIT/ line low, then high.
With jumper E51 in its default state (OFF for PMAC-PC, -Lite, -VME, ON for PMAC-STD), this
command does a standard reset of the PMAC. On PMACs without the Option CPU section (not option
4A, 5A, or 5B), I-Variable values, conversion-table settings, and DPRAM and VME bus addresses stored
in permanent memory (EAROM) by the last SAVE command are reloaded into active memory (RAM).
All information stored in battery backed RAM such as P-Variable and Q-Variable values, M-Variable
definitions, and motion and PLC programs are not changed by this command.
On PMACs with the Option CPU section (option 4A, 5A, or 5B), PMAC copies the contents of the flash
memory into active memory during a normal reset cycle, overwriting any current contents. This means
that anything changed in PMAC’s active memory that was not saved to flash memory will be lost. Even
the last saved P-Variable and Q-Variable values, M-Variable definitions, and motion and PLC programs
are copied from flash to RAM during the reset cycle.
With jumper E51 in non-default state (ON for PMAC-PC, -Lite, -VME, OFF for PMAC-STD), this
command does a reset and re-initialization of the PMAC. On PMACs without the Option CPU section
(not option 4A, 5A, or 5B), factory default I-Variable values, conversion-table settings, and DPRAM and
VMEbus addresses stored in the firmware (EPROM) are copied into active memory (RAM). (Values
stored in EAROM are not lost; they are simply not used.)
On PMACs with the Option CPU section (option 4A, 5A, or 5B), PMAC enters a special re-initialization
mode called bootstrap mode that permits the downloading of new firmware. In this bootstrap mode, there
are very few command options. To bypass the download operation in this mode, send a <CONTROL-R>
character to PMAC. This puts PMAC in the normal operational mode with the existing firmware.
Factory default values for I-Variables, conversion table settings, and bus addresses for DPRAM and VME
are copied from the firmware section of flash memory into active memory. The saved values of these
values are not used, but they are still kept in the user section of flash memory.

 PMAC Product Guide

140 Online Commands

Note:
Because this command immediately causes PMAC to enter its power-up/rest cycle,
there is no acknowledging character (<ACK> or <LF>) returned to the host.

Examples:
I130=60000 ; Change #1 proportional gain
SAVE ; Save I-Variables to EAROM
I130=80000 ; Change gain again
$$$; Reset card
I130 ; Request value of parameter
60000 ; PMAC reports current value, which is saved value
(Put E51 on)
$$$; Reset card
I130 ; Request value of parameter
2000 ; PMAC reports current value, which is default

$$$ ***
Function: Global card reset and re-initialization
Scope: Global
Syntax: $$$***
This command performs a full reset of the card and reinitializes the memory. All programs and other
buffers are erased. All I-variables, encoder conversion table entries, and VME and DPRAM addressing
parameters are returned to their factory defaults. (Previously saved values for these parameters are still
held in EAROM and can be brought into active memory with a subsequent $$$ command). It will also
recalculate the firmware checksum reference value and eliminate any PASSWORD that might have been
entered.
M-Variable definitions, P-Variable values, Q-Variable values, and axis definitions are not affected by this
command. They can be cleared by separate commands (e.g. M0..1023->*, P0..1023=0,
Q0..1023=0, UNDEFINE ALL).
This command is useful particularly if the program buffers have become corrupted. It clears the buffers
and buffer pointers so the files can be re-sent to PMAC. Regular backup of parameters and programs to
the disk of a host computer is strongly encouraged so this type of recovery is possible. The PMAC
Executive program has Save Full PMAC Configuration and Restore Full PMAC Configuration functions
to make this process easy.
With jumper E51 in non-default state (ON for PMAC-PC, -Lite, -VME, OFF for PMAC-STD), a PMAC
with the Option CPU section (option 4A, 5A, or 5B) enters a special re-initialization mode called
bootstrap mode when this command is given. This mode permits the downloading of new firmware. In
this mode, there are very few command options. To bypass the download operation in this mode, send a
<CONTROL-R> character to PMAC. This puts PMAC in the normal operational mode with the existing
firmware.
Factory default values for I-Variables, conversion table settings, and bus addresses for DPRAM and VME
are copied from the firmware section of flash memory into active memory. The saved values of these
values are not used, but they are kept in the user section of flash memory.
Examples:
I130=60000 ; Set #1 proportional gain
SAVE ; Save to non-volatile memory
$$$*** ; Reset and re-initialize card
I130 ; Request value of I130
2000 ; PMAC reports current value, which is default
$$$; Normal reset of card

PMAC Product Guide

Online Commands 141

I130 ; Request value of I130
60000 ; PMAC reports current value, which is SAVEd value

%
Function: Report the addressed coordinate system's feedrate override value
Scope: Coordinate-system specific
Syntax: %

This command causes PMAC to report the present feedrate-override (time-base) value for the currently
addressed coordinate system. A value of 100 indicates real time; i.e. move speeds and times occur as
specified.

PMAC will report the value in response to this command, regardless of the source of the value (even if
the source is not the %{constant} command).

Example:
% ; Request feedrate-override value
100 ; PMAC responds: 100 means real time
H ; Command a feed hold
% ; Request feedrate-override value
0 ; PMAC responds: 0 means all movement frozen

%{constant}
Function: Set the addressed coordinate system's feedrate override value
Scope: Coordinate-system specific
Syntax: {constant}

where
{constant} is a non-negative floating point value specifying the desired feedrate override (time-base)
value (100 represents real-time).

This command specifies the feedrate override value for the currently addressed coordinate system. The
rate of change to this newly specified value is determined by coordinate system I-Variable Ix94.

I-Variable Ix93 for this coordinate system must be set to its default value (which tells the coordinate
system to take its time-base value from the % -command register) in order for this command to have any
effect.

The maximum % value that PMAC can implement is equal to (223/I10)*100 or the (servo update rate in
kHz)*100. If a value greater than this is specified, PMAC will saturate at this value instead.

To control the time base based on a variable value, assign an M-Variable (suggested M197) to the
commanded time base register (X:$0806, X:$08C6, etc.), then assign a variable value to the M-Variable.
The value assigned here should be equal to the desired % value times (I10/100).

Examples:
%0 ; Command value of 0, stopping motion
%33.333 ; Command 1/3 of real-time speed
%100 ; Command real-time speed
%500 ; Command too high a value
% ; Request current value
225.88230574 ; PMAC responds; this is max allowed value

M197->X:$0806,24 ; Assign variable to C.S. 1 % command reg.
M197=P1*I10/100 ; Equivalent to &1%(P1)

 PMAC Product Guide

142 Online Commands

&{constant}
Function: Address a coordinate system
Scope: Global
Syntax: &{constant}

where
{constant} is an integer from 1 to 8, representing the number of the coordinate system to be
addressed.

This command makes the coordinate system specified by {constant} the addressed coordinate system
(the one on which on-line coordinate-system commands will act). The addressing is modal, so all further
coordinate-system-specific commands will affect this coordinate system until a different coordinate
system is addressed. At power-up/reset, Coordinate System 1 is addressed.

Note:

A different coordinate system may be hardware selected simultaneously from the
control panel port for coordinate-system-specific control panel inputs and that
different coordinate systems may be addressed from programs within PMAC for
COMMAND statements.

If the control-panel inputs are disabled by I2=1, the host-addressed coordinate system also controls the
indicator lines for the in-position, warning-following-error, and fatal-following-error functions. These
indicator lines connect to both control-panel port outputs (all PMAC versions), and to the interrupt
controller (PMAC-PC, PMAC-Lite, PMAC-STD). (If I2=0, the hardware-selected coordinate system
controls these lines.)

Example:
&1B4R ; Coordinate System 1 point to Beginning of Prog 4 and Run
Q ; Coordinate System 1 Quit running program
&3B6R ; Coordinate System 3 point to Beginning of Prog 5 and Run
A ; Coordinate System 3 Abort program

&
Function: Report currently addressed coordinate system
Scope: Global
Syntax: &

This command causes PMAC to return the number of the coordinate system currently addressed by the
host.

Note:

A different coordinate system may be hardware selected from the control panel
port for coordinate-system-specific control panel inputs and that different
coordinate systems may be addressed from programs within PMAC for COMMAND
statements.

Examples:
& ; Ask PMAC which Coordinate System is addressed
4 ; PMAC reports that Coordinate System 4 is addressed

PMAC Product Guide

Online Commands 143

/
Function: Halt program execution at end of currently executing move
Scope: Coordinate-system specific
Syntax: /

This command causes PMAC to halt the execution of the motion program running in the currently
addressed coordinate system at the end of the currently executing move, provided PMAC is in
segmentation mode (I13>0). If PMAC is not in segmentation mode (I13=0), the / command has the
same effect as the Q command, halting execution at the end of the latest calculated move, which can be
one or two moves past the currently executing move.

Once halted at the end of the move, program execution can be resumed with the R command. In the
meantime, the individual motors may be jogged way from this point, but they must all be returned to this
point using the J= command before program execution may be resumed. An attempt to resume program
execution from a different point will result in an error (ERR017 reported if I6 = 1 or 3). If resumption of
this program from this point is not desired, the A (abort) command should be issued before other
programs are run.

Examples:
&1B5R ; Command Coordinate System 1 to start PROG 5
/ ; Halt execution of program
#1J+ ; Jog Motor 1 positive
J/ ; Stop jogging
J= ; Return to prejog position
R ; Resume execution of PROG 5
/ ; Halt program execution
#2J- ; Jog Motor 2 negative
J/ ; Stop jogging
R ; Try to resume execution of PROG 5
<BELL>ERR017 ; PMAC reports error; not at position to resume
J= ; Return to prejog position
R ; Resume execution of PROG 5

?
Function: Report motor status
Scope: Motor specific
Syntax: ?

This command causes PMAC to report the motor status bits as an ASCII hexadecimal word. PMAC
returns twelve characters, representing two status words. Each character represents four status bits. The
first character represents Bits 20-23 of the first word; the second shows Bits 16-19; and so on, to the sixth
character representing Bits 0-3. The seventh character represents Bits 20-23 of the second word; the
twelfth character represents Bits 0-3.

The value of a bit is 1 when the condition is true; 0 when it is false. The meaning of the individual bits is:

 PMAC Product Guide

144 Online Commands

First Word Returned (X:$003D, X:$0079, etc.)
First Character Returned:
Bit 23 Motor Activated: This bit is 1 when Ix00 is 1 and the motor calculations are active; it is 0

when Ix00 is 0 and motor calculations are deactivated.

Bit 22 Negative End Limit Set: This bit is 1 when motor actual position is less than the software
negative position limit (Ix14), or when the hardware limit on this end (+LIMn) has been
tripped; it is 0 otherwise. If the motor is deactivated (bit 23 of the first motor status word set
to zero) or killed (bit 14 of the second motor status word set to zero) this bit is not updated.

Bit 21 Positive End Limit Set: This bit is 1 when motor actual position is greater than the software
positive position limit (Ix13), or when the hardware limit on this end (-LIMn -- note!) has
been tripped; it is 0 otherwise. If the motor is deactivated (bit 23 of the first motor status
word set to zero) or killed (bit 14 of the second motor status word set to zero) this bit is not
updated.

Bit 20 Handwheel Enabled: This bit is 1 when Ix06 is 1 and position following for this axis is
enabled; it is 0 when Ix06 is 0 and position following is disabled.

Second Character Returned:
Bit 19 Phased Motor: This bit is 1 when Ix01 is 1 and this motor is being commutated by PMAC; it

is 0 when Ix01 is 0 and this motor is not being commutated by PMAC.

Bit 18 Open Loop Mode: This bit is 1 when the servo loop for the motor is open, either with outputs
enabled or disabled (killed). (Refer to Amplifier Enabled status bit to distinguish between the
two cases.) It is 0 when the servo loop is closed (under position control, always with outputs
enabled).

Bit 17 Running Definite-Time Move: This bit is 1 when the motor is executing any move with a
predefined end-point and end-time. This includes any motion program move dwell or delay,
any jog-to-position move, and the portion of a homing search move after the trigger has been
found. It is 0 otherwise. It changes from 1 to 0 when execution of the commanded move
finishes.

Bit 16 Integration Mode: This bit is 1 when Ix34 is 1 and the servo loop integrator is only active
when desired velocity is zero. It is 0 when Ix34 is 0 and the servo loop integrator is always
active.

Third Character Returned:
Bit 15 Dwell in Progress: This bit is 1 when the motor’s coordinate system is executing a DWELL

instruction. It is 0 otherwise.

Bit 14 Data Block Error: This bit is 1 when move execution has been aborted because the data for
the next move section was not ready in time. This is due to insufficient calculation time. It is
0 otherwise. It changes from 1 to 0 when another move sequence is started. This is related to
the Run Time Error Coordinate System status bit.

Bit 13 Desired Velocity Zero: This bit is 1 if the motor is in closed-loop control and the
commanded velocity is zero (i.e. it is trying to hold position). It is zero either if the motor is
in closed-loop mode with non-zero commanded velocity, or if it is in open-loop mode.

Bit 12 Abort Deceleration: This bit is 1 if the motor is decelerating due to an ABORT command, or
due to hitting hardware or software position (overtravel) limits. It is 0 otherwise. It changes
from 1 to 0 when the commanded deceleration to zero velocity finishes.

PMAC Product Guide

Online Commands 145

Fourth Character Returned:
Bit 11 Block Request: This bit is 1 when the motor has just entered a new move section, and is

requesting that the upcoming section be calculated. It is 0 otherwise. It is primarily for
internal use.

Bit 10 Home Search in Progress: This bit is set to 1 when the motor is in a move searching for a
trigger: a homing search move, a jog-until trigger, or a motion program move-until-trigger. It
becomes 1 as soon as the calculations for the move have started, and becomes zero again as
soon as the trigger has been found, or if the move is stopped by some other means. This is
not a good bit to observe to see if the full move is complete, because it will be 0 during the
post-trigger portion of the move. Use the Home Complete and Desired Velocity Zero bits
instead.

Bits 8-9 These bits are used to store a pointer to the next data block for motor calculations. They are
primarily for internal use.

Fifth and Sixth Characters Returned:
Bits 0-7 These bits are used to store a pointer to the next data block for motor calculations. They are

primarily for internal use.

Second Word Returned (Y:$0814, Y:$08D4, etc.)
Seventh Character Returned:
Bit 23 Assigned to Coordinate System: This bit is 1 when the motor has been assigned to an axis in

any coordinate system through an axis definition statement. It is 0 when the motor is not
assigned to an axis in any coordinate system.

Bits 20-22 (Coordinate System - 1) Number: These three bits together hold a value equal to the
(Coordinate System number minus one) to which the motor is assigned. Bit 22 is the MSB,
and bit 20 is the LSB. For instance, if the motor were assigned to an axis in Coordinate
System 6, these bits would hold a value of 5: bit 22 =1, bit 21 = 0, and bit 20 = 1.

Eighth Character Returned:
Bits 16-19 (Reserved for future use)

Ninth Character Returned:
Bit 15 (Reserved for future use)

Bit 14 Amplifier Enabled: This bit is 1 when the outputs for this motor’s amplifier are enabled,
either in open-loop or closed-loop mode (refer to Open-Loop Mode status bit to distinguish
between the two cases). It is 0 when the outputs are disabled (killed).

Bits 12-13 (Reserved for future use)

Tenth Character Returned:
Bit 11 Stopped on Position Limit: This bit is 1 if this motor has stopped because of either a software

or a hardware position (overtravel) limit, even if the condition that caused the stop has gone
away. It is 0 at all other times, even when into a limit but moving out of it.

Bit 10 Home Complete: This bit, set to 0 on power-up or reset, becomes 1 when the homing move
successfully locates the home trigger. At this point in time, usually the motor is decelerating
to a stop or moving to an offset from the trigger determined by Ix26. If a second homing
move is done, this bit is set to 0 at the beginning of the move, and only becomes 1 again if
that homing move successfully locates the home trigger. Use the Desired Velocity Zero bit
and/or the In Position bit to monitor for the end of motor motion.

 PMAC Product Guide

146 Online Commands

Bit 9 (Reserved for future use)
Bit 8 Phasing Search Error: This bit is set to 1 if the phasing search move for a PMAC-commutated

motor has failed due to amplifier fault, overtravel limit, or lack of detected motion. It is set to
0 if the phasing search move did not fail by any of these conditions (not an absolute guarantee
of a successful phasing search).

Eleventh Character Returned:
Bit 7 Trigger Move: This bit is set to 1 at the beginning of a jog-until-trigger or motion program

move-until-trigger. It is set to 0 at the end of the move if the trigger has been found, but
remains at 1 if the move ends with no trigger found. This bit is useful to determine whether
the move was successful in finding the trigger.

Bit 6 Integrated Fatal Following Error: This bit is 1 if this motor has been disabled due to an
integrated following error fault, as set by Ix11 and Ix63. The fatal following error bit (bit 2)
will also be set in this case. Bit 6 is zero at all other times, becoming 0 again when the motor
is re-enabled.

Bit 5 I2T Amplifier Fault Error: This bit is 1 if this motor has been disabled by an integrated
current fault. The amplifier fault bit (bit 3) will also be set in this case. Bit 5 is 0 at all other
times, becoming 0 again when the motor is re-enabled.

Bit 4 Backlash Direction Flag: This bit is 1 if backlash has been activated in the negative direction.
It is 0 otherwise.

Twelfth Character Returned:
Bit 3 Amplifier Fault Error: This bit is 1 if this motor has been disabled because of an amplifier

fault signal, even if the amplifier fault signal has gone away, or if this motor has been
disabled due to an I2T integrated current fault (in which case bit 5 is also set). It is 0 at all
other times, becoming 0 again when the motor is re-enabled.

Bit 2 Fatal Following Error: This bit is 1 if this motor has been disabled because it exceeded its
fatal following error limit (Ix11) or because it exceeded its integrated following error limit
(Ix63; in which case bit 6 is also set). It is 0 at all other times, becoming 0 again when the
motor is re-enabled.

Bit 1 Warning Following Error: This bit is 1 if the following error for the motor exceeds its
warning following error limit (Ix12). It stays at 1 if the motor is killed due to fatal following
error. It is 0 at all other times, changing from 1 to 0 when the motor’s following error
reduces to under the limit or if killed, is re-enabled.

Bit 0 In Position: This bit is 1 when five conditions are satisfied: the loop is closed, the desired
velocity zero bit is 1 (which requires closed-loop control and no commanded move); the
program timer is off (not currently executing any move, DWELL, or DELAY), the magnitude
of the following error is smaller than Ix28 and the first four conditions have been satisfied for
(I7+1) consecutive scans.

Examples:
#1? ; Request status of Motor 1
812000804401 ; PMAC responds with 12 hex digits representing 48 bits
 ; The following bits are true (all others are false)
 ; Word 1 Bit 23: Motor Activated
 ; Bit 16: Integration Mode
 ; Bit 13: Desired Velocity Zero
 ; Word 2 Bit 23: Assigned to Coordinate System
 ; (Bits 20-22 all 0 -- assigned to Coordinate System 1)
 ; Bit 14: Amplifier Enabled
 ; Bit 10: Home Complete
 ; Bit 0: In Position

PMAC Product Guide

Online Commands 147

??
Function: Report the status words of the addressed coordinate system.
Scope: Coordinate-system specific
Syntax : ??

This causes PMAC to report status bits of the addressed coordinate system as an ASCII hexadecimal
word. PMAC returns twelve characters, representing two status words. Each character represents four
status bits. The first character represents bits 20-23 of the first word; the second shows bits 16-19; and so
on, to the sixth character representing bits 0-3. The seventh character represents bits 20-23 of the second
word; the twelfth character represents its 0-3.

The value of a bit is 1 when the condition is true; 0 when it is false. The meanings of the individual bits
are:

First Word Returned (X:$0818, X:$08D8, etc.)
First Character Returned:
Bit 23 Z-Axis used in Feedrate Calculations: This bit is 1 if this axis is used in the vector feedrate

calculations for F-based moves in the coordinate system. It is 0 if this axis is not used. See the
FRAX command.

Bit 22 Z-Axis Incremental Mode: This bit is 1 if this axis is in incremental mode (moves specified
by distance from the last programmed point). It is 0 if this axis is in absolute mode (moves
specified by end position, not distance). See the INC and ABS commands.

Bit 21 Y-Axis used in Feedrate Calculations: See bit 23 description.

Bit 20 Y-Axis Incremental Mode: See bit 22 description.

Second Character Returned:
Bit 19 X-Axis used in Feedrate Calculations: See bit 23 description

Bit 18 X-Axis Incremental Mode: See bit 22 description.

Bit 17 W-Axis used in Feedrate Calculations: See bit 23 description.

Bit 16 W-Axis Incremental Mode: See bit 22 description.

Third Character Returned
Bit 15 V-Axis used in Feedrate Calculations: See bit 23 description.

Bit 14 V-Axis Incremental Mode: See bit 22 description.

Bit 13 U-Axis used in Feedrate Calculations: See bit 23 description.

Bit 12 U-Axis Incremental Mode: See bit 22 description.

Fourth Character Returned:
Bit 11 C-Axis used in Feedrate Calculations: See bit 23 description.

Bit 10 C-Axis Incremental Mode: See bit 22 description.

Bit 9 B-Axis used in Feedrate Calculations: See bit 23 description.

Bit 8 B-Axis Incremental Mode: See bit 22 description.

 PMAC Product Guide

148 Online Commands

Fifth Character Returned:
Bit 7 A-Axis used in Feedrate Calculations: See bit 23 description.

Bit 6 A-Axis Incremental Mode: See bit 22 description.

Bit 5 Radius Vector Incremental Mode: This bit is 1 if circle move radius vectors are specified
incrementally (i.e. from the move start point to the arc center). It is 0 if circle move radius
vectors are specified absolutely (i.e. from the XYZ origin to the arc center). See the INC (R)
and ABS (R) commands.

Bit 4 Continuous Motion Request: This bit is 1 if the coordinate system ahs requested of it a
continuous set of moves (e.g. with an R command). It is 0 if this is not the case (e.g. not
running program, Ix92=1, or running under an S command).

Sixth Character Returned:
Bit 3 Move Specified by Time Mode: This bit is 1 if programmed moves in the coordinate system

are currently specified by time (TM or TA), and the move speed is derived. It is 0 if
programmed moves in the coordinate system are currently specified by feedrate (speed; F)
and the move time is derived.

Bit 2 Continuous Motion Mode: This bit is 1 if the coordinate system is in a sequence of moves
that it is blending together without stops in between. It is 0 if it is not currently in such a
sequence, for whatever reason.

Bit 1 Single-Step Mode: This bit is 1 if the motion program currently executing in this coordinate
system has been told to Step one move or block of moves or if it has been given a Q (Quit)
command. It is 0 if the motion program is executing a program by a R (RUN) command, or if
it is not executing a motion program at all.

Bit 0 Running Program: This bit is 1 if the coordinate system is currently executing a motion
program. It is 0 if the coordinate system is not currently executing a motion program. Note
that it becomes 0 as soon as it has calculated the last move and reached the final RETURN
statement in the program, even if the motors are still executing the last move or two that have
been calculated. Compare to the motor Running Program status bit.

Second Word Returned (Y:$0817, Y:$08D7, etc.)
Seventh Character Returned:
Bit 23 Program Hold Stop: This bit is 1 when a motion program running in the currently addressed

coordinate system is stopped using the \ command from a segmented move (LINEAR or
CIRCLE mode with I13>0).

Bit 22 Run-Time Error: This bit is 1 when the coordinate system has stopped a motion program due
to an error encountered while executing the program (e.g. jump to non-existent label,
insufficient calculation time, etc.)

Bit 21 Circle Radius Error: This bit is 1 when a motion program has been stopped because it was
asked to an arc move whose distance was more than twice the radius (by an amount greater
than Ix96).

Bit 20 Amplifier Fault Error: This bit is 1 when any motor in the coordinate system has been killed
due to receiving an amplifier fault signal. It is 0 at other times, changing from 1 to 0 when the
offending motor is re-enabled.

PMAC Product Guide

Online Commands 149

Eighth Character Returned:
Bit 19 Fatal Following Error: This bit is 1 when a Bit 23 Z-Axis Used in Feedrate Calculations:

This bit is 1 if this axis is used in the vector feedrate calculations for F-based moves in the
coordinate system; it is 0 if this axis is not used. See the FRAX command.

Bit 22 Z-Axis Incremental Mode: This bit is 1 if this axis is in incremental mode -- moves specified
by distance from the last programmed point. It is 0 if this axis is in absolute mode -- moves
specified by end position, not distance. See the INC and ABS commands.

Bit 21 Y-Axis Used in Feedrate Calculations: (See bit 23 description.)

Bit 20 Y-Axis Incremental Mode: (See bit 22 description.)

Second Character Returned:
Bit 19 X-Axis Used in Feedrate Calculations: (See bit 23 description.)

Bit 18 X-Axis Incremental Mode: (See bit 22 description.)

Bit 17 W-Axis Used in Feedrate Calculations: (See bit 23 description.)

Bit 16 W-Axis Incremental Mode: (See bit 22 description.)

Third Character Returned:
Bit 15 V-Axis Used in Feedrate Calculations: (See bit 23 description.)

Bit 14 V-Axis Incremental Mode: (See bit 22 description.)

Bit 13 U-Axis Used in Feedrate Calculations: (See bit 23 description.)

Bit 12 U-Axis Incremental Mode: (See bit 22 description.)

Fourth Character Returned:
Bit 11 C-Axis Used in Feedrate Calculations: (See bit 23 description.)

Bit 10 C-Axis Incremental Mode: (See bit 22 description.)

Bit 9 B-Axis Used in Feedrate Calculations: (See bit 23 description.)

Bit 8 B-Axis Incremental Mode: (See bit 22 description.)

Fifth Character Returned:
Bit 7 A-Axis Used in Feedrate Calculations: (See bit 23 description.)

Bit 6 A-Axis Incremental Mode: (See bit 22 description.)

Bit 5 Radius Vector Incremental Mode: This bit is 1 if circle move radius vectors are specified
incrementally (i.e. from the move start point to the arc center). It is 0 if circle move radius
vectors are specified absolutely (i.e. from the XYZ origin to the arc center). See the INC
(R) and ABS (R) commands.

Bit 4 Continuous Motion Request: This bit is 1 if the coordinate system has requested of it a
continuous set of moves (e.g. with an R command). It is 0 if this is not the case (e.g. not
running program, Ix92=1, or running under an S command).

Sixth Character Returned:
Bit 3 Move-Specified-by-Time Mode: This bit is 1 if programmed moves in this coordinate system

are currently specified by time (TM or TA) and the move speed is derived. It is 0 if
programmed moves in this coordinate system are currently specified by feedrate (speed; F)
and the move time is derived.

 PMAC Product Guide

150 Online Commands

Bit 2 Continuous Motion Mode: This bit is 1 if the coordinate system is in a sequence of moves
that it is blending together without stops in between. It is 0 if it is not currently in such a
sequence, for whatever reason.

Bit 1 Single-Step Mode: This bit is 1 if the motion program currently executing in this coordinate
system has been told to step one move or block of moves, or if it has been given a Q (Quit)
command. It is 0 if the motion program is executing a program by a R (run) command or if it
is not executing a motion program at all.

Bit 0 Running Program: This bit is 1 if the coordinate system is currently executing a motion
program. It is 0 if the Coordinate System is not executing a motion program currently. Note
that it becomes 0 as soon as it has calculated the last move and reached the final RETURN
statement in the program, even if the motors are still executing the last move or two that have
been calculated. Compare to the motor Running Program status bit.

Second Word Returned (Y:$0817, Y:$08D7, etc.)
Seventh Character Returned:
Bit 23 Program Hold Stop: This bit is 1 when a motion program running in the currently addressed

Coordinate System is stopped using the \ command from a segmented move (LINEAR or
CIRCLE mode with I13 > 0).

Bit 22 Run-Time Error: This bit is 1 when the coordinate system has stopped a motion program due
to an error encountered while executing the program (e.g. jump to non-existent label,
insufficient calculation time, etc.).

Bit 21 Circle Radius Error: This bit is 1 when a motion program has been stopped because it was
asked to do an arc move whose distance was more than twice the radius (by an amount
greater than Ix96).

Bit 20 Amplifier Fault Error: This bit is 1 when any motor in the coordinate system has been killed
due to receiving an amplifier fault signal. It is 0 at other times. Changing any motor in the
coordinate system has been killed due to exceeding its fatal following error limit (Ix11). It is
0 at other times. The change from 1 to 0 occurs when the offending motor is re-enabled.

Bit 18 Warning Following Error: This bit is 1 when any motor in the coordinate system has
exceeded its warning following error limit (Ix12). It stays at 1 if a motor has been killed due
to fatal following error limit. It is 0 at all other times. The change from 1 to 0 occurs when
the offending motor’s following error is reduced to under the limit, or if killed on fatal
following error as well, when it is re-enabled.

Bit 17 In Position: This bit is 1 when all motors in the coordinate system are in position. Five
conditions must apply for all of these motors for this to be true. The loops must be closed, the
desired velocity must be zero for all motors, the coordinate system cannot be in any timed
move (even zero distance) or DWELL, all motors must have a following error smaller than
their respective Ix28 in-position bands, and the above conditions must have been satisfied for
(I7+1) consecutive scans.

Bit 16 Rotary Buffer Request: This bit is 1 when a rotary buffer exists for the coordinate system and
enough program lines have been sent to it so that the buffer contains at least I17 lines ahead
of what has been calculated. Once this bit has been set to 1 it will not be set to 0 until there
are less than I16 program lines ahead of what has been calculated. The PR command may be
used to find the current number of program lines ahead of what has been calculated.

PMAC Product Guide

Online Commands 151

Ninth Character Returned:
Bit 15 Delayed Calculation Flag: (for internal use)

Bit 14 End of Block Stop: This bit is 1 when a motion program running in the currently addressed
Coordinate System is stopped using the / command from a segmented move (Linear or
Circular mode with I13 > 0).

Bit 13 Synchronous M-Variable One-Shot: (for internal use)

Bit 12 Dwell Move Buffered: (for internal use)

Tenth Character Returned:
Bit 11 Cutter Comp Outside Corner: This bit is 1 when the coordinate system is executing an added

outside corner move with cutter compensation on. It is 0 otherwise.

Bit 10 Cutter Comp Move Stop Request: This bit is 1 when the coordinate system is executing
moves with cutter compensation enabled and has been asked to stop move execution. This is
primarily for internal use.

Bit 9 Cutter Comp Move Buffered: This bit is 1 when the coordinate system is executing moves
with cutter compensation enabled and the next move has been calculated and buffered. This
is primarily for internal use.

Bit 8 Pre-jog Move Flag: This bit is 1 when any motor in the coordinate system is executing a jog
move to pre-jog position (J= command). It is 0 otherwise.

Eleventh Character Returned:
Bit 7 Segmented Move in Progress: This bit is 1 when the coordinate system is executing motion

program moves in segmentation mode (I13>0). It is 0 otherwise. This is primarily for
internal use.

Bit 6 Segmented Move Acceleration: This bit is 1 when the coordinate system is executing motion
program moves in segmentation mode (I13>0) and accelerating from a stop. It is 0
otherwise. This is primarily for internal use.

Bit 5 Segmented Move Stop Request: This bit is 1 when the coordinate system is executing motion
program move in segmentation mode (I13>0) and it is decelerating to a stop. It is 0
otherwise. This is primarily for internal use.

Bit 4 PVT/SPLINE Move Mode: This bit is 1 if this coordinate system is in either PVT move
mode or SPLINE move mode. (If bit 0 of this word is 0, this means PVT mode; if bit 0 is 1,
this means SPLINE mode.) This bit is 0 if the coordinate system is in a different move mode
(LINEAR, CIRCLE, or RAPID). See the table below.

Twelfth Character Returned:
Bit 3 Cutter Compensation Left: This bit is 1 if the coordinate system has cutter compensation on,

and the compensation is to the left when looking in the direction of motion. It is 0 if
compensation is to the right, or if cutter compensation is off.

Bit 2 Cutter Compensation On: This bit is 1 if the coordinate system has cutter compensation on. It
is 0 if cutter compensation is off.

Bit 1 CCW Circle\Rapid Mode: When bit 0 is 1 and bit 4 is 0, this bit is set to 0 if the coordinate
system is in CIRCLE1 (clockwise arc) move mode and 1 if the coordinate system is in
CIRCLE2 (counterclockwise arc) move mode. If both bits 0 and 4 are 0, this bit is set to 1 if
the coordinate system is in RAPID move mode. Otherwise this bit is 0. See the table below.

 PMAC Product Guide

152 Online Commands

Bit 0 CIRCLE/SPLINE Move Mode: This bit is 1 if the coordinate system is in either CIRCLE or
SPLINE move mode. (If bit 4 of this word is 0, this means CIRCLE mode; if bit 4 is 1, this
means SPLINE mode.) This bit is 0 if the coordinate system is in a different move mode
(LINEAR, PVT, or RAPID.). See the table below.

The states of bits 4, 1, and 0 in the different move modes are summarized in the following table:

Mode Bit 4 Bit 1 Bit 0
LINEAR 0 0 0
RAPID 0 1 0
SPLINE 1 0 1

CIRCLE1 0 0 1
CIRCLE2 0 1 1

PVT 1 1 0

Examples:
?? ; Request coordinate system status words
A8002A020010 ; PMAC responds; the following bits are true:
 ; Word 1 Bit 23: Z-axis used in feedrate calcs
 ; Bit 21: Y-axis used in feedrate calcs
 ; Bit 19: X-axis used in feedrate calcs
 ; Bit 5: Radius vector incremental mode
 ; Bit 3: Move specified by time
 ; Bit 1: Single-step mode
 ; Word 2 Bit 17: In-position
 ; Bit 4: PVT/Spline mode

???
Function: Report global status words
Scope: Global
Syntax: ???

This command causes PMAC to return the global status bits in ASCII hexadecimal form. PMAC returns
twelve characters, representing two status words. Each character represents four status bits. The first
character represents Bits 20-23 of the first word, the second shows Bits 16-19; and so on, to the sixth
character representing Bits 0-3. The seventh character represents Bits 20-23 of the second word; the
twelfth character represents Bits 0-3 of the second word.
A bit has a value of 1 when the condition is true; 0 when false. The meaning of the individual status bits is:

First Word Returned (X:$0003)
First Character Returned:
Bit 23 Real-Time Interrupt Active: This bit is 1 if PMAC is currently executing a real-time interrupt

task (PLC 0 or motion program move planning). It is 0 if PMAC is executing some other
task.

Note:
Communications can only happen outside of the real-time interrupt so polling this
bit will always return a value of 0. This bit is for internal use.

Bit 22 Real-Time Interrupt Re-entry: This bit is 1 if a real-time interrupt task has taken long enough
so that it was still executing when the next real-time interrupt came (I8+1 servo cycles later).
It stays at 1 until the card is reset, or until this bit is changed manually to 0. If motion
program calculations cause this, it is not a serious problem. If PLC 0 causes this (no motion
programs running), it could be serious.

PMAC Product Guide

Online Commands 153

Bit 21 Servo Active: This bit is 1 if PMAC is currently executing servo update operations. It is 0 if
PMAC is executing other operations. Note that communications can happen only outside of
the servo update; so polling this bit will always return a value of 0. This bit is for internal
use.

Bit 20 Servo Error: This bit is 1 if PMAC could not complete its servo routines properly. This is a
serious error condition. It is 0 if the servo operations have been completing properly.

Second Character Returned:
Bit 19 Data Gathering Function On: This bit is 1 when the data gathering function is active; it is 0

when the function is not active.

Bit 18 Data Gather to Start on Servo: This bit is 1 when the data gathering function is set up to start
on the next servo cycle. It is 0 otherwise. It changes from 1 to 0 as soon as the gathering
function actually starts.

Bit 17 Data Gather to Start on Trigger: This bit is 1 when the data gathering function is set up to
start on the rising edge of Machine Input 2. It is 0 otherwise. It changes from 1 to 0 as soon
as the gathering function actually starts.

Bit 16 (Reserved for future use)

Third Character Returned:
Bit 15 (Reserved for future use)

Bit 14 Leadscrew Compensation On: This bit is 1 if leadscrew compensation is currently active in
PMAC. It is 0 if the compensation is not active.

Bit13 Any Memory Checksum Error: This bit is 1 if a checksum error has been detected for either
the PMAC firmware or the user program buffer space. Bit 12 of this word distinguishes
between the two cases.

Bit12 PROM Checksum Error: This bit is 1 if a firmware checksum error has been detected in
PMAC’s memory. It is 0 if a user program checksum error has been detected or if no
memory checksum error has been detected. Bit 13 distinguishes between these two cases.

Fourth Character Returned:
Bit 11 DPRAM Error: This bit is 1 if PMAC has detected an error in DPRAM communications. It

is 0 otherwise.

Bit 10 EAROM Error: This bit is 1 if PMAC detected a checksum error in reading saved data from
the EAROM (in which case it replaces this with factory defaults). It is 0 otherwise.

Bits 8-9 (for internal use)

Fifth Character Returned:
Bit 7 (for internal use)

Bit 6 TWS Variable Parity Error: This bit is 1 if the most recent TWS-format M-Variable read or
write operation with a device supporting parity had a parity error; it is 0 if the operation with
such a device had no parity error. The bit status is indeterminate if the operation was with a
device that does not support parity.

Bit 5 MACRO Auxiliary Communications Error: This bit is 1 if the most recent MACRO auxiliary
read or write command has failed. It is set to 0 at the beginning of each MACRO auxiliary
read or write command.

Bit 4 (Reserved for future use)

 PMAC Product Guide

154 Online Commands

Sixth Character Returned:
Bits 2-3 (Reserved for future use)
Bit 1 All Cards Addressed: This bit is set to 1 if all cards on a serial daisy chain have been

addressed simultaneously with the @@ command. It is 0 otherwise.
Bit 0 This Card Addressed: This bit is set to 1 if this card is on a serial daisy chain and has been

addressed with the @n command. It is 0 otherwise.

Second Word Returned (Y:$0003)
Seventh Character Returned:
Bit 23 (For internal use)
Bit 22 Host Communication Mode: This bit is 1 when PMAC is prepared to send its

communications over the host port (PC bus or STD bus). It is 0 when PMAC is prepared to
send its communications over the VMEbus or the serial port. It changes from 0 to 1 when it
receives an alphanumeric command over the host port. It changes from 1 to 0 when it
receives a <CTRL-Z> over the serial port.

Bits 20-21 (For Internal Use)
Eighth Character Returned:
Bit 19 Motion Buffer Open: This bit is 1 if any motion program buffer (PROG or ROT) is open for

entry. It is 0 if none of these buffers is open.
Bit 18 Rotary Buffer Open: This bit is 1 if the rotary motion program buffers (ROT) are open for

entry. It is 0 if these are closed.
Bit 17 PLC Buffer Open: This bit is 1 if a PLC program buffer is open for entry. It is 0 if none of

these buffers is open.
Bit 16 PLC Command: This bit is 1 if PMAC is processing a command issued from a PLC or

motion program through a CMD" " statement. It is 0 otherwise. It is primarily for internal
use.

Ninth Character Returned:
Bit 15 VME Communication Mode: This bit is 1 when PMAC is prepared to send its

communications over the VME bus mailbox port. It is 0 when PMAC is prepared to send its
communications over the host port (PC bus or STD bus) or the serial port. It changes from 0
to 1 when it receives an alphanumeric command over the VME bus mailbox port. It changes
from 1 to 0 when it receives a <CTRL-Z> over the serial port.

Bits 12-14 (For Internal use)
Tenth Character Returned:
Bit 11 Fixed Buffer Full: This bit is 1 when no fixed motion (PROG) or PLC buffers are open, or

when one is open but there are less than I18 words available. It is 0 when one of these
buffers is open and there are more than I18 words available.

Bits 8-10 (Internal use)
Eleventh and Twelfth Characters Returned:
Bits 0-7 (Reserved for future use)
Examples:
???..................... ; Ask PMAC for global status words
003000400000 ; PMAC returns the global status words
............................ ; 1st word bit 13 (Any checksum error) is true;
............................ ; 1st word bit 12 (PROM checksum error) is true;
............................ ; 2nd word bit 23 (for internal use) is true;
............................ ; All other bits are false

PMAC Product Guide

Online Commands 155

\
Function: Do a program hold (permitting jogging while in hold mode)
Scope: Coordinate-system specific
Syntax: \

This command causes PMAC to do a program hold of the currently addressed coordinate system in a
manner that permits jogging of the motors in the coordinate system while in hold mode, provided PMAC
is in a segmented move (LINEAR or CIRCLE mode with I13>0). If PMAC is in segmentation mode
(I13=0, or other move mode), the \ command has the same effect as the H command, bringing the motors
to a stop in the same way, but not permitting any moves while in feed hold mode.

The rate of deceleration to a stop in feed hold mode, and from a stop on the subsequent R command, is
controlled by I-Variable I52. This is a global I-Variable that controls the rate for all coordinate systems.

Once halted in hold mode, program execution can be resumed with the R command. In the meantime, the
individual motors may be jogged away from this point, but they must all be returned to this point using
the J= command before program execution can be resumed. An attempt to resume program execution
from a different point will result in an error (ERR017 reported if I6 = 1 or 3). If resumption of this
program from this point is not desired, the A (abort) command should be issued before other programs are
run.
Examples:
&1B5R ; Command Coordinate System 1 to start PROG 5
\ ; Command feed hold of program
#1J+ ; Jog Motor 1 positive
J/ ; Stop jogging (examine part here)
J= ; Return to prejog position
R ; Resume execution of PROG 5
\ ; Halt program execution
#2J- ; Jog Motor 2 negative
J/ ; Stop jogging
R ; Try to resume execution of PROG 5
<BELL>ERR017 ; PMAC reports error; not at position to resume
J= ; Return to prejog position
R ; Resume execution of PROG 5

A
Function: Abort all programs and moves in the currently addressed coordinate system
Scope: Coordinate-system specific
Syntax: A

This command causes all axes defined in the current coordinate system to begin immediately to decelerate
to a stop, aborting the currently running motion program (if any). It also brings any disabled (killed) or
open loop motors (defined in the current coordinate system) to an enabled zero-velocity closed-loop state.

If moving, each motor will decelerate its commanded profile at a rate defined by its own motor I-Variable
Ix15. If there is significant following error when the A command is issued, it may take a long time for the
actual motion to stop. Although the command trajectory is brought to a stop at a definite rate, the actual
position will continue to catch up to the commanded position for a longer time.

A multi-axis system may not stay on its programmed path during this deceleration.
Note:

Abort commands are not recovered from gracefully. To resume easily, use the H,
Q, /, or \ command instead.

 PMAC Product Guide

156 Online Commands

Motion program execution may resume (if a motion program was in fact aborted) by issuing either an R
or S command, but two factors must be considered. First, the starting positions for calculating the next
move will be the original end positions of the aborted move unless the PMATCH command is issued or
I14=1. Second, the move from the aborted position to the next move end position may not be possible or
desirable. The J= command may be used to jog each motor in the coordinate system to the original end
position of the aborted move, provided I13 is 0 (no segmentation mode).
Examples:
B1R ; Start Motion Program 1
A ; Abort the program
#1J=#2J= ; Jog motors to original move-end position
R ; Resume program with next move

ABS
Function: Select absolute position mode for axes in addressed coordinate system.
Scope: Coordinate-system specific
Syntax: ABS

ABS ({axis}[,{axis}...])

where
{axis} is a letter (X, Y, Z, A, B, C, U, V, W) representing the axis to be specified or the character R to
specify radial vector mode

This command, without any arguments, causes all subsequent positions for all axes in the coordinate
system in motion commands to be treated as absolute positions (this is the default condition). An ABS
command with arguments causes the specified axes to be in absolute mode and all others to remain
unchanged.

If R is specified as one of the axes, the I, J, and K terms of the circular move radius vector specification
will be specified in absolute form (i.e. as a vector from the origin, not from the move start point). An
ABS command without any arguments does not affect this vector specification. The default radial vector
specification is incremental.

If a motion program buffer is open when this command is sent to PMAC, the command will be entered
into the buffer for later execution.
Examples:
ABS(X,Y) ; X & Y made absolute -- other axes and radial vector left unchanged
ABS ; All axes made absolute -- radial vector left unchanged
ABS(R) ; Radial vector made absolute -- all axes left unchanged

{axis}={constant}
Function: Re-define the specified axis position.
Scope: Coordinate-system specific
Syntax: {axis}={constant}

where
{axis} is a letter from the set (X, Y, Z, U, V, W, A, B, C) specifying the axis whose present position is
to be re-named.
{constant} is a floating-point value representing the new name value for the axis’ present position.

This command re-defines the current axis position to be the value specified in {constant}, in user
units (as defined by the scale factor in the axis definition). It can be used to relocate the origin of the
coordinate system. This does not cause the specified axis to move; it simply assigns a new value to the
position.

PMAC Product Guide

Online Commands 157

Internally, a position bias register is written to which creates this new position offset. PSET is the
equivalent motion program command.
Examples:
X=0 ; Call axis X’s current position zero
Z=5000 ; Re-define axis Z’s position as 5000

B{constant}
Function: Point the addressed coordinate system to a motion program.
Scope: Coordinate-system specific
Syntax: B{constant}

where
{constant} is a floating point value from 0.0 to 32767.99999 representing the program and location to
point the coordinate system to; with the integer part representing the program number and the fractional
part multiplied by 100,000 representing the line label (zero fractional part means the top of the program).
This command causes PMAC to set the program counter of the addressed coordinate system to the
specified motion program and location. Usually it is used to set the program counter to the beginning of a
motion program. The next R or S command will start execution at this point.
If {constant} is an integer, the program counter will point to the beginning of the program whose
number matches {constant}. Fixed motion program buffers (PROG) can have numbers from 1 to
32,767. The rotary motion program carries program number 0 for the purpose of this command.
If {constant} is not an integer, the fractional part of the number represents the line label (N or O) in
the program to which to point. The fractional value multiplied by 100,000 determines the number of the
line label to which to point (it fills the fraction to five decimal places with zeros).

Note:
If a motion program buffer (including ROTARY) is open when this command is
sent to PMAC, the command is entered into the buffer for later execution to be
interpreted as a B-axis move command.

Examples:
B7 ;points to the top of PROG 7
B0 ;points to the top of the rotary buffer
B12.6 ;points to label N60000 of PROG 12
B3.025R ;points to label N2500 of PROG 3 and runs

CLEAR
Function: Erase currently opened buffer.
Scope: Global
Syntax CLEAR

CLR

This command empties the currently opened program, PLC, rotary, etc. buffer. Typically, as a buffer file
is created in the host computer, it starts with the OPEN {buffer} and CLEAR commands (even though,
technically these lines are not part of the buffer) and follows with the actual contents. This will allow
easy editing of the buffers from the host and repeatedly downloading of the buffers, erasing the old
buffer’s contents in the process.
Examples:
OPEN PROG 1 ; Open motion program buffer 1
CLEAR ; Clear out this buffer
F1000 ; Program really starts here!
X2500 ;...and ends on this line

 PMAC Product Guide

158 Online Commands

CLOSE ; This closes the program buffer

OPEN PLC 3 CLEAR CLOSE ; This erases PLC 3

CLOSE
Function: Close the currently opened buffer.
Scope: Global
Syntax: CLOSE

CLS

This closes the currently opened buffer. This should be used immediately after the entry of a motion,
PLC, rotary, etc. buffer. If the buffer is left open, subsequent statements that are intended as on-line
commands (e.g. P1=0) will be entered into the buffer instead. Put CLOSE at the beginning and end of
any file to be downloaded to PMAC.
When PMAC receives a CLOSE command, it automatically appends a RETURN statement to the end of
the open program buffer.
If any program or PLC in PMAC is improperly structured (e.g. no ENDIF or ENDWHILE to match an IF
or WHILE), PMAC will report an ERR003 at the CLOSE command for any buffer until the problem is
fixed.
Examples:
CLOSE ; This makes sure all buffers are closed
OPEN PROG 1 ; Open motion program buffer 1
CLEAR ; Clear out this buffer
F1000 ; Program actually starts here!...
X2500 ;...and ends on this line!
CLOSE ; This closes the program buffer
LIST PROG 1 ; Request listing of closed program
F1000 ; PMAC starts listing
X2500
RETURN ; This was appended by the CLOSE command

{constant}
Function: Assign value to variable P0, or to table entry.
Scope: Global
Syntax: {constant}

where
{constant} is a floating point value
This command is the equivalent of P0={constant}. That is, a value entered by itself on a command
line will be assigned to P-Variable P0. This allows simple operator entry of numeric values through a
dumb terminal interface. Where the value goes is hidden from the operator. The PMAC user program
must take P0 and use it as appropriate.

Note:
If a special table on PMAC (e.g. STIMULUS, COMP) has been defined but not
filled, a constant value will be entered into this table, not into P0.

Examples:
In a motion program:
P0=-1 ; Set P0 to an illegal value
SEND Enter number of parts in run:
 ; Prompt operator at dumb terminal
 ; Operator simply needs to type in number
WHILE (P0<1) WAIT ; Hold until get legal response

PMAC Product Guide

Online Commands 159

P1=0 ; Initialize part counter
WHILE (P0<P1) ; Loop once per part
 P1=P1+1
DATE
Function: Report PROM firmware revision date.
Scope: Global
Syntax: DATE

DAT

This command causes PMAC to report the revision date of the PROM firmware revision it is using. The
date is reported in the American style: mm/dd/yy (month/day/year).

Example:
DATE Ask PMAC for firmware revision date
07/22/92 PMAC responds with July 22, 1992

DEFINE TBUF
Function: Create a buffer for axis transformation matrices.
Scope: Global
Syntax: DEFINE TBUF {constant}

DEF TBUF {constant}

where
{constant} is a positive integer representing the number of transformation matrices to create

This command reserves space in PMAC’s memory for one or more axis transformation matrices. These
matrices can be used for real-time translation, rotation, scaling, and mirroring of the X, Y, and Z axes of
any coordinate system. A coordinate system selects which matrix to use with the TSELn command,
where n is an integer from 1 to the number of matrices created here.

Note:

PMAC will reject this command, reporting an ERR003 if I6=1 or 3, if any
ROTARYor GATHER buffer exists. Any of these buffers must be deleted first.

The number of long words of unused buffer memory can be found by issuing the SIZE command. Each
defined matrix takes 21 words of memory.

Example:
DELETE GATHER
DEF TBUF 1
DEFINE TBUF 8

DELETE GATHER
Function: Erase the data gather buffer
Scope: Global
Syntax: DELETE GATHER

DEL GAT

This command causes the data-gathering buffer to be erased. The memory that was reserved is now de-
allocated and is available for other buffers (motion programs, PLC programs, compensation tables, etc.).
If Data Gathering is in progress (an ENDGATHER command has not been issued and the gather buffer has
not been filled), PMAC will report an error on receipt of this command.

 PMAC Product Guide

160 Online Commands

PMAC’s Executive Program inserts this command automatically at the top of a file when it uploads a
buffer from PMAC into its editor, so the next download will not be hampered by an existing gather
buffer. Use this command as well when creating a program file in the editor (see Examples, below).

Note:
When the executive program’s data gathering function operates, it reserves the
entire open buffer space for gathered data automatically. When this has happened,
no additional programs or program lines may be entered into PMAC’s buffer space
until the DELETE GATHER command has freed this memory.

Examples:
CLOSE ; Make sure no buffers are open
DELETE GATHER ; Free memory
OPEN PROG 50 ; Open new buffer for entry
CLEAR ; Erase contents of buffer
... ; Enter new contents here

DELETE TBUF
Function: Delete buffer for axis transformation matrices.
Scope: Global
Syntax: DELETE TBUF

DEL TBUF

This command frees up the space in PMAC’s memory that was used for axis transformation matrices.
These matrices can be used for real-time translation, rotation, scaling, and mirroring of the X, Y, and Z
axes of any coordinate system.

Note:
PMAC will reject this command, reporting an ERR007 if I6=1 or 3, if any
ROTARY or GATHER buffer exists. Any of these buffers must be deleted first.

Examples:
DEL TBUF
DELETE TBUF

DISABLE PLC
Function: Disable specified PLC programs
Scope: Global
Syntax: DISABLE PLC {constant}[,{constant}]

DIS PLC {constant}[,{constant}]
DISABLE PLC {constant}..{constant}
DIS PLC {constant}..{constant}

where
{constant} is an integer from 0 to 31, representing the program number.
This command causes PMAC to disable (stop executing) the specified PLC program or programs. PLC
programs are specified by number and may be specified in a command singularly, in a list (separated by
commas), or in a range of consecutively numbered programs. PLC programs can be re-enabled by using
the ENABLE PLC command.
If a motion or PLC program buffer is open when this command is sent to PMAC, the command will be
entered into that buffer for later execution.
Examples:
DISABLE PLC 1
DIS PLC 5

PMAC Product Guide

Online Commands 161

DIS PLC 3,4,7
DISABLE PLC 0..31

ENABLE PLC
Function: Enable specified PLC programs
Scope: Global
Syntax: ENABLE PLC {constant}[,{constant}]

ENA PLC {constant}[,{constant}]
ENABLE PLC {constant}..{constant}
ENA PLC {constant}..{constant}

where
{constant} is an integer from 0 to 31, representing the program number.

This command causes PMAC to enable (start executing) the specified PLC program or programs. PLC
programs are specified by number and may be used singularly in this command, in a list (separated by
commas), or in a range of consecutively numbered programs.

If a motion or PLC program buffer is open when this command is sent to PMAC, the command will be
entered into that buffer for later execution. I-Variable I5 must be in the proper state to allow the PLC
programs specified in this command to execute.

Note:
This command must be used to start operation of a PLC program after it has been
entered or edited because the OPEN PLC command disables the program
automatically, and CLOSE does not re-enable it.

Examples:
ENABLE PLC 1
ENA PLC 2,7
ENABLE PLC 3,21
ENABLE PLC 0..31

This example shows the sequence of commands to download a simple PLC program and have it enabled
automatically on the download:
OPEN PLC 7 CLEAR
P1=P1+1
CLOSE
ENABLE PLC 7

F
Function: Report motor following error
Scope: Motor specific
Syntax: F

This command causes PMAC to report the present motor following error (in counts, rounded to the
nearest tenth of a count) to the host. Following error is the difference between motor desired and
measured position at any instant. When the motor is open loop (killed or enabled), following error does
not exist and PMAC reports a value of 0.

Examples:
F ; Ask for following error of addressed motor
12 ; PMAC responds
#3F ; Ask for following error of Motor 3
-6.7 ; PMAC responds

 PMAC Product Guide

162 Online Commands

FRAX
Function: Specify the coordinate system's feedrate axes.
Scope: Coordinate-system specific
Syntax: FRAX

FRAX({axis}[,{axis}...])

where
{axis} (optional) is a character (X, Y, Z, A, B, C, U, V, W) specifying which axis is to be used in the
vector feedrate calculations
This command specifies which axes are to be involved in the vector-feedrate (velocity) calculations for
upcoming feedrate-specified (F) moves. PMAC calculates the time for these moves as the vector distance
(square root of the sum of the squares of the axis distances) of all the feedrate axes divided by the
feedrate. Any non-feedrate axes commanded on the same line will complete in the same amount of time,
moving at whatever speed is necessary to cover the distance in that time.
Vector feedrate has obvious geometrical meaning only in a Cartesian system for which it results in
constant tool speed regardless of direction, but it is possible to specify for non-Cartesian systems and for
more than three axes.
If only non-feedrate axes are commanded to move in a feedrate-specified move, PMAC will compute the
vector distance, and therefore the move time, as zero and will attempt to do the move in the acceleration
time (TA or 2*TS), possibly limited by the maximum velocity and/or acceleration parameters for the
motors. This will probably be much faster than intended.
If a motion program buffer is open when this command is sent to PMAC, it will be entered into the buffer
for later execution.
For instance, in a Cartesian XYZ system, if using FRAX(X,Y), all of the feedrate-specified moves will
be at the specified vector feedrate in the XY-plane, but not necessarily in XYZ-space. If using
FRAX(X,Y,Z) or FRAX, the feedrate-specified moves will be at the specified vector feedrate in XYZ-
space. Default feedrate axes for a coordinate system are X, Y, and Z.
Examples:
FRAX ; Make all axes feedrate axes
FRAX(X,Y) ; Make X and Y axes only the feedrate axes
FRAX(X,Y,Z) ; Make X, Y, and Z axes only the feedrate axes

H
Function: Perform a feedhold
Scope: Coordinate-system specific
Syntax: H

This causes the currently addressed coordinate system to suspend execution of the program starting
immediately by bringing its time base value to zero, decelerating along its path at a rate defined by the
coordinate system I-variable Ix95. Technically the program is still executing after an H command, but at
zero speed. This means that the motors defined in the coordinate system cannot be moved while
performing the feed hold.
To perform a hold of the currently addressed coordinate system in a manner that permits jogging of the
motors in the coordinate system while in feed hold mode, refer to the \ program hold command.
The H command is similar in effect to a %0 command, except that deceleration is controlled by Ix95, not
Ix94, and execution can be resumed with an R or an S command, instead of a %100 command. In
addition, H works under external time base, whereas a %0 command does not.

PMAC Product Guide

Online Commands 163

Full speed execution along the path will commence again on an R or S command. The ramp up to full
speed will also take place at a rate determined by Ix95 (full time-base value, either internally or externally
set). Once the full speed is reached, Ix94 determines any time-base changes.

HOME
Function: Start Homing Search Move
Scope: Motor specific
Syntax: HOME

HM

This command causes the addressed motor to perform a homing search routine. The characteristics of the
homing search move are controlled by motor I-Variables Ix03 and Ix19-Ix26, plus encoder I-Variables 2
and 3 for that motor’s position encoder.
The on-line home command simply starts the homing search routine. PMAC provides no automatic
indication that the search has completed (although the In-Position interrupt can be used for this purpose)
or whether the move completed successfully. Generally, polling or a combination of polling and
interrupts, is used to determine completion and success.
By contrast, when a homing search move is given in a motion program (e.g. HOME1,2), the motion
program will keep track of completion by itself as part of its sequencing algorithms.
If there is an axis offset in the axis-definition statement for the motor and/or following error in the motor
servo loop, the reported position at the end of the homing search move will be equal to the axis offset
minus the following error, not to zero.
Examples:
HOME ; Start homing search on the addressed motor
#1HM ; Start homing search on Motor 1
#3HM#4HM ; Start homing search on Motors 3 and 4

HOMEZ
Function: Do a Zero-Move Homing
Scope: Motor specific
Syntax: HOMEZ

HMZ

This command causes the addressed motor to perform a zero-move homing search. Instead of jogging
until it finds a pre-defined trigger and calling its position at the trigger the home position, with this
command the motor calls wherever it is (commanded position) at the time of the command the home
position.
If there is an axis offset in the axis-definition statement for the motor and/or following error in the motor
servo loop, the reported position at the end of the homing operation will be equal to the axis offset minus
the following error, not to zero.
Example:
On-line Command Examples
HOMEZ ; Do zero-move homing search on the addressed motor
#1HMZ ; Do zero-move homing search on Motor 1
#3HMZ#4HMZ ; Do zero-move homing search on Motors 3 and 4
Buffered Motion Program Examples
HOMEZ1
HOMEZ2,3
On-line Commands Issued from PLC Program
IF (P1=1)
 CMD"#5HOMEZ" ; Program issues on-line command

 PMAC Product Guide

164 Online Commands

 P1=0 ; So command is not repeatedly issued
ENDIF

I{constant}
Function: Report the current I-Variable values
Scope: Global
Syntax: I{constant}[..{constant}]

where
{constant} is an integer from 0 to 1023 representing the number of the I-variable.

The optional second{constant} must be at least as great as the first {constant} -- it represents the
number of the end of the range.

This command causes PMAC to report the current value of the specified I-Variable or range of I-
Variables.

When I9 is 0 or 2, only the value of the I-variable itself is returned (e.g. 10000). When I9 is 1 or 3, the
entire variable value assignment statement (e.g. I130=10000) is returned by PMAC.

When I9 is 0 or 1, the values of address I-Variables are reported in decimal form. When I9 is 2 or 3, the
values of these variables are reported in hexadecimal form.

Note:

If a motion program buffer (including a rotary buffer) is open, I{constant}
will be entered into that buffer for later execution, to be interpreted as a full-circle
move command with a vector to the center along the X-axis (see Circular Moves in
the Writing a Motion Program section of this manual).

Examples:
I5 ; Request the value of I5
2 ; PMAC responds
I130..135 ; Request the value of I130 through I135
60000 ; PMAC responds with 6 lines
5000
5000
50000
1
20000

To see the effect of I9 on the form of the response, observe the following:
I9=0 I125
49152 ; Short form, decimal
I9=1 I125
I125=49152 ; Long form, decimal
I9=2 I125
$C000 ; Short form, hexadecimal
I9=3 I125
I125=$C000 ; Long form, hexadecimal

PMAC Product Guide

Online Commands 165

I{constant}={expression}
Function: Assign a value to an I-variable
Scope: Global
Syntax: I{constant}[..{constant}]={expression}

where
{constant} is an integer from 0 to 1023 representing the number of the I-variable.
the optional second{constant} must be at least as great as the first {constant} -- it represents the
number of the end of the range.
{expression} contains the value to be given to the specified I-Variables.

This command assigns the value on the right side of the equals sign to the specified I-Variable or range of
I-Variables.

If a motion or PLC program buffer is open when this command is sent to PMAC, the command will be
entered into the buffer for later execution.
Examples:
I5=2
I130=1.25*I130
I22..44=0
I102=$C003
I104=I103

I{constant}=*
Function: Assign factory default value to an I-Variable
Scope: Global
Syntax: I{constant}[..{constant}]=*

where
{constant} is an integer from 0 to 1023 representing the number of the I-Variable.
the optional second{constant} must be at least as great as the first {constant} -- it represents the
number of the end of the range.

This command sets the specified I-variable or range of I-Variables to the factor default value. Each I-
Variable has its own factory default. These are shown in the I-Variable Specification section of this
manual.

Examples:
I13=*
I100..199=*

INC
Function: Specify incremental move mode
Scope: Coordinate-system specific
Syntax: INC

INC({axis}[,{axis}...])

where
{axis} is a letter (X, Y, Z, A, B, C, U, V, W) representing the axis to be specified, or the character R to
specify radial vector mode.

The INC command without arguments causes all subsequent positions for all axes in position motion
commands to be treated as incremental distances. An INC statement with arguments causes the specified
axes to be in incremental mode, and all others stay the way they were. The default axis specification is
absolute.

 PMAC Product Guide

166 Online Commands

If R is specified as one of the axes, the I, J, and K terms of the circular move radius vector specification
will be specified in incremental form (i.e. as a vector from the move start point, not from the origin). An
INC command without any arguments does not affect this vector specification. The default vector
specification is incremental.

If a motion program buffer is open when this command is sent to PMAC, it will be entered into the buffer
as a program statement.

Examples:
INC(A,B,C) ; A, B, and C axes made incremental -- other axes and radius vector left as is
INC ; All axes made incremental -- radius vector left as is
INC(R) ; Radius vector made incremental -- all axes left as is

J!
Function: Adjust motor commanded position to nearest integer count
Scope: Motor specific
Syntax: J!

This command causes the addressed motor, if the desired velocity is zero, to adjust its commanded
position to the nearest integer count value. It can be valuable to stop dithering if the motor is stopped
with its commanded position at a fractional value, and integral gain is causing oscillation about the
commanded position.

Examples:
OPEN PLC 7 CLEAR
IF (M50=1) ; Condition to start branch
 CMD"#1J/" ; Tell motor to stop
 WHILE (M133=0) ; Wait for desired velocity to reach zero
 ENDWHILE
 CMD"#1J!" ; Adjust command position to integer value
 M50=0 ; To keep from repeated execution
ENDIF

J+
Function: Jog positive
Scope: Motor specific
Syntax: J+

This command causes the addressed motor to jog in the positive direction indefinitely. Jogging
acceleration and velocity are determined by the values of Ix19-Ix22 in force at the time of this command.

PMAC will reject this command if the motor is in a coordinate system that is currently running a motion
program (reporting ERR001 if I6 is 1 or 3).

Examples:
J+ ; Jog addressed motor positive
#7J+ ; Jog Motor 7 positive
#2J+#3J+ ; Jog Motors 2 and 3 positive

PMAC Product Guide

Online Commands 167

J-
Function: Jog negative
Scope: Motor specific
Syntax: J-

This command causes the addressed motor to jog in the negative direction indefinitely. Jogging
acceleration and velocity are determined by the values of Ix19-Ix22 in force at the time of this command.

PMAC will reject this command if the motor is in a coordinate system that is currently running a motion
program (reporting ERR001 if I6 is 1 or 3).

Examples:
J- ; Jog addressed motor negative
#5J- ; Jog Motor 5 negative
#3J-#4J- ; Jog Motors 3 and 4 negative

J/
Function: Jog stop
Scope: Motor specific
Syntax: J/

This command causes the addressed motor to stop jogging. It also restores position control if the motor’s
servo loop has been opened (enabled or killed) with the new commanded position set equal to the actual
position at the time of the J/ command. Jogging deceleration is determined by the values of Ix19-Ix21 in
force at the time of this command.

PMAC will reject this command if the motor is in a coordinate system that is currently running a motion
program (reporting ERR001 if I6 is 1 or 3).

Examples:
#1J+ ; Jog Motor 1 positive
J/ ; Stop jogging Motor 1
O5 ; Open-loop output of 5% on Motor 1
O0 ; Open loop output of 0%
J/ ; Restore closed-loop control
K ; Kill output
J/ ; Restore closed-loop control

J:{constant}
Function: Jog relative to commanded position
Scope: Motor specific
Syntax: J:{constant}

where
{constant} is a floating point value specifying the distance to jog, in counts.

This command causes a motor to jog the distance specified by {constant} relative to the present
commanded position. Jogging acceleration and velocity are determined by the values of Ix19-Ix22 in
force at the time of this command. Compare to J^{constant}, which is a jog relative to the present
actual position.

A variable incremental jog command can be executed with the J:* command.

PMAC will reject this command if the motor is in a coordinate system that is currently running a motion
program (reporting ERR001 if I6 is 1 or 3).

 PMAC Product Guide

168 Online Commands

Examples:
#1HM ; Do homing search move on Motor 1
J:2000 ; Jog a distance of 2000 counts (to 2000 counts)
J:2000 ; Jog a distance of 2000 counts (to 4000 counts)

J:*
Function: Jog to specified variable distance from present commanded position
Scope: Motor specific
Syntax: J:*

This command causes the addressed motor to jog the distance specified in the motor’s variable jog
position/distance register relative to the present commanded position. Jogging acceleration and velocity
are determined by the values of Ix19-Ix22 in force at the time of this command. Compare to J^* which
is a jog relative to the present actual position.

The variable jog position/distance register is a floating-point register with units of counts. It is best
accessed with a floating-point M-Variable. The register is located at PMAC address L:$082B for motor
1, L:$08EB for motor 2, etc. The usual procedure is to write the destination position to this register by
assigning a value to the M-Variable, then issuing the J:* command.

PMAC will reject this command if the motor is in a coordinate system that is currently running a motion
program (reporting ERR001 if I6 is 1 or 3).

Examples:
M172->L:$082B ; Define #1 variable jog position/distance register
#1HMZ ; Declare present position to be zero
M172=3000 ; Assign distance value to register
#1J:* ; Jog Motor 1 this distance; end cmd. pos. will be 3000
#1J:* ; Jog Motor 1 this distance; end cmd. pos. will be 6000
M172=P1*SIN(P2) ; Assign new distance value to register
#1J:* ; Jog Motor 1 this distance
#1J= ; Return to pre-jog target position

J=
Function: Jog to prejog position
Scope: Motor specific
Syntax: J=

This command causes the addressed motor to jog to the last pre-jog and pre-handwheel-move position
(the most recent programmed position). Jogging acceleration and velocity are determined by the values
of Ix19-Ix22 in force at the time of this command.

The register containing this position information for the motor is called the target position register
(D:$080B for Motor 1, D:$08CB for Motor 2, etc.). Suggested M-Variable definitions M163, M263, etc.
can be used in programs to give access to these registers.

If the / or \ stop command has been used to suspend program execution and one or more motors jogged
away from the stop position, the J= command must be used to return the motor(s) back to the stop
position before program execution can be resumed.

The J= command can be useful also if a program has been aborted in the middle of a move, because it
will move the motor to the programmed move end position (provided I13=0 so PMAC is not in
segmentation mode), so the program may be resumed properly from that point.

PMAC Product Guide

Online Commands 169

PMAC will reject this command if the motor is in a coordinate system that is currently running a motion
program (reporting ERR001 if I6 is 1 or 3).

Examples:
&1Q ; Stop motion program at end of move
#1J+ ; Jog Motor 1 away from this position
J/ ; Stop jogging
J= ; Jog back to position where program quit
R ; Resume motion program

&1A ; Stop motion program in middle of move
#1J=#2J=#3J= ; Move all motors to original move end position
R ; Resume motion program

J={constant}
Function: Jog to specified position
Scope: Motor specific
Syntax: J={constant}

where
{constant} is a floating point value specifying the location to which to jog, in encoder counts.

This command causes the addressed motor to jog to the position specified by {constant}. Jogging
acceleration and velocity are determined by the values of Ix19-Ix22 in force at the time of this command.

A variable jog-to-position can be executed with the J=* command.

PMAC will reject this command if the motor is in a coordinate system that is currently running a motion
program (reporting ERR001 if I6 is 1 or 3).

Examples:
J=0 ; Jog addressed motor to position 0
#4J=5000 ; Jog Motor 4 to 5000 counts
#8J=-32000 ; Jog Motor 8 to -32000 counts

J=*
Function: Jog to specified variable position
Scope: Motor specific
Syntax: J=*

This command causes the addressed motor to jog to the position specified in the motor’s variable jog
position/distance register. Jogging acceleration and velocity are determined by the values of Ix19-Ix22 in
force at the time of this command.

The variable jog position/distance register is a floating-point register with units of counts. It is best
accessed with a floating-point M-Variable. The register is located at PMAC address L:$082B for motor
1, L:$08EB for motor 2, etc. The usual procedure is to write the destination position to this register by
assigning a value to the M-Variable, then issuing the J=* command.

Virtually the same result can be obtained by writing to the motor target position register and issuing the
J= command. However, using the J=* command permits returning to the real target position afterwards
without having to restore the target position register. Also, the J=* command uses a register whose value
is scaled in counts, not fractions of a count.

PMAC will reject this command if the motor is in a coordinate system that is currently running a motion
program (reporting ERR001 if I6 is 1 or 3).

 PMAC Product Guide

170 Online Commands

Examples:
M172->L:$082B ; Define #1 variable jog position/distance reg.

M172=3000 ; Assign position value to register
#1J=* ; Jog Motor 1 to this position
M172=P1*SIN(P2) ; Assign new position value to register
#1J=* ; Jog Motor 1 to this position
#1J= ; Return to prejog target position

J=={constant}
Function: Jog to specified motor position and make that position the pre-jog position
Scope: Motor specific
Syntax: J=={constant}

where
{constant} is a floating point value specifying the location to which to jog, in encoder counts

This command causes the addressed motor to jog the position specified by {constant}. It also makes
this position the pre-jog position, so it will be the destination of subsequent J= commands. Jogging
acceleration and velocity are determined by the values of Ix19-Ix22 in force at the time of this command.

PMAC will reject this command if the motor is in a coordinate system that is currently running a motion
program (reporting ERR001 if I6 is 1 or 3).

Examples:
#1J==10000 ; Jog Motor 1 to 10000 counts and make that the pre-jog position.
J+ ; Jog indefinitely in the positive direction
J= ; Return to 10000 counts

J^{constant}
Function: Jog Relative to Actual Position
Scope: Motor specific
Syntax: J^{constant}

where
{constant} is a floating point value specifying the distance to jog, in counts.
This causes a motor to jog the distance specified by {constant} relative to the present actual position.
Jogging acceleration and velocity are determined by the values of Ix19-Ix22 in force at the time of this
command. Compare to J:{constant} which is a jog relative to the present commanded position.

Usually, the J:{constant} command is more useful because its destination is not dependent on the
following error at the instant of the command. The J^0 command can be useful for swallowing any
existing following error.

A variable incremental jog can be executed with the J^* command.

PMAC will reject this command if the motor is in a coordinate system that is currently running a motion
program (reporting ERR001 if I6 is 1 or 3).
Examples:
#1HM ; Do homing search move on Motor 1
J^2000 ; Jog a distance of 2000 counts from actual position
 ; If actual was -5 cts, new command pos is 1995 cts
J^2000 ; Jog a distance of 2000 counts from actual position
 ; If actual was 1992 cts, new cmd pos is 3992 cts

PMAC Product Guide

Online Commands 171

J^*
Function: Jog to specified variable distance from present actual position
Scope: Motor specific
Syntax: J^*

This command causes the addressed motor to jog the distance specified in the motor’s variable jog
position/distance register relative to the present actual position. Jogging acceleration and velocity are
determined by the values of Ix19-Ix22 in force at the time of this command. Compare to J:* which is a
jog relative to the present commanded position.

The variable jog position/distance register is a floating-point register with units of counts. It is best
accessed with a floating-point M-Variable. The register is located at PMAC address L:$082B for motor
1, L:$08EB for motor 2, etc. The usual procedure is to write the destination position to this register by
assigning a value to the M-Variable, then issuing the J^* command.

PMAC will reject this command if the motor is in a coordinate system that is currently running a motion
program (reporting ERR001 if I6 is 1 or 3).
Examples:
M172->L:$082B ; Define #1 variable jog position/distance reg.
#1HMZ ; Declare present position to be zero
M172=3000 ; Assign distance value to register
#1J^* ; Jog Motor 1 this distance; if following error at command was 3, end command position

; will be 2997
#1J^* ; Jog Motor 1 this distance; if following error at command was 2, end command position

; will be 5995
M172=P1*SIN(P2) ; Assign new distance value to register
#1J^* ; Jog Motor 1 this distance
#1J= ; Return to prejog target position

{jog command}^{constant}
Function: Jog until trigger
Scope: Motor specific
Syntax: J=^{constant}

J={constant}^{constant}
J:{constant}^{constant}
J^{constant}^{constant}
J=*^{constant}
J:*^{constant}
J^*^{constant}

where
{constant} after the ^ is a floating point value specifying the distance from the trigger to which to jog
after the trigger is found, in encoder counts

This command format permits a jog-until-trigger function. When the ^{constant} structure is added
to any definite jog command, the jog move can be interrupted by a pre-defined trigger condition, and the
motor will move to a point relative to the trigger position as specified by the final value in the command.
The indefinite jog commands J+ and J- cannot be turned into jog-until-trigger moves. Jog-until-trigger
moves are similar to homing search moves, except they have a definite end position in the absence of a
trigger and they do not change the motor zero position.

 PMAC Product Guide

172 Online Commands

The jog-until-trigger function can be used with any jog command, whether the basic jog command is
definite or indefinite. If the basic jog command is definite (e.g. J=10000), in the absence of a trigger the
move will simply stop at the pre-defined position. If the basic jog command is indefinite (e.g. J+), in the
absence of a trigger the motor will keep moving until stopped by another command or error condition.

The trigger condition for a jog-until-trigger move can be either an input flag or a warning following error
condition for the motor. If bit 17 of Ix03 is 0 (the default), the trigger is a transition of an input flag
and/or encoder index channel from the set defined for the motor by Ix25. Encoder/flag variables 2 and 3
(e.g. I912 and I913) define which edges of which input signals create the trigger.

If bit 17 of Ix03 is 1, the trigger is the warning following error status bit of the motor becoming true.
Ix12 for the motor sets the error threshold for this condition.

The trigger position can be either the hardware-captured position or a software-read position. If bit 16 of
Ix03 is 0 (the default), the encoder position latched by the trigger in PMAC’s DSPGATE hardware is
used as the trigger position. This is the most accurate option because it uses the position at the moment of
the trigger, but it can only be used with incremental encoder feedback brought in on the same channel
number as the triggering flag set. This option cannot be used for other types of feedback or for triggering
on following error.

If bit 16 of Ix03 is 1, PMAC reads the present sensor position after it sees the trigger. This can be used
with any type of feedback and either trigger condition, but can be less accurate than the hardware capture
because of software delays.

Jogging acceleration and velocity are determined by the values of Ix19-Ix22 in force at the time of this
command.

PMAC will reject this command if the motor is in a coordinate sytem that is currently running a motion
program (reporting ERR001 if I6 is 1 or 3).

Examples:
#1J=^1000 ; Jog to pre-jog position in the absence of a trigger

; but if trigger is found, jog to +1000 counts from trigger
#2J:5000^-100 ; Jog 5000 counts in the positive direction in the absence of a trigger

 ; but if trigger is found, jog to -100 counts from trigger position
#3J=20000^0 ; Jog to 20000 counts in the absence of a trigger

; but if trigger is found, return to trigger position

K
Function: Kill motor output
Scope: Motor specific
Syntax: K

This command causes PMAC to kill the outputs for the addressed motor. The servo loop is disabled, the
DAC outputs are set to zero (Ix29 and/or Ix79 offsets are still in effect), and the AENA output for the
motor is taken to the disable state (polarity is determined by E17).

Closed-loop control of this motor can be resumed with a J/ command. The A command will re-establish
closed-loop control for all motors in the addressed coordinate system and the <CTRL-A> command will
do so for all motors on PMAC.

The action on a K command is equivalent to what PMAC does automatically to the motor on an amplifier
fault or a fatal following error fault.

PMAC Product Guide

Online Commands 173

PMAC will reject this command if the motor is in a coordinate system that is currently running a motion
program (reporting ERR001 if I6 is 1 or 3). The program must be stopped first, usually with an A
command. However, the global <CTRL-K> command will kill all motors immediately, regardless of
whether any are running motion programs.
Examples:
K ; Kill the addressed motor
#1K ; Kill Motor 1
J/ ; Re-establish closed-loop control of Motor 1

LEARN
Function: Learn present commanded position
Scope: Coordinate-system specific
Syntax : LEARN[({axis}[,{axis}...]]

LRN[({axis}[,{axis}...]]

This command causes PMAC to add a line to the end of the open motion program buffer containing axis
position commands equal to the current commanded positions for some or all of the motors defined in the
addressed coordinate system. In this way PMAC can learn a sequence of points to be repeated by
subsequent execution of the motion program.

PMAC effectively performs a PMATCH function, reading motor commanded positions and inverting the
axis definition equations to compute axis positions.

If axis names are specified in the LEARN command, only position commands for those axes are used in
the line added to the motion program. If no axis names are specified in the learn command, position
commands for all nine possible axis names are used in the line added to the motion program. The
position command for an axis with no motor attached (phantom axis) will be zero.

Note:

If a motor is closed loop, the learned position will differ from the actual position
by the amount of the position following error because commanded position is used.
If a motor is open loop or killed, PMAC automatically sets motor commanded
position equal to motor actual position, so the LEARN function can be used
regardless of the state of the motor.

Examples:
&1 ; Address coordinate system 1
#1->10000X ; Define motor 1 in C.S. 1
#2->10000Y ; Define motor 2 in C.S. 1
OPEN PROG 1 CLEAR ; Prepare program buffer for entry
F10 TA200 TS50 ; Enter required non-move commands {move motors to a position, e.g. #1 to 13450
 ; commanded, #2 to 29317 commanded}
LEARN(X,Y) ; Tell PMAC to learn these positions
X1.345 Y2.9317 ; This is the line that PMAC adds to PROG 1 {move motors to new position, e.g. #1 to
 ; 16752 cmd., #2 to 34726 cmd}
LEARN ; Tell PMAC to learn positions
A0 B0 C0 U0 V0 W0 X1.6752 Y3.4726 Z0
 ; PMAC adds positions for all axes to PROG 1

 PMAC Product Guide

174 Online Commands

LIST
Function: List the contents of the currently opened buffer
Scope: Global
Syntax: LIST

This command causes PMAC to report the contents of the currently opened buffer (PLC, PROG, or ROT)
to the host. If no buffer is open, PMAC will report an error (ERR003 if I6=1 or 3). Note that what is
reported will not include any OPEN, CLEAR or CLOSE statements (since these are not program
commands).
An unopened buffer can be listed by specifying the buffer name in the list command (e.g. LIST PROG 1).
See more LIST commands, below.
Examples:
OPEN PROG 1 ; Open buffer for entry
LIST ; Request listing of open buffer
LINEAR ; PMAC reports contents of open buffer
F10
X20 Y20
X0 Y0
RETURN
CLOSE ; Close buffer
LIST ; Request listing of open buffer
<BELL>ERR003 ; PMAC reports error because no open buffer

LIST PC
Function: List program at program counter
Scope: Coordinate-system specific
Syntax: LIST PC[,[{constant}]]

where
{constant} is a positive integer representing the number of words in the program to be listed
This command causes PMAC to list the program lines that it are about to calculate in the addressed
coordinate system, with the first line preceded by the program number and each line preceded by the
address offset. LIST PC just lists the next line to be calculated. LIST PC, lists from the next line to be
calculated to the end of the program. LIST PC,{constant} lists the specified address range size
starting at the next line to be calculated. To see the current line of execution, use the LIST PE
command.
Because PMAC calculates ahead in a continuous sequence of moves, the LIST PC (Program
Calculation) command will in general, return a program line further down in the program than LIST PE
will. If the coordinate system is not pointing to any motion program, PMAC will return an error
(ERR003 if I6=1 or 3). Initially, the pointing must be done with the B{constant} command.
Examples:
LIST PC ; List next line to be calculated
P1:22:X10Y20 ; PMAC responds
LIST PC,4 ; List next four words of program to be calculated
P1:22:X10Y20 ; PMAC responds
24:X15Y30
LIST PC, ; List rest of program
P1:22:X10Y20 ; PMAC responds
24:X15Y30
26:M1=0
28:RETURN

PMAC Product Guide

Online Commands 175

LIST PE
Function: List program at program execution
Scope: Coordinate-system specific
Syntax: LIST PE[,[{constant}]]

where
{constant} is a positive integer representing the number of words in the program to be listed.
This command causes PMAC to list the program lines starting with the line containing the move that it is
currently executing in the addressed coordinate system, with the first line preceded by the program
number, and each line preceded by the address offset.
Because PMAC calculates ahead in a continuous sequence of moves, the LIST PC (Program Calculation)
command will in general return a program line further down in the program than LIST PE will.
LIST PE returns only the currently executing line. LIST PE, returns from the currently executing line
to the end of the program. LIST PE,{constant} returns the specified number of words in the
program, starting at the currently executing line.
If the coordinate system is not pointing to any motion program, PMAC will return an error (ERR003 if
I6=1 or 3). Initially the pointing must be done with the B{constant} command.
Examples:
LIST PE ; List presently executing line
P5:35:X5Y30 ; PMAC responds
LIST PE,4 ; List four program words, starting with executing line
P5:35:X5Y30 ; PMAC responds
37:X12Y32
LIST PE, ; List rest of program, starting with executing line
P5:35:X5Y30 ; PMAC responds
37:X12Y32
39:X0 Y10
41:RETURN

LIST PLC
Function: List the contents of the specified PLC program
Scope: Global
Syntax: LIST PLC {constant}

where
{constant} is an integer from 0 to 31 representing the number of the PLC program.

This command causes PMAC to report the contents of the specified PLC program buffer to the host. The
contents are reported in ASCII text form. If I9 is 0 or 2, the contents are reported in short form (e.g.
ENDW). If I9 is 1 or 3, the contents are reported in long form (e.g. ENDWHILE).

PLCs 0-15 can be protected by password. If the PLC is protected by password and the proper password
has not been given, PMAC will reject this command (reporting an ERR002 if I6=1 or 3).

Examples:
LIST PLC 0
LIST PLC 5

 PMAC Product Guide

176 Online Commands

LIST PROGRAM
Function: List the contents of the specified motion program.
Scope: Global
Syntax: LIST PROGRAM {constant} [{start}] [,{length}]

LIST PROG {constant} [{start}] [,{length}]
where
{constant} is an integer from 1 to 32767 specifying the number of the motion program.

the optional {start} parameter is an integer constant specifying the distance from the start of the buffer
(in words of memory) to begin the listing (0 is the default).

the optional {length} parameter (after a comma) is an integer constant specifying the number of words
of the buffer to be sent to the host (to the end of the buffer is the default).

This command causes PMAC to report the contents of the specified fixed motion program buffer (PROG)
to the host. The contents are reported in ASCII text form. If I9 is 0 or 2, the contents are reported in
short form (e.g. LIN). If I9 is 1 or 3, the contents are reported in long form (e.g. LINEAR).

If neither {start} nor {length} is specified, the entire contents of the buffer will be reported. If
{start} is specified, the reporting will begin {start} words from the beginning of the buffer. If
{length} is specified, the reporting will continue for {length} words from the starting point.

If either {start}, {length}, or both, or just the comma is included in the command, the listing of the
program will include the buffer address offsets with each line. Having a listing with these offsets can be
useful in conjunction with later use of the PC (Program-Counter) and LIST PC commands.

If the motion program requested by this command does not exist in PMAC, PMAC will reject this
command (reporting an ERR003 if I6=1 or 3).

PROGs 1000-32767 can be protected by password. If the PROG is protected by password and the proper
password has not been given, PMAC will reject this command (reporting an ERR002 if I6=1 or 3).

Examples:
LIST PROG 9 ; Request listing of all of motion program 9
LINEAR ; PMAC responds
F10
X10Y10
X0Y0
RETURN

LIST PROG 9, ; Request listing of program w/ address offsets
0:LINEAR
1:F10
2:X10Y10 ; Note that a 2-axis command takes two addresses
4:X0Y0
6:RETURN

LIST PROG 9,4 ; Request listing starting at address 4
4:X0Y0
6:RETURN

LIST PROG 9,2,4 ; Request listing starting at 2, four words long
2:X10Y10
4:X0Y0

LIST PROG 9,,2 ; Request listing starting at top, 2 words long
0:LINEAR
1:F10

PMAC Product Guide

Online Commands 177

M{constant}
Function: Report the current M-Variable values
Scope: Global
Syntax: M{constant}[..{constant}]

where
{constant} is an integer from 0 to 1023 representing the number of the M-Variable.

The optional second {constant} must be at least as great as the first {constant} -- it represents the
number of the end of the range.

This command causes PMAC to report the current value of the specified M-variable or range of M-
variables. It does not cause PMAC to report the definition (address) of the M-Variables; that is done with
the M{constant}-> command.

Note:

If a motion program buffer (including a rotary buffer) is open when this command
is sent to PMAC it will be entered into the buffer for later execution, to be
interpreted as an M-code subroutine call.

Examples:
M0 ; Host asks for value
3548976 ; PMAC's response
M165
5.75
M1..3
1
0
1

M{constant}={expression}
Function: Assign value to M-variable(s).
Scope: Global
Syntax: M{constant}[..{constant}]={expression}

where
{constant} is an integer from 0 to 1023 representing the number of the M-Variable.
The optional second{constant} must be at least as great as the first {constant} -- it represents the
number of the end of the range;

{expression} contains the value to be given to the specified M-Variables.

This command assigns the value on the right side of the equals sign to the specified M- Variables. It does
not assign a definition (address) to the M-Variables; that is done with the M{constant}-
>{definition} command.

If a motion or PLC program buffer is open when this command is sent to PMAC, it will be entered into
the buffer for later execution.

Examples:
M1=1
M9=M9 & $20
M102=-16384
M1..8=0

 PMAC Product Guide

178 Online Commands

M{constant}->
Function: Report current M-variable definition(s)
Scope: Global
Syntax: M{constant}[..{constant}]->

where
{constant} is an integer from 0 to 1023 representing the number of the M-Variable.

the optional second{constant} must be at least as great as the first {constant} -- it represents the
number of the end of the range.

This command causes PMAC to report the definition (address) of the specified M-Variable or range of M-
Variables. It does not cause PMAC to report the value of the M-Variables; that is done with the
M{constant} command.

When I9 is 0 or 2, only the definition itself (e.g. Y:$FFC2,0) is returned. When I9 is 1or 3, the entire
definition statement (e.g. M11->Y:$FFC2,0) is returned.

Examples:
M1-> ; Host requests definition
Y:$FFC2,8 ; PMAC's response
M101..103->
X:$C001,24,S
Y:$C003,8,16,S
X:$C003,24,S

M{constant}->*
Function: Self-referenced M-Variable definition
Scope: Global
Syntax: M{constant}[..{constant}]->*

where
{constant} is an integer from 0 to 1023 representing the number of the M-variable

the optional second{constant} must be at least as great as the first {constant} -- it represents the
number of the end of the range.

This command causes PMAC to reference the specified M-Variable or range of M-Variables to its own
definition word. To use an M-Variable as a flag, status bit, counter, or other simple variable, there is no
need to find an open area of memory, because it is possible to use some of the definition space to hold the
value. Define this form of the M-Variable and it can be used the same as a P-variable, except it only
takes integer values in the range -1,048,576 to +1,048,575 (-220 to +220-1).

When the definition is made, the value is set automatically to 0. This command is also useful to erase an
existing M-Variable definition.

Examples:
M100->*
M20..39->*
M0..1023->* ; This erases all existing M-variable definitions
 ; It is a good idea to use this before loading new ones

PMAC Product Guide

Online Commands 179

M{constant}->D:{address}
Function: Long fixed-point M-Variable definition
Scope: Global
Syntax: M{constant}[..{constant}]->D[:]{address}

where
{constant} is an integer from 0 to 1023 representing the number of the M-Variable.
the optional second {constant} must be at least as great as the first {constant} -- it represents the
number of the end of the range.
{address} is an integer constant from 0 to 65,535 ($0 to $FFFF if specified in hex).

This command causes PMAC to define the specified M-variable or range of M-Variables to a 48-bit
double word (both X and Y memory; X more significant) at the specified location in PMAC’s address
space. The data is interpreted as a fixed-point signed (two’s complement) integer.
The definition consists of the letter D, an optional colon (:), and the word address.
Memory locations for which this format is useful are labeled with D: in the memory map.
Examples:
M161->D:$0028 ; Motor 1 desired position register specified in hex
M161->D40 ; Motor 1 desired position register specified in decimal
M162->D$2C ; Motor 1 actual position register specified in hex

M{constant}->L:{address}
Function: Long word floating-point M-Variable definition
Scope: Global
Syntax: M{constant}[..{constant}]->L[:]{address}

where
{constant} is an integer from 0 to 1023 representing the number of the M-Variable.
the optional second{constant} must be at least as great as the first {constant} -- it represents the
number of the end of the range.
{address} is an integer constant from 0 to 65,535 ($0 to $FFFF if specified in hex).
This command causes PMAC to define the specified M-Variable or range of M-Variables to point to a
long word (48 bits) of data -- both X and Y memory -- at the specified location in PMAC’s address space.
The data is interpreted as a floating-point value with PMAC’s own 48-bit floating-point format.
The definition consists of the letter L, an optional colon (:), and the word address. Memory locations for
which this format is useful are labeled with L: in the memory map.
Examples:
M165->L:$081F
M265->L$0820
M265->L2080

M{constant}->X/Y:{address}
Function: Short word M-Variable definition
Scope: Global
Syntax: M{constant}[..{constant}]->

X[:]{address},{offset}[,{width}[,{format}]]

M{constant}[..{constant}]->
Y[:]{address},{offset}[,{width}[,{format}]]

where
{constant} is an integer from 0 to 1023 representing the number of the M-Variable.

 PMAC Product Guide

180 Online Commands

the optional second{constant} must be at least as great as the first {constant} -- it represents the
number of the end of the range.
{address} is an integer constant from 0 to 65,535 ($0 to $FFFF if specified in hex).
{offset} is an integer constant from 0 to 23, representing the starting (least significant) bit of the word
to be used in the M-Variables, or 24 to specify the use of all 24 bits.
{width} (optional) is an integer constant from the set {1, 4, 8, 12, 16, 20, 24}, representing the number of
bits from the word to be used in the M-Variables; if {width} is not specified, a value of 1 is assumed.
{format} (optional) is a letter from the set [U, S, D, C], specifying how PMAC is to interpret this
value: (U=Unsigned integer, S=Signed integer, D=Binary-coded Decimal, C=Complementary binary-
coded decimal); if {format} is not specified, U is assumed.
This command causes PMAC to define the specified M-Variable or range of M-Variables to point to a
location in one of the two halves (X or Y) of PMAC’s data memory. In this form, the variable can have a
width of 1 to 24 bits and can be decoded several different ways, so the bit offset, bit width, and decoding
format must be specified (the bit width and decoding format do have defaults).
The definition consists of the letter X or Y, an optional colon (:), the word address, the starting bit
number (offset), an optional bit width number, and an option format-specifying letter.
Legal values for bit width and bit offset are inter-related. The table below shows the possible values of
{width}, and the corresponding legal values of {offset} for each setting of {width}.
 {width} {offset}
 1 0 -- 23
 4 0,4,8,12,16,20
 8 0,4,8,12,16
 12 0,4,8,12
 16 0,4,8
 20 0,4
 24 0
The format is irrelevant for 1-bit M-Variables and should not be included for them. If no format is
specified, U is assumed.
Examples:
Machine Output 1
M1->Y:$FFC2,8,1 ; 1-bit (full spec.)
M1->Y$FFC2,8 ; 1-bit (short spec.)
Encoder 1 Capture/Compare Register
M103->X:$C003,0,24,U ; 24-bit (full spec.)
M103->X$C003,24 ; 24-bit (short spec.)
DAC 1 Output Register
M102->Y:$C003,8,16,S ; 16-bit value
M102->Y49155,8,16,S ; same, decimal address

PMAC Product Guide

Online Commands 181

MFLUSH
Function: Clear pending synchronous M-Variable assignments
Scope: Coordinate-system specific
Syntax: MFLUSH

This command permits the user to clear synchronous M-Variable assignment commands that have been
put on the stack for intended execution with a subsequent move (without executing the commands). As
an on-line command, it is useful for making sure pending outputs are not executed after a program has
been stopped.
Examples:
/ ; Stop execution of a program
MFLUSH ; Clear M-Variable stack
B1R ; Start another program; formerly pending M-variables will not execute

O{constant}
Function: Open loop output
Scope: Motor specific
Syntax: O{constant}

where
{constant} is a floating-point value representing the magnitude of the output as a percentage of Ix69
for the motor, with a range of +/-100.

This command causes PMAC to put the motor in open-loop mode and force an output of the specified
magnitude, expressed as a percentage of the maximum output parameter for the motor (Ix69). This
command is commonly used for set-up and diagnostic purposes (for instance, a positive O command must
cause position to count in the positive direction, or closed-loop control cannot be established), but it can
also be used in actual applications.

If the motor is not PMAC-commutated, this command will create a DC output voltage on the single DAC
for the motor. If the motor is commutated by PMAC, the commutation algorithm is still active and the
specified magnitude of output is apportioned between the two DAC outputs for the motor according to the
instantaneous commutation phase angle.

If the value specified is outside the range +/-100, the output will saturate at +/-100% of Ix69.

Closed-loop control for the motor can be re-established with the J/ command. It is a good idea to stop
the motor first with an O0 command if it has been moving in open-loop mode.

To perform a variable O-command, define an M-Variable to the filter result register (X:$003A, etc.),
command an O0 to the motor to put it in open-loop mode, then assign a variable value to the M-Variable.
This technique will even work on PMAC-commutated motors.

PMAC will reject this command if the motor is in a coordinate system that is currently running a motion
program (reporting ERR001 if I6 is 1 or 3).

Examples:
O50 ; Open-loop output 50% of Ix69 for addressed motor
#2O33.333 ; Open-loop output 1/3 of Ix69 for Motor 2
O0 ; Open-loop output of zero magnitude
J/ ; Re-establish closed-loop control

 PMAC Product Guide

182 Online Commands

OPEN PLC
Function: Open a PLC program buffer for entry
Scope: Global
Syntax: OPEN PLC {constant}

where
{constant} is an integer from 0 to 31 representing the PLC program to be opened.
This command causes PMAC to open the specified PLC program buffer for entry and editing. This
permits subsequent program lines that are valid for a PLC to be entered into this buffer. When entry of
the program is finished, the CLOSE command should be used to prevent further lines from being put in
the buffer.
No other program buffers (PLC, fixed or rotary motion) may be open when this command is sent (PMAC
will report ERR007 if I6=1 or 3). Precede an OPEN command with a CLOSE command to make sure no
other buffers have been left open.
PLCs 0-15 can be protected by password. If the PLC is protected by password and the proper password
has not been given, PMAC will reject this command (reporting an ERR002 if I6=1 or 3).
Opening a PLC program buffer automatically disables that PLC program. Other PLC programs and
motion programs will keep executing. Closing the PLC program buffer after entry does not re-enable the
program. To re-enable the program, the ENABLE PLC command must be used, or PMAC must be reset
(with a saved value of I5 permitting this PLC program to execute).
Examples:
CLOSE ; Make sure other buffers are closed
DELETE GATHER ; Make sure memory is free
OPEN PLC 7 ; Open buffer for entry, disabling program
CLEAR ; Erase existing contents
IF (M11=1) ; Enter new version of program...
 ...
CLOSE ; Close buffer at end of program
ENABLE PLC 7 ; Re-enable program

OPEN PROGRAM
Function: Open a fixed motion program buffer for entry
Scope: Global
Syntax: OPEN PROGRAM {constant}

OPEN PROG {constant}
where
{constant} is an integer from 1 to 32767 representing the motion program to be opened.
This command causes PMAC to open the specified fixed (non-rotary) motion program buffer for entry or
editing. Subsequent program commands valid for motion programs will be entered into this buffer.
When entry of the program is finished, the CLOSE command should be used to prevent further lines from
being put in the buffer.
No other program buffers (PLC, fixed or rotary motion) may be open when this command is sent (PMAC
will report ERR007 if I6=1 or 3). Precede an OPEN command with a CLOSE command to make sure no
other buffers have been left open.
No motion programs may be running in any coordinate system when this command is sent (PMAC will
report ERR001 if I6=1 or 3). As long as a fixed motion program buffer is open, no motion program may
be run in any coordinate system (PMAC will report ERR015 if I6=1 or 3).
PROGs 1000-32767 can be protected by password. If the PROG is protected by password and the proper
password has not been given, PMAC will reject this command (reporting an ERR002 if I6=1 or 3).

PMAC Product Guide

Online Commands 183

After any fixed motion program buffer has been opened, each coordinate system must be commanded to
point to a motion program with the B{constant} command before it can run a motion command
(otherwise PMAC will report ERR015 if I6=1 or 3)
Examples:
CLOSE ; Make sure other buffers are closed
DELETE GATHER ; Make sure memory is free
OPEN PROG 255 ; Open buffer for entry, disabling program
CLEAR ; Erase existing contents
X10 Y20 F5 ; Enter new version of program...
 ...
CLOSE ; Close buffer at end of program
&1B255R ; Point to this program and run it

P
Function: Report motor position
Scope: Motor specific
Syntax: P

This command causes PMAC to report the present actual position for the addressed motor to the host,
scaled in counts, rounded to the nearest tenth of a count.
PMAC reports the value of the actual position register plus the position bias register, plus the
compensation correction register, and if bit 16 of Ix05 is 1 (handwheel offset mode), minus the master
position register.
Examples:
P ; Request the position of the addressed motor
1995 ; PMAC responds
#1P ; Request position of Motor 1
-0.5 ; PMAC responds
#2P#4P ; Request positions of Motors 2 and 4
9998 ; PMAC responds with Motor 2 position first
10002 ; PMAC responds with Motor 4 position next

P{constant}
Function: Report the current P-variable values
Scope: Global
Syntax: P{constant}[..{constant}]

where
{constant} is an integer from 0 to 1023 representing the number of the P-Variable.
the optional second{constant} must be at least as great as the first {constant} -- it represents the
number of the end of the range.
This command causes PMAC to report the current value of the specified P-Variable or range of P-
Variables.
Examples:
P1 ; Host asks for value
25 ; PMAC responds
P1005
3.444444444
P100..102
17.5
-373
0.0005

 PMAC Product Guide

184 Online Commands

P{constant}={expression}
Function: Assign a value to a P-Variable
Scope: Global
Syntax: P{constant}[..{constant}]={expression}

where
{constant} is an integer from 0 to 1023 representing the number of the P-Variable.
the optional second{constant} must be at least as great as the first {constant} -- it represents the
number of the end of the range.
{expression} contains the value to be given to the specified P-Variables.

This command causes PMAC to set the specified P-Variable or range of P-Variables equal to the value on
the right side of the equals sign.

Examples:
P1=1
P75=P32+P10
P100..199=0
P10=$2000
P832=SIN(3.14159*Q10)

PASSWORD={string}
Function: Enter/Set Program Password
Scope: Global
Syntax: PASSWORD={string}

where
{string} is a series of non-control ASCII characters (values from 32 decimal to 255 decimal). The
password string is case sensitive.

This command permits the user to enter the card’s password, or once entered properly to change it.
Without a properly entered password, PMAC will not open or list the contents of any motion program
numbered 1000 or greater or of PLC programs 0-15. If asked to do so, it will return an error (ERR002
reported if I6 is set to 1 or 3).

The default password is the null password (which means no password is needed to list the programs).
This is how the card is shipped from the factory and also after a $$$*** re-initialization command.
When there is a null password, it is considered automatically to have entered the correct password on
power-up/reset.

If the correct password has been entered (which is always the case for the null password), PMAC
interprets the PASSWORD={string} command as changing the password and it can be changed to
anything. When the password is changed, it has been matched automatically and the host computer has
access to the protected programs.

Note:
The password does not require quote marks. If using quote marks when entering
the password string for the first time, use them every time this password string is
matched.

PMAC Product Guide

Online Commands 185

If the correct password has not been entered since the latest power-up/reset, PMAC interprets the
PASSWORD={string} command as an attempt to match the existing password. If the command
matches the existing password correctly, PMAC accepts it as a valid command and the host computer has
access to the protected programs until the PMAC is reset or has its power cycled. If the command does
not match the existing password correctly, PMAC returns an error (reporting ERR002 if I6=1 or 3) and
the host computer does not have access to the protected programs. The host computer is free to attempt to
match the existing password.

There is no way to read the current password. If the password is forgotten and access to the protected
programs is required, the card must be re-initialized with the $$$*** command which clears all program
buffers as well as the password. Then the programs must be reloaded, and a new password entered.

Examples:
{Starting from power-up/reset with a null password}
LIST PLC 1 ; Request listing of protected program
P1=P1+1 ; PMAC responds because there is no password
RETURN
PASSWORD=Bush ; This sets the password to Bush
LIST PLC 1 ; Request listing of protected program
P1=P1+1 ; PMAC responds because password has been
RETURN ; matched by changing it.
$$$; Reset the card
LIST PLC 1 ; Request listing of protected program
ERR002 ; PMAC rejects because password not entered
PASSWORD=Reagan ; Attempt to enter password
ERR002 ; PMAC rejects as incorrect password
PASSWORD=BUSH ; Attempt to enter password
ERR002 ; PMAC rejects as incorrect (wrong case)
PASSWORD=Bush ; Attempt to enter password
 ; PMAC accepts as correct password

LIST PLC 1 ; Request listing of protected program
P1=P1+1 ; PMAC responds because password matched
RETURN
PASSWORD=Clinton ; This changes password to Clinton
LIST PLC 1 ; Request listing of protected program
P1=P1+1 ; PMAC responds because password has been
RETURN ; matched by changing it.
$$$; Reset the card
PASSWORD=Clinton ; Attempt to enter password
 ; PMAC accepts as correct password

LIST PLC 1 ; Request listing of protected program
P1=P1+1 ; PMAC responds because password matched
RETURN

PC
Function: Report Program Counter
Scope: Coordinate-system specific
Syntax: PC

This command causes PMAC to report the motion program number and address offset of the line in that
program that it will next calculate (in the addressed coordinate system). It will also report the program
number and address offset of any lines it must RETURN to if it is inside a GOSUB or CALL jump (up to 15
deep).

 PMAC Product Guide

186 Online Commands

The number reported after the colon is not a line number; as an addres offset, it is the number of words of
memory from the top of the program. The LIST PROGRAM command, when used with comma
delimiters, shows the program or section of the program with address offsets for each line. The LIST
PC command can show lines of the program with address offsets from the point of calculation.

Because PMAC calculates ahead in a continuous sequence of moves, the PC (Program Calculation)
command will in general return a program line further down in the program than PE will.

If the coordinate system is not pointing to any motion program, PMAC will return an error (ERR003 if
I6=1 or 3). Initially the pointing must be done with the B{constant} command.

Examples:
PC
P1:0 ; Ready to execute at the top of PROG 1
PC
P76:22 ; Ready to execute at 22nd word of PROG 76
LIST PC
P76:22:X10Y20 ; Program line at 22nd word of PROG 76
PC
P1001:35>P3.12 ; Execution will return to PROG 3, address 12

PE
Function: Report program execution pointer
Scope: Coordinate-system specific
Syntax: PE

This command causes PMAC to report the motion program number and address offset of the currently
executing programmed move in the addressed coordinate system. This is similar to the PC command,
which reports the program number and address offset of the next move to be calculated. Since PMAC is
calculating ahead in a continuous sequence of moves, PC will in general report a move line several moves
ahead of PE.

If the coordinate system is not pointing to any motion program, PMAC will return an error (ERR003 if
I6=1 or 3). Initially the pointing must be done with the B{constant} command.

Examples:
PE
P1:2
PE
P1:5

PMATCH
Function: Re-match axis positions to motor positions
Scope: Coordinate-system specific
Syntax: PMATCH

This command causes PMAC to recalculate the axis starting positions for the coordinate system to match
the current motor commanded positions (by inverting the axis definition statement equations and solving
for the axis position).

Normally this does not need to be done. However, if a motor move function, such as a jog move, an
open-loop move, or a stop on abort or limit, was done since the last axis move or home, PMAC will not
know automatically that the axis position has changed. If an axis move is then attempted without the use
of the PMATCH command, PMAC will use the wrong axis starting point in its calculations.

PMAC Product Guide

Online Commands 187

In addition, with an absolute sensor, a PMATCH command should be executed before the first
programmed move, so the starting axis position matches the (non-zero) motor position.

If the PMATCH function is not performed, PMAC will use the last axis destination position as the starting
point for its upcoming axis move calculations which is not necessarily the same position as the current
commanded motor positions.

The PMATCH function can be executed from within a motion program using CMD"PMATCH" with
DWELLs both before and after. This is useful if the coordinate system setup changes in the middle of the
program (e.g. new axis brought in, or following mode changed).

If more than one motor is defined to a given axis (as in a gantry system), the commanded position of the
lower-numbered motor is used in the PMAC calculations.

Note:

If I14 is set to 1, the PMATCH function will be executed automatically every time
program execution is started. Most users will want to use I14=1 so they do not
have to worry about when this needs to be done.

Example:
#1J+ ; Jog motor 1
#1J/ ; Stop jogging
PMATCH ; Match axis position to current motor position
B200R ; Execute program 200

OPEN PROG 10 CLEAR
...
CMD"&1#4->100C" ; Bring C-axis into coordinate system
DWELL100
CMD"PMATCH" ; Issue PMATCH so C-axis has proper start position
DWELL100
C90

...

Q
Function: Quit Program at end of move
Scope: Coordinate-system specific
Syntax: Q

This causes the currently addressed coordinate system to cease execution of the program at the end of the
currently executing move or the next move if that has already been calculated. The program counter is set
to the next line in the program, so execution may be resumed at that point with an R or S command.

Compare this to the similar / command, which always stops at the end of the currently executing move.

Examples:
B10R ; Point to beginning of PROG 10 and run
Q ; Quit execution
R ; Resume execution
Q ; Quit execution again
S ; Resume execution for a single move

 PMAC Product Guide

188 Online Commands

Q{constant}
Function: Report Q-Variable value
Scope: Coordinate-system specific
Syntax: Q{constant}[..{constant}]

where
{constant} is an integer from 0 to 1023 representing the number of the Q-variable.

the optional second{constant} must be at least as great as the first {constant} -- it represents the
number of the end of the range.

This command causes PMAC to report back the present value of the specified Q-Variable or range of Q-
Variables for the addressed coordinate system.
Examples:
Q10
35
Q255
-3.4578
Q101..103
0
98.5
-0.333333333

Q{constant}={expression}
Function: Q-Variable value assignment
Scope: Coordinate-system specific
Syntax: Q{constant}[..{constant}]={expression}
where
{constant} is an integer from 0 to 1023 representing the number of the Q-Variable.
the optional second{constant} must be at least as great as the first {constant} -- it represents the number
of the end of the range.
{expression} contains the value to be given to the specified Q-Variables.
This command causes PMAC to assign the value of the expression to the specified Q-variable or range of
Q-variables for the addressed coordinate system.
If a motion program buffer is open when this command is sent to PMAC, it is entered into the buffer for
later execution.
Examples:
Q100=2.5
Q1..10=0

R
Function: Run Motion Program
Scope: Coordinate-system specific
Syntax: R

This command causes the addressed PMAC coordinate system to start continuous execution of the motion
program addressed by the coordinate system’s program counter from the location of the program counter.
Alternately, it will restore operation after a \ or H command has been issued (even if a program was or is
not running). Addressing of the program counter is done initially using the B{constant} command.
The coordinate system must be in a proper condition in order for PMAC to accept this command.
Otherwise PMAC will reject this command with an error; if I6 is 1 or 3, it will report the error number.
The following conditions can cause PMAC to reject this command (also listed are the remedies):

PMAC Product Guide

Online Commands 189

Both limits set for a motor in coordinate system (ERR010) Clear limits
Another move is in progress (ERR011) Stop move (e.g. With j/)
Open-loop motor in coordinate system (ERR012) Close loop with J/ or A
Inactivated motor in coordinate system (ERR013) Change Ix00 to 1 or remove motor from coordinate system
No motors in the coordinate system (ERR014) Put at least 1 motor in coordinate system
Fixed motion program buffer open (ERR015) Close buffer and point to program
No program pointed to (ERR015) Point to program with B command
Program structured improperly (ERR016) Correct program structure
Motor(s) not at same position as stopped with / or \
command (ERR017)

Move back to stopped position with J=

Examples:
&1B1R ; Coordinate System 1 point to PROG 1 and run
&2B200.06 ; Coordinate System 2 point to N6000 of PROG 200 and run
Q ; Quit this program
R ; Resume running from point where stopped
H ; Do a feed hold on this program
R ; Resume running from point where stopped

R[H]{address}
Function: Report the contents of a specified memory addresses
Scope: Global
Syntax: R[H]{address} [,{constant}]

where
{address} consists of a letter X, Y, or L; an option colon (:); and an integer value from 0 to 65535 (in
hex, $0000 to $FFFF); specifying the starting PMAC memory or I/O address to be read.

{constant} (optional) is an integer from 1 to 16 specifying the number of consecutive memory
addresses to be read; if this is not specified, PMAC assumes a value of 1.

This command causes PMAC to report the contents of the specified memory word address or range of
addresses to the host (it is essentially a PEEK command). The command can specify either short (24-bit)
words in PMAC’s X-memory, short (24-bit) words in PMAC’s Y-memory, or long (48-bit) words
covering both X and Y memory (X-word more significant). This choice is controlled by the use of the X,
Y, or L address prefix in the command, respectively.

If the letter H is used after the R in the command, PMAC reports back the register contents in unsigned
hexadecimal form, with six digits for a short word and twelve digits for a long word. If the letter H is not
used, PMAC reports the register contents in signed decimal form.

Examples:
RHX:49152 ; Request contents of X-register 49152 ($C000) in hex
8F4017 ; PMAC responds in unsigned hex (note no '$')
RHX:$C000 ; Request contents of X-reg $C000 (49152) in hex
8F4017 ; PMAC responds in unsigned hex
RX:49152 ; Request contents of same register in decimal
-7389161 ; PMAC responds in signed decimal
RX:$C000 ; Request contents of same register in decimal
-7389161 ; PMAC responds in signed decimal
RX0 ; Request contents of servo cycle counter in decimal
2953211 ; PMAC responds in signed decimal
RL$0028 ; Request contents of #1 cmd. pos. reg in decimal
3072000 ; PMAC responds (=1000 counts)
RHY1824,12 ; Request set-up words of the conversion table

 PMAC Product Guide

190 Online Commands

00C000 00C004 00C008 00C00C 00C010 00C014 00C018
00C01C 400723 0000295 000000 000000 ; PMAC responds in hex

S
Function: Execute one move (step) of motion program
Scope: Coordinate-system specific
Syntax: S

This command causes the addressed PMAC coordinate system to start single-step execution of the motion
program addressed by the coordinate system’s program counter from the location of the program counter.
Addressing of the program counter is done initially using the B{constant} command.

At the default I53 value of zero, a STEP command causes program execution through the next move or
DWELL command in the program, even if this takes multiple program lines.

When I53 is set to 1, a STEP command causes program execution of only a single program line, even if
there is no move or DWELL command on that line. If there is more than one DWELL or DELAY command
on a program line, a single STEP command will only execute one of the DWELL or DELAY commands.

Regardless of the setting of I53, if program execution on a Step command encounters a BLOCKSTART
statement in the program, execution will continue until a BLOCKSTOP statement is encountered.

If the coordinate system is already executing a motion program when this command is sent, the command
puts the program in single-step mode, so execution will stop at the end of the latest calculated move. In
this case, its action is the equivalent of the Q command.

The coordinate system must be in a proper condition in order for PMAC to accept this command.
Otherwise PMAC will reject this command with an error; if I6 is 1 or 3, it will report the error number.
The same conditions that cause PMAC to reject an R command will cause it to reject an S command;
refer to those conditions under the R command specification.
Examples:
&3B20S ; Coordinate System 3 points to beginning of PROG 20 and step
P1 ; Ask for value of P1
1 ; PMAC responds
S ; Do next step in program
P1 ; Ask for value of P1 again
-3472563 ; PMAC responds --probable problem

SAVE
Function: Copy setup parameters to non-volatile memory
Scope: Global
Syntax: SAVE

This command causes PMAC to copy setup information from active memory to non-volatile memory, so
this information can be retained through power-down or reset. Its exact operation depends on the type of
PMAC used.

For standard PMACs with battery-backed RAM, only the basic setup information is stored with the SAVE
command: I-Variables, encoder conversion table entries, and VME/DPRAM address entries. This
information is copied back from flash to active memory during a normal power-up/reset operation. User
programs, buffers, and definitions are simply held in RAM by the battery backup; there is no need to save
these.

PMAC Product Guide

Online Commands 191

For option PMACs with flash-backed RAM, all user setup information including programs, buffers, and
definitions is copied to flash memory with the SAVE command. This information is copied back from
flash to active memory during a normal power-up/reset operation. This means that anything changed in
PMAC’s active memory that is not saved to flash memory will be lost in a power-on/reset cycle.

The SAVE operation can be inhibited by changing jumper E50 from its default state. If the SAVE
command is issued with jumper E50 not in its default state, PMAC will report an error. The retrieval of
information from non-volatile memory on power-up/reset can be inhibited by changing jumper E51 from
its default state.

PMAC does not provide the acknowledging handshake character to the SAVE command until it has
finished the saving operation, a significant fraction of a second later on PMACs with battery backup and
about five to ten seconds on PMACs with flash backup. The host program should be prepared to wait
much longer for this character than is necessary on most commands. For this reason, do not include the
SAVE command as part of a dump download of a large file.

During execution of the SAVE command, PMAC will not execute other background tasks, including user
PLCs and automatic safety checks, such as following error and overtravel limits. Particularly on boards
with the flash backup where saving takes many seconds, make sure the system is not depending on these
tasks for safety when the SAVE command is issued.
Examples:
I130=60000 ; Set Motor 1 proportional gain
SAVE ; Save to non-volatile memory
I130=80000 ; Set new value
$$$; Reset card
I130 ; Request value of I130
60000 ; PMAC responds with saved value

SIZE
Function: Report the amount of unused buffer memory in PMAC.
Scope: Global
Syntax: SIZE

This command causes PMAC to report to the host the amount of unused long words of memory available
for buffers. If no program buffer (motion, PLC or rotary buffer) is open, this value is reported as a
positive number. If a buffer is currently open, the value is reported as a negative number.
Examples:
DEFINE GATHER ; Reserve all remaining memory for gathering
SIZE ; Ask for amount of open memory
0 ; PMAC reports none available
DELETE GATHER ; Free up memory from gathering buffer
SIZE ; Ask for amount of open memory
41301 ; PMAC reports number of words available
OPEN PROG 10 ; Open a motion program buffer
SIZE ; Ask for amount of open memory
-41302 ; The negative sign shows a buffer is open

 PMAC Product Guide

192 Online Commands

TYPE
Function: Report type of PMAC
Scope: Global
Syntax: TYPE

This command causes PMAC to return a string reporting the configuration of the card. It will report the
configuration as a text string in the following format:
{PMAC type},{Bus type},{Backup type},{Servo Type},{Ladder type},{Clock Multiplier}
where
{PMAC type}:
PMAC1 First generation PMAC (including PMAC”1.5”)
PMAC2 Second generation PMAC
PMACUL Ultralite (MACRO only PMAC2)
{Bus type}:
ISA IBM-PC ISA bus
VME VME bus
STD STD bus
ISA/VME PMAC1 firmware can support both busses
{Backup type}:
BATTERY Battery-backed RAM
FLASH AMD-style flash-backed RAM
I-FLASH Intel-style flash-backed RAM
{Servo type}:
PID Standard PID servo algorithm
ESA Option 6 Extended servo algorithm
{Ladder type}
{blank} no ladder-logic diagram support
LDs Ladder-logic diagram support
{Clock multiplier}:
CLK Xn where n is the multiplication of crystal frequency to CPU frequency
Examples:
TYPE
PMAC1, ISA/VME, BATTERY, PID, CLK X1
TYPE
PMAC2, ISA, FLASH, ESA, CLK X3
TYPE
PMACUL, VME, FLASH, PID, LDs, CLK X2

UNDEFINE
Function: Erase coordinate system definition
Scope: Coordinate-system specific
Syntax: UNDEFINE

UNDEF

This command causes PMAC to erase all of the axis definition statements in the addressed coordinate
system. It does not affect the axis definition statements in any other coordinate systems. It can be useful
before making new axis definitions.
To erase the axis definition statement of a single motor only, use the #{constant}->0 command; to
erase all the axis definition statements in every coordinate system, use the UNDEFINE ALL command.

PMAC Product Guide

Online Commands 193

Examples:
&1 ; Address Coordinate System 1
#1-> ; Ask for axis definition of Motor 1
10000X ; PMAC responds
#2-> ; Ask for axis definition of Motor 2
10000Y ; PMAC responds
UNDEFINE ; Erase axis definitions
&2 ; Address Coordinate System 2
#1->10000X ; Redefine Motor 1 as X-axis in Coordinate System 2
#2->10000Y ; Redefine Motor 2 as Y-axis in Coordinate System 2

UNDEFINE ALL
Function: Erase coordinate definitions in all coordinate systems
Scope: Global
Syntax: UNDEFINE ALL

UNDEF ALL

This command causes all of the axis definition statements in all coordinate systems to be cleared. It is a
useful way of starting over on a reload of PMAC’s coordinate system definitions.
Examples:
&1#1-> ; Request axis definition of Motor 1 in Coordinate System 1
1000X ; PMAC responds
&2#5-> ; Request axis definition of Motor 5 in Coordinate System 2
1000X ; PMAC responds
UNDEFINE ALL ; Erase all axis definitions
&1#1-> ; Request axis definition of Motor 1 in Coordinate System 1
0 ; PMAC responds that there is no definition
&2#5-> ; Request axis definition of Motor 5 in Coordinate System 2
0 ; PMAC responds that there is no definition
1

V
Function: Report motor velocity
Scope: Motor specific
Syntax: V

This command causes PMAC to report the present actual motor velocity to the host, scaled in
counts/servo cycle, rounded to the nearest tenth. It is reporting the contents of the motor actual velocity
register (divided by [Ix09*32]).
To convert this reported value to counts/msec, multiply by 8,388,608*(Ix60+1) and divide by I10. It can
be further converted to engineering units with additional scaling constants.

Note:
The velocity values reported here are obtained by subtracting positions of
consecutive servo cycles. As such, they can be very noisy. For purposes of
display, it is probably better to use averaged velocity values held in registers
Y:$082A, Y:$08EA, etc., accessed with M-Variables.

 PMAC Product Guide

194 Online Commands

Examples:
V ; Request actual velocity of addressed motor
21.9 ; PMAC responds with 21.9 cts/cycle (*8,388,608/3,713,707 = 49.5 cts/msec)
#6V ; Request velocity of Motor 6
-4.2 ; PMAC responds
#5V#2V ; Request velocities of Motors 5 and 2
0 ; PMAC responds with Motor 5 first
7.6 ; PMAC responds with Motor 2 second

VERSION
Function: Report PROM firmware version number
Scope: Global
Syntax: VERSION

VER

This command causes PMAC to report the firmware version it is using.
When a flash-memory PMAC is in bootstrap mode (powering up with E51 ON), PMAC will report the
version of the bootstrap firmware, not the operational firmware. Otherwise, it will report the operational
firmware version. To change from bootstrap mode to normal operational mode, use the <CTRL-R>
command.

Examples:
VERSION ; Ask PMAC for firmware version
1.12D ; PMAC responds

W{address}
Function: Write values to specified addresses
Scope: Global
Syntax: W{address},{value} [,{value}...]

where
{address} consists of a letter X, Y, or L; an option colon (:); and an integer value from 0 to 65535 (in
hex, $0000 to $FFFF); specifying the starting PMAC memory or I/O address to be read.

{constant} is an integer, specified in decimal or hexadecimal, specifying the value to be written to the
specified address.

further {constants} specify integer values to be written into subsequent consecutive higher addresses.

This command causes PMAC to write the specified {constant} value to the specified memory word
address, or if a series of {constant} values is specified, to write them to consecutive memory
locations starting at the specified address (it is essentially a memory POKE command). The command can
specify either short (24-bit) words in PMAC’s X-memory, short (24-bit) word(s) in PMAC’s Y-memory,
or long (48-bit) words covering both X and Y memory (X-word more significant). This choice is
controlled by the use of the X, Y, or L address prefix in the command, respectively.

Examples:
WY:$C002,4194304 ; This should put 5V on DAC2 (provided I200=0 so servo does not overwrite)
WY$720,$00C000,$00C004,$00C008,$00C00C
 ; This writes the first four entries to the encoder conversion table

PMAC Product Guide

Online Commands 195

Z
Function: Make commanded axis positions zero
Scope: Coordinate-system specific
Syntax: Z

This command causes PMAC to re-label the current commanded axis positions for all axes in the
coordinate system as zero. It does not cause any movement; it merely re-names the current position.

This command is simply a short way of executing {axis}=0 for all axes in the coordinate system.
PSET X0 Y0 (etc.) is the equivalent motion program command.

This does not set the motor position registers to zero; it changes motor position bias registers to reflect the
new offset between motor zero positions and axis zero positions. However, the motor reported positions
will reflect the new bias, and report positions of zero (+/- the following error).

Examples:
<CTRL-P> ; Ask for reported motor positions
2001 5002 3000 0 0 0 0 0 ; PMAC reports positions
Z ; Zero axis positions
<CTRL-P> ; Ask for reported motor positions again
1 2 -1 0 0 0 0 0 ; PMAC responds

 PMAC Product Guide

196 Online Commands

PMAC Product Guide

Buffer Commands 197

BUFFER COMMANDS
The PMAC motion controller is rich in features and expansion capabilities. Because this manual
illustrates the implementation of PMAC in a typical application, some of the PMAC advanced
buffer commands are not described. Further information of all the PMAC buffer commands can
be obtained from the PMAC Software Reference manual.

{axis}{data}[{axis}{data}...]
Function: Position-only move specification
Type: Motion program (PROG and ROT)
Syntax: axis}{data}[{axis}{data}...]

where
{axis} is the character specifying which axis (X, Y, Z, A, B, C, U, V, W).

{data} is a constant (no parentheses) or an expression (in parentheses) representing the end position or
distance.

[{axis}{data}...] is the optional specification of simultaneous movement for more axes.

This is the basic PMAC move specification statement. It consists of one or more groupings of an axis
label and its associated value. The value for an axis is scaled (units determined by the axis definition
statement); it represents a position if the axis is in absolute (ABS) mode, or a distance if the axis is in
incremental (INC) mode. The order in which the axes are specified does not matter.

This command tells the axes where to move. It does not tell them how to move there. Other program
commands and parameters define how. These must be set up ahead of time.

The type of motion a given motion command causes is dependent on the mode of motion and the state of
the system at the beginning of the move.

Examples:
X1000
X(P1+P2)
Y(Q100+500) Z35 C(P100)
X1000 Y1000
A(P1) B(P2) C(P3)
X(Q1*SIN(Q2/Q3)) U500

{axis}{data}:{data} [{axis}{data}:{data}...]
Function: Position and velocity move specification
Type: Motion program (PROG and ROT)
Syntax: {axis}{data}:{data} [{axis}{data}:{data}...]

where
{axis} is the character specifying which axis (X, Y, Z, A, B, C, U, V, W).

{data} is a constant (no parentheses) or an expression (in parentheses) representing the end position or
distance.

:{data} represents the ending velocity.

[{axis}{data}:{data}...] is the optional specification of simultaneous movement for more
axes.

 PMAC Product Guide

198 Buffer Commands

In the case of PVT (position, velocity, time) motion mode, both the ending position and velocity are
specified for each segment of each axis. The command consists of one or more groupings of axis labels
with two data items separated by a colon character.

The first data item for each axis is the scaled ending position or distance depending on whether the axis is
in absolute (ABS) or incremental (INC) mode. Position scaling is determined by the axis definition
statement and the second data item (after the colon) is the ending velocity.

The velocity units are the scaled position units as established by the axis definition statements divided by
the time units as set by Ix90 for Coordinate System x. The velocity here is a signed quantity, not just a
magnitude. See the examples in the PVT mode description of the Writing a Motion Program section of
this manual.

The time for the segment is the argument for the most recently executed PVT or TA command, rounded to
the nearest millisecond.

In PVT mode, if no velocity is given for the segment, PMAC assumes an ending velocity of zero for the
segment.

Examples:
X1000:50
Y500:-32 Z737.2:68.93
A(P1+P2):(P3) B(SIN(Q1)):0

{axis}{data}^{data}[{axis}{data}^{data}...]
Function: Move until trigger
Type: Motion program
Syntax: {axis}{data}^{data}[{axis}{data}^{data}...]

where
{axis} is the character specifying which axis (X, Y, Z, A, B, C, U, V, W).

the first {data} is a constant (no parentheses) or expression (in parentheses) representing the end
position or distance in the absence of a trigger.

the second {data} (after the ^ arrow) is a constant (no parentheses) or expression (in parentheses)
representing the distance from the trigger position.

[{axis}{data}^{data}...] is the optional specification of simultaneous movement for more axes.

In the RAPID move mode, this move specification permits a move-until-trigger function. The first part of
the move description for an axis (before the ^ sign) specifies where to move in the absence of a trigger. It
is a position if the axis is in absolute mode; it is a distance if the axis is in incremental mode. In both
cases the units are the scaled axis user units. If no trigger is found before this destination is reached, the
move is a standard RAPID move.

The second part of the move description for an axis (after the ^ sign) specifies the distance from the
trigger position to end the post-trigger move if a trigger is found. The distance is expressed in the scaled
axis user units.

Each motor assigned to an axis specified in the command executes a separate move-until-trigger. All the
assigned motors will start together, but each can have its own trigger condition. If a common trigger is
required, the trigger signal must be wired into all motor interfaces. Each motor can finish at a separate
time; the next line in the program will not start to execute until all motors have finished their moves. No
blending into the next move is possible.

PMAC Product Guide

Buffer Commands 199

The trigger for a motor can be either a hardware input trigger if bit 17 of Ix03 is 0, or the motor warning
following error status bit if bit 17 of Ix03 is 1 (bit 16 of Ix03 should also be set to 1 in this case). If a
hardware input trigger is used, Encoder/Flag I-Variables 2 and 3 (e.g. I902 and I903) for the flag channel
specified by Ix25 determine which edges of which flags cause the trigger. If the warning following error
bit is used for torque-limited triggering, then Ix12 sets the size of the warning following error.

The speed of the move, both before the trigger and after, is set by Ix22 if I50=0 or by Ix16 if I50=1. The
acceleration is set by Ix19 to Ix21.

On the same line, some axes may be specified for normal untriggered RAPID moves that will execute
simultaneously.

If the move ends for a motor without a trigger being found, the trigger move status bit (bit 7 of the second
motor status word returned on a ? command) is left set after the end of the move. If the trigger has been
found, this bit is cleared to 0 at the end of the move.

Examples:
X1000^0
X10^-0.01 Y5.43^0.05
A(P1)^(P2) B10^200 C(P3)^0 X10

{axis}{data} [{axis}{data}...] {vector}{data} [{vector}{data}...]
Function: Circular arc move specification
Type: Motion program (PROG and ROT)
Syntax {axis}{data} [{axis}{data}...] {vector}{data}

[{vector}{data}...]

where
{axis} is a character specifying which axis (X, Y, Z, A, B, C, U, V, W);.

{data} is a constant (no parentheses) or an expression (in parentheses) representing the end position or
distance.

[{axis}{data}...] is the optional specification of simultaneous movement for more axes.

{vector} is a character (I, J, or K) specifying a vector component (parallel to the X, Y, or Z axis,
respectively) to the center of the arc; or the character R specifying the magnitude of the vector.

{data} specifies the magnitude of the vector component.

[{vector}{data}...] is the optional specification of more vector components.

For a blended circular mode move, both the move endpoint and the vector to the arc center are specified.
The endpoint is specified just as in a LINEAR mode move, either by position (referenced to the
coordinate system origin), or distance (referenced to the starting position).

The center of the arc for a circular move must be specified also in the MOVE command. Usually, this is
done by defining the vector to the center. This vector can either be referenced to the starting point of the
move (incremental radial vector mode -- the default, or if an INC (R) command has been given), or it
can be referenced to the coordinate system origin (absolute radial vector mode -- if an ABS (R)
command has been given).

Alternatively, just the magnitude of the vector to the center can be specified with R{data} on the
command line. If this is the case, PMAC will calculate the location of the center itself. If the value
specified by {data} is positive, PMAC will compute the short arc path to the destination (<= 180o); if it

 PMAC Product Guide

200 Buffer Commands

is negative, PMAC will compute the long arc path (>= 180o). It is not possible to specify a full circle in
one command with the R vector specifier.

The plane for the circular arc must have been defined by the NORMAL command (the default -- NORMAL
K-1 -- defines the XY plane). This command can define only planes in XYZ-space, which means that
only the X, Y, and Z axes can be used for circular interpolation. Other axes specified in the same move
command will be interpolated linearly to finish in the same time.

The direction of the arc to the destination point (clockwise or counterclockwise) is controlled by whether
the card is in CIRCLE1 (clockwise) or CIRCLE2 (counterclockwise) mode. The sense of clockwise in
the plane is determined by the direction of the NORMAL vector to the plane.

If the destination point is a different distance from the center point than the starting point, the radius is
changed smoothly through the course of the move, creating a spiral. This is useful in compensating for
any round off errors in the specifications. However, if the distance from either the starting point or the
destination point to the center point is zero, an error condition will be generated and the program will
stop.

If the vector from the starting point to the center point does not lie in the circular interpolation plane, the
projection of that vector into the plane is used. If the destination point does not lie in the same circular
interpolation plane as the starting point, a helical move is done to the destination point.

If the destination point (or its projection into the circular interpolation plane containing the starting point)
is the same as the starting point, a full 360o arc is made in the specified direction (provided that IJK
vector specification is used). In this case, only the vector needs to be specified in the move command,
because for any axis whose destination is not specified, the destination point is taken to be the same as the
starting point automatically.

If no vector and no radial magnitude is specified in the MOVE command, a linear move will be done to the
destination point, even if the program is in circular mode

Note:

PMAC performs arc moves by segmenting the arc and performing the best cubic
fit on each segment. I-Variable I13 determines the time for each segment. I13
must be set greater than zero to put PMAC into this segmentation mode in order
for arc moves to be done. If I13 is set to zero, circular arc moves will be done in
linear fashion.

Examples:
X5000 Y3000 I1000 J1000
X(P101) Z(P102) I(P201) K(P202)
X10 I5
X10 Y20 C5 I5 J5
Y5 Z3 R2
J10 ; Specifies a full circle of 10 unit radius

A{data}
Function: A-Axis move
Type: Motion program (PROG or ROT)
Syntax: A{data}

where
{data} is a floating-point constant or expression representing the position or distance in user units for
the U-axis.

PMAC Product Guide

Buffer Commands 201

This command causes a move of the A-axis. (See {axis}{data} descriptions, in this section.)

Examples:
A10
A(P23)
A25 B10 Z35
A(20*SIN(Q5))

ABS
Function: Absolute move mode
Type: Motion program (PROG and ROT)
Syntax: ABS [({axis}[,{axis}...])]

where
{axis} is a character (X,Y,Z,A,B,C,U,V,W) representing the axis to be specified, or the character R to
specify radial vector mode

The ABS command without arguments causes all subsequent positions in motion commands for all axes
in the coordinate system running the motion program to be treated as absolute positions. This is known as
absolute mode and it is the power-on default condition. An ABS statement with arguments causes the
specified axes in the coordinate system running the program to be in absolute mode and all others stay the
way they were before.

If R is specified as one of the axes, the I, J, and K terms of the circular move radius vector specification
will be specified in absolute form (i.e. as a vector from the origin, not from the move start point). An
ABS command without any arguments does not affect this vector specification. The default radial vector
specification is incremental.

If no motion program buffer is open when this command is sent to PMAC, it will be executed as an on-
line coordinate system command.

Examples:
ABS(X,Y)
ABS
ABS(V)
ABS(R)

ADDRESS
Function: Motor/coordinate system modal addressing
Type: PLC programs 1 to 31 only
Syntax: ADDRESS [#{constant}][&{constant}]

ADR [#{constant}][&{constant}]

where
{constant} is an integer constant from 1 to 8 representing the motor (#) number or the coordinate
system (&) number to be addressed.

When executed, this statement sets the motor and/or coordinate system that will be addressed by this
particular PLC program when it commands motor- or coordinate-system-specific commands with no
addressing in those commands. The addressed coordinate system also controls which set of Q-Variables
is accessed, even for ATAN2 functions which use Q0 automatically.

 PMAC Product Guide

202 Buffer Commands

This command does not affect host addressing, the addressing of other PLC programs, or the selection of
the control panel inputs. The addressing stays in effect until another ADDRESS statement supersedes it.
Default addressing at power-on/reset is #1 and &1.

In motion programs, there is no modal addressing for COMMAND statements; each COMMAND statement
must contain the motor or coordinate system specifier within its quotation marks. A motion program
automatically operates on the Q-Variables of the coordinate system executing the program.

Examples:
ADDRESS &4
ADR #2
ADDRESS &2#2

ADR#1 ; Modally address Motor 1
CMD"J+" ; This will start Motor 1 jogging
CMD"#2J+" ; This will start Motor 2 jogging
CMD"J/" ; This will stop Motor 1

ADIS{constant}
Function: Absolute displacement of X, Y, and Z axes
Type: Motion program (PROG and ROT)
Syntax: ADIS{constant}

where
{constant} is an integer constant representing the number of the first of three consecutive Q-Variables
to be used in the displacement vector.

This command loads the currently selected (with TSEL) transformation matrix for the coordinate system
with offset values contained in the three Q-variables starting with the specified one. This has the effect of
renaming the current commanded X, Y, and Z axis positions (from the latest programmed move) to the
values of these variables (X=Q{data}, Y=Q({data}+1), Z=Q({data}+2)).

This command does not cause any movement of any axes; it simply renames the present positions. This
command is equivalent to a PSET X(Q{data}) Y(Q({data}+1)) Z(Q({data}+2))
command, except that ADIS does not force a stop between moves, as PSET does.

Examples:
Q20=7.5
Q21=12.5
Q22=25
ADIS 20 ; This makes the current X position 7.5, Y 12.5, Z25

AND ({condition})
Function: Conditional AND
Type: PLC program only
Syntax: AND ({condition})

where
{condition} is a simple or compound condition.

This statement forms part of an extended compound IF or WHILE condition to be evaluated in a PLC
program. It must immediately follow an IF, WHILE, AND, or OR statement. This AND is a Boolean
operator logically combining the full conditions on its line and the program line immediately above. It
takes lower precedence than AND or OR operators within a compound condition on a single line (the
parentheses cause those to be executed first), but it takes higher precedence than an OR operator that starts
a line.

PMAC Product Guide

Buffer Commands 203

In motion programs, there can be compound conditions within one program line, but not across multiple
program lines, so this statement is not permitted in motion programs.

Note:

This logical AND command which acts on condition, should not be confused with
the bit-by-bit & (ampersand) operator that acts on values.

Examples:
IF (M11=1) ; This branch will start a motion program running
AND (M12=1) ; on a cycle where inputs M11 and M12 are 1 and
AND (M21=0) ; M21 is still zero. Note that M21 is immediately
CMD"R" ; set to one so the run command will not be given
M21=1 ; again in the next cycle.
ENDIF

AROT{constant}
Function: Absolute rotation/scaling of X, Y, and Z axes
Type: Motion program (PROG and ROT)
Syntax: AROT{constant}

where
{constant} is an integer representing the number of the first of nine consecutive Q-Variables to be
used in the rotation/scaling matrix.

This command loads the currently selected (with TSEL) transformation matrix for the coordinate system
with rotation/scaling values contained in the nine Q-Variables starting with the specified one. This has
the effect of renaming the current commanded X, Y, and Z axis positions (from the latest programmed
move) by multiplying the XYZ vector by this matrix.

The rotation and scaling is done relative to the base XYZ coordinate system, defined by the axis
definition statements. The math performed is:

[Xrot Yrot Zrot]T = [Rot Matrix] [Xbase Ybase Zbase]T

This command does not cause any movement of any axes; it simply renames the present positions.

Note:
When using this command to scale the coordinate system, do not use the radius
center specification for circle commands. The radius does not get scaled. Use the
I, J, K vector specification instead.

Examples:
Create a 3x3 matrix to rotate the XY plane by 30 degrees about the origin:
Q40=COS(30) Q41=SIN(30) Q42=0
Q43=-SIN(30) Q44=COS(30) Q45=0
Q46=0 Q47=0 Q48=1
AROT 40 ; Implement the change
Create a 3x3 matrix to scale the XYZ space by a factor of 3
Q50=3 Q51=0 Q52=0
Q53=0 Q54=3 Q55=0
Q56=0 Q57=0 Q58=3
AROT 50 ; Implement the change

 PMAC Product Guide

204 Buffer Commands

B{data}
Function: B-axis move
Type: Motion program (PROG and ROT)
Syntax: B{data}

where
{data} is a floating-point constant or expression representing the position or distance in user units for
the U-axis.
This command causes a move of the B-axis. (See {axis}{data} description in this section.) Program
commands {axis}{data}, A, C, U, V, W, X, Y, Z, CALL, READ.

BLOCKSTART
Function: Mark start of stepping block
Type: Motion program (PROG and ROT)
Syntax: BLOCKSTART

BSTART

This statement allows for multiple moves to be done on a single STEP command. Execution on a STEP
command will proceed until the next BLOCKSTOP statement in the program (without BLOCKSTART,
only a single servo command is executed on a STEP command). Also, if Ix92=1 (move blending
disabled), all moves between BLOCKSTART and BLOCKSTOP will be blended together. This does not
affect how a program is executed from a RUN command if Ix92=0.

This structure is useful particularly for executing a single sequence of PVT mode moves because the
individual segments do not end at zero velocity, making normal stepping very difficult.

Examples:
For the program segment:
BLOCKSTART
INC
X10:100
X20:100
X20:100
X10:0
BLOCKSTOP

All four move segments will be executed on a single S command.

BLOCKSTOP
Function: Mark end of stepping block
Type: Motion program (PROG and ROT)
Syntax: BLOCKSTOP

BSTOP

This statement marks the end of the block of statements, begun with a BLOCKSTART, to be done on a
single STEP command, or to be blended together even if Ix92=1 (move blending disabled). This does not
affect how a program is executed from a RUN command if Ix92=1.

Examples:
See example under BLOCKSTART in this section.

PMAC Product Guide

Buffer Commands 205

C{data}
Function: C-axis move
Type: Motion program (PROG and ROT)
Syntax: C{data}

where
{data} is a floating-point constant or expression representing the position or distance in user units for
the U-axis.

This command causes a move of the C-axis. (See {axis}{data} description in this section.) Program
commands {axis}{data}, A, B, U, V, W, X, Y, Z, CALL, READ

CALL
Function: Jump to subprogram with return
Type: Motion program (PROG and ROT)
Syntax: CALL{data} [{letter}{data}...]

where
the first {data} is a floating-point constant or expression from 1.00000 to 32767.99999, with the integer
part representing the motion program number to be called and the fractional part representing the line
label (N or O) within the program to be called (the line label number is equal to the fractional part
multiplied by 100,000; every motion program has an implicit N0 at the top).

{letter} is any letter of the English alphabet, except N or O, representing the variable into which the
value following it will be placed (Q101 to Q126 for A to Z respectively).

following {data} is a floating-point constant or expression representing the value to be put into the
variable.

This command allows the program to execute a subprogram and then return execution to the next line in
the program. A subprogram is entered into PMAC the same as a program, and is labeled as PROGn (so
one program can call another as a subprogram). The number n of the PROG heading is the one to which
the value after CALL refers: CALL7 would execute PROG7 and return. Commanding execution of a non-
existent subprogram will cause program execution to stop in an error condition.

The value immediately following CALL can take fractional values. If there is no fractional component,
the called program starts at the beginning. If there is a fractional component, the called program is
entered at a line label specified by the fractional component (if this label does not exist, PMAC will
generate an error and stop execution). PMAC works with five fractional digits to specify the line label; if
fewer are used, it fills out the rest with zeros automatically. For instance, CALL 35.1 is interpreted as
CALL 35.10000 which causes a jump to label N10000 of program 35. CALL 47.123 causes a
jump to label N12300 of program 47.

If letters and data (e.g. X1000) follow the CALL{data}, these can be arguments to be passed to the
subprogram. If arguments are to be passed, the first line executed in the subroutine should be a READ
statement. This statement will take the values associated with the specified letters and place them in the
appropriate Q-Variable. For instance, the data following A is placed in variable Q101 for the coordinate
system executing the program; that following B is placed in Q102; and so on, to the data following Z
being placed in Q126. Then the subprogram can use these variables. If the subprogram calls another
subprogram with arguments, the same Q-variables are used. Refer to the READ section for more details.

 PMAC Product Guide

206 Buffer Commands

If there is no READ statement in the subroutine, or if not all the letter values in the CALL line are read (the
READ statement stops as soon as it sees a letter in the calling line that is not in its list of letters to read),
the remaining letter commands are executed upon return from the subroutine according to their normal
function. For example, G01 X10 Y10 is equivalent to a CALL 1000.01 X10 Y10. To implement
the normal function for G01 (linear move mode), there would be the following subroutine in PROG 1000:

N1000 LINEAR RETURN

Upon the return, X10 Y10 would be executed as a move according to the move mode in force, which is
LINEAR.

If the specified program and line label do not exist, the CALL command is ignored, and the program
continues as if it were not there.

Examples:
CALL500 ; to Prog 500 at the top (N0)
CALL500.1 ; to Prog 500 label N10000
CALL500.12 ; to Prog 500 label N12000
CALL500.123 ; to Prog 500 label N12300
CALL500.1234 ; to Prog 500 label N12340
CALL500.12345 ; to Prog 500 label N12345
CALL700 D10 E20 ; to Prog 700 passing D and E

CIRCLE1
Function: Set blended clockwise circular move mode
Type: Motion program (PROG and ROT)
Syntax: CIRCLE1

CIR1

This command puts the program into clockwise circular move mode. The plane for the circular
interpolation is defined by the most recent NORMAL command which has also defined the sense of
clockwise and counterclockwise in the plane.

The program is taken out of this circular move mode by another move mode command: the other
CIRCLE mode, LINEAR, PVT, RAPID etc. Any circular move command must have either an R or an
IJK vector specification; otherwise it will be performed as a linear move even when in CIRCLE mode.

Note:

PMAC must be in move segmentation mode (I13>0) in order to perform circular
interpolation. If I13=0 (no move segmentation), the moves will be linearly
interpolated.

Examples:
LINEAR ; Linear interpolation mode
X10Y10 F2 ; Linear move
CIRCLE1 ; Clockwise circular interpolation mode
X20 Y20 I10 ; Arc of 10-unit radius
X25 Y15 J-5 ; Arc of 5-unit radius
LINEAR ; Go back to linear mode
X25 Y5 ; Linear move

PMAC Product Guide

Buffer Commands 207

CIRCLE2
Function: Set blended counterclockwise circular move mode
Type: Motion program (PROG and ROT)
Syntax: CIRCLE2

CIR2

The CIRCLE2 command puts the program into counterclockwise circular move mode. The plane for the
circular interpolation is defined by the most recent NORMAL command which has also defined the sense
of clockwise and counterclockwise in the plane.
The program is taken out of this circular move mode by another move mode command: the other
CIRCLE mode, LINEAR, PVT, RAPID etc. Any circular move command must have either an R or an
IJK vector specification; otherwise it will be performed as a linear move even when in CIRCLE mode.

Note:
PMAC must be in move segmentation mode (I13>0) in order to perform circular
interpolation. If I13=0 (no move segmentation), the moves will be linearly
interpolated.

Examples:
LINEAR ; Linear interpolation mode
X10Y0 F2 ; Linear move
CIRCLE2 ; Counterclockwise circular interpolation mode
X20 Y10 J10 ; Arc of 10-unit radius
X15 Y15 I-5 ; Arc of 5-unit radius
CIRCLE1 ; Clockwise circle mode
X5 Y25 J10 ; Arc move of 10-unit radius

COMMAND"{command}"
Function: Program command issuance
Type: Motion program (PROG and ROT); PLC program
Syntax: COMMAND "{command}"

CMD "{command}"

This statement causes the program to issue a command to PMAC as if it came from the host (except for
addressing modes). If there is a motor- or coordinate-system-specifier (#n or &n) within the quoted
string, a motor- or coordinate-system-specific command will be directed to that motor or coordinate
system. If there is no specifier, a motor- or coordinate-system-specific command will be directed to the
first motor or coordinate system. Any specifier within a COMMAND statement is not modal; it does not
affect the host addressing specifications or the modal addressing of any program, including its own.

If I62=0, PMAC issues a carriage-return (<CR>) character automatically at the end of any data response
to the command. If I62=1, PMAC does not issue a <CR> character at the end of the data response; a
SEND^M must be used to issue a <CR> in this case.

Each PLC program has its own addressing mode for both motors and coordinate systems, independent of
each other and independent of the host addressing modes. These are controlled by the PLC program
ADDRESS command. This modal addressing affects commands issued from within a PLC program that
do not have motor or coordinate-system specifiers. At power-up/reset, all PLC programs are addressing
Motor 1 and Coordinate System 1.

There is no modal ADDRESS command in motion programs. Any motor-specific or coordinate-system-
specific command issued from within a motion program without a specifier is addressed automatically to
Motor 1 or Coordinate System 1, respectively.

 PMAC Product Guide

208 Buffer Commands

Commands issued from within a program are placed in the command queue, to be parsed and acted upon
at the appropriate time by PMAC’s command interpreter, which operates in background, between other
background tasks. If issued from a motion program, the command will not be interpreted before the next
MOVE or DWELL command in the motion program is calculated. If issued from a PLC program, the
command will not be interpreted before the end of the current scan of the PLC. This delay can make the
action appear to execute out of sequence.

Because of the queuing of commands and the fact that command interpretation is a lower priority than
command issuing, it is possible to overflow the queue. If there is no room for a new command, program
execution is temporarily halted until the new command can be placed on the queue.

In addition, commands that generate a response to the host (including errors if I6 is not equal to 2)
potentially can fill up the response queue if there is no host or the host is not prepared to read the
responses. This will halt program execution temporarily until the response queue is emptied. In
standalone applications, set I1 to 1, disabling the serial handshake, so that any responses can be sent out
of the serial port (the default response port) at any time, even if there is no host to receive it.

In a PLC program, have at least one of the conditions that caused the command issuance to occur set false
immediately. This will prevent the same command from being issued again on succeeding scans of the
PLC, overflowing the command and/or response queues. Typically in a motion program, the time
between moves prevents this overflow unless there are a lot of commands and the moves take a very short
time.

PMAC will not issue an acknowledging character (<ACK> or <LF>) to a valid command issued from a
program. It will issue a <BELL> character for an invalid command issued from a program unless I6 is set
to 2. Do not set I6 to 2 in early development so it will be known when PMAC has rejected such a
command. Setting I6 to 2 in the actual application can prevent program hang-up from a full response
queue or from disturbing the normal host communications protocol.

Many otherwise valid commands will be rejected when issued from a motion program. For instance, a
motor cannot be jogged in the coordinate system executing the program because all these motors are
considered to be running in the program, even if the program is not requesting a move of the motors at
that time.

When issuing commands from a program, be sure to include all the necessary syntax (motor and/or
coordinate system specifiers) in the command statement or use the ADDRESS command. For example,
use CMD"#4HM" and CMD"&1A" instead of CMD"HM" and CMD"A". Otherwise, motor and coordinate
system commands will be sent to the most recently addressed motor and coordinate system which may
not always be as the one intended.

Examples:
COMMAND"#1J+"
CMD"#4HM"
CMD"&1B5R"
CMD"P1"
47.5

ADDRESS#3
COMMAND"J-"

IF(M40=1 AND M41=1)
 CMD"&4R"
 M41=0
ENDIF

PMAC Product Guide

Buffer Commands 209

COMMAND^{letter}
Function: Program control-character command issuance
Type: Motion program (PROG or ROT), PLC program
Syntax: COMMAND^{letter}

CMD^{letter}

where {letter} is a letter character from A to Z (upper or lowercase) representing the corresponding
control character.

This statement causes the motion program to issue a control-character command as if it came from the
host. All control-character commands are global, so there are no addressing concerns.

Note:

Do not put the up-arrow character and the letter in quotes (e.g., COMMAND"^A")
or PMAC will attempt to issue a command with the two non-control characters ^
and A as in this example, instead of the control character.

Commands issued from within a program are placed in the command queue, to be parsed and acted upon
at the appropriate time by PMAC’s command interpreter, which operates in background, between other
background tasks. If issued from a motion program, the command will not be interpreted before the next
move or dwell command in the motion program is calculated. If issued from a PLC program, the
command will not be interpreted before the end of the current scan of the PLC. This delay can make the
action appear to execute out of sequence.

Because of the queuing of commands and the fact that command interpretation is a lower priority than
command issuing, it is possible to overflow the queue. If there is no room for a new command, program
execution is temporarily halted until the new command can be placed on the queue.
In addition, commands that generate a response to the host (including errors if I6 is not equal to 2)
potentially can fill up the response queue if there is no host or the host is not prepared to read the
responses. This will temporarily halt program execution until the response queue is emptied. In
standalone applications, it is a good idea to set I1 to 1, disabling the serial handshake, so any responses
can be sent out of the serial port (the default response port) at any time, even if there is no host to receive
it.
In a PLC program, it is a good idea to have at least one of the conditions that caused the command
issuance to occur set false immediately. This will prevent the same command from being issued again on
succeeding scans of the PLC, overflowing the command and/or response queues. Typically in a motion
program, the time between moves prevents this overflow unless there are a lot of commands and the
moves take a very short time.
PMAC will not issue an acknowledging character (<ACK> or <LF>) to a valid command issued from a
program. It will issue a <BELL> character for an invalid command issued from a program unless I6 is set
to 2.
Do not set I6 to 2 in early development so that it will be known when PMAC has rejected such a
command. Setting I6 to 2 in the actual application can prevent program hang-up from a full response
queue or from disturbing the normal host communications protocol
Examples:
CMD^D would disable all PLC programs (equivalent to issuing a <CONTROL-D> from the host).
CMD^K would kill (disable) all motors on PMAC
CMD^A would stop all programs and moves on PMAC, also closing any loops that were open.

 PMAC Product Guide

210 Buffer Commands

DELAY{data}
Function: Delay for specified time
Type: Motion program
Syntax: DELAY{data}

DLY{data}
where
{data} is a floating-point constant or expression, specifying the delay time in milliseconds.
This command causes PMAC to keep the command positions of all axes in the coordinate system
constant (no movement) for the time specified in {data}.
There are three differences between DELAY and DWELL.
1. If DELAY comes after a blended move, the TA deceleration time from the move occurs within the

DELAY time, not before it.
2. The actual time for DELAY does varies with a changing time base (current % value, from whatever

source), whereas DWELL always uses the fixed time base (%100).
3. PMAC pre-computes upcoming moves (and the lines preceding them) during a DELAY, but it does

not do so during a DWELL.
A DELAY command is equivalent to a zero-distance move of the time specified in milliseconds. As for a
move, if the specified DELAY time is less than the acceleration time currently in force (TA or 2*TS), the
delay will be for the acceleration time, not the specified DELAY time.
Examples:
DELAY750
DELAY(Q1+100)

DISABLE PLC {constant}[,{constant}...]
Function: Disable PLC programs
Type: Motion program (PROG or ROT), PLC program
Syntax: DISABLE PLC {constant}[,{constant}...]

DISABLE PLC {constant}[..{constant}]
DIS PLC {constant}[,{constant}...]
DIS PLC {constant}[..{constant}]

This command disables the operation of the specified PLC programs. The programs are specified by
number and can be used singly, in a list separated by commas, or in a continuous range.

Disabling a PLC cannot stop the PLC in the middle of a scan; it prevents it from starting the next scan.
Examples:
DISABLE PLC 1
DISABLE PLC 4,5
DISABLE PLC 7..20
DIS PLC 3,8,11
DIS PLC 0..31

DISPLAY [{constant}] "{message}"
Function: Display Text to Display Port
Type: Motion program (PROG and ROT), PLC program
Syntax: DISPLAY [{constant}] "{message}"

DISP [{constant}] "{message}"

where
{constant} is an integer value between 0 and 79 specifying the starting character number on the
display; if no value is specified, 0 is used.

PMAC Product Guide

Buffer Commands 211

{message} is the ASCII text string to be displayed.
This command causes PMAC to send the string contained in {message} to the display port (J1
connector) for the liquid crystal or vacuum-fluorescent display (Accessory 12 or equivalent).
The optional constant value specifies the starting point for the string on the display; it has a range of 0 to
79, where 0 is upper left, 39 is upper right, 40 is lower left, and 79 is lower right.
Examples:
DISPLAY 10"Hello World"
DISP "VALUE OF P1 IS"
DISP 15, 8.3, P1

DISPLAY ... {variable}
Function: Formatted display of variable value
Type: Motion program (PROG and ROT), PLC program
Syntax: DISPLAY {constant}, {constant}.{constant}, {variable}

DISP {constant}, {constant}.{constant}, {variable}
where
the first {constant} is an integer from 0 to 79 representing the starting location (character number) on
the display.
the second {constant} is an integer from 2 to 16 representing the total number of characters to be used
to display the value (integer digits, decimal point, and fractional digits).
the third {constant} is an integer from 0 to 9 (and at least two less than the second {constant})
representing the number of fractional digits to be displayed.
{variable} is the name of the variable to be displayed.
This command causes PMAC to send a formatted string containing the value of the specified variable to
the display port. The value of any I, P, Q, or M-Variable may be displayed with this command.
The first constant value specifies the starting point for the string on the display; it has a range of 0 to 79,
where 0 is upper left, 39 is upper right, 40 is lower left, and 79 is lower right. The second constant
specifies the number of characters to be used in displaying the value; it has a range of 2 to 16. The third
constant specifies the number of places to the right of the decimal point; it has a range of 0 to 9, and must
be at least two less than the number of characters. The last thing specified in the statement is the name of
the variable -- I, P, Q, or M.
Examples:
DISPLAY 0, 8.0, P50
DISPLAY 24, 2.0, M1
DISPLAY 40, 12.4, Q100

DWELL
Function: Dwell for specified time
Type: Motion program (PROG and ROT)
Syntax: DWELL{data}

DWE{data}
where
{data} is a non-negative floating point constant or expression representing the dwell time in
milliseconds.
This command causes the card to keep the commanded positions of all axes in the coordinate system
constant for the time specified in {data}.
There are three differences between DWELL and the similar DELAY command. First, if the previous servo
command was a blended move, there will be a TA time deceleration to a stop before the dwell time starts.
Second, DWELL is not sensitive to a varying time base -- it always operates in 'real time' (as defined by

 PMAC Product Guide

212 Buffer Commands

I10). Third, PMAC does not pre-compute upcoming moves (and the program lines before them during
the DWELL); it waits until after it is done to start further calculations, which it performs in the time
specified by I11 or I12.
Use of any DWELL command, even a DWELL0 while in external time base, will cause a loss of
synchronicity with the master signal.
Examples:
DWELL250
DWELL(P1+P2)
DWE0

ELSE
Function: Start false condition branch
Type: Motion program (PROG only), PLC program
Syntax: ELSE (Motion or PLC Program)

ELSE {action} (Motion Program only)

This statement must be matched with an IF statement (ELSE requires a preceding IF, but IF does not
require a following ELSE). It follows the statements executed upon a true IF condition. It is followed
by the statements to be executed upon a false IF condition.

With nested IF branches, match the ELSE statements to the proper IF statement. In a motion program, it
is possible to have a single-line IF statement (IF({condition}) {action}). An ELSE statement
on the next program line is matched to this IF statement automatically, even if it should be matched to a
previous IF statement. To match a specific IF statement, place a non-ELSE statement in between.

ELSE lines can take two forms (only the first of which is valid in a PLC program):

With no statement following on that line, all subsequent statements down to the next ENDIF statement
will be executed provided that the preceding IF condition is false.
ELSE
 {statement}
 [{statement}
 ...]
ENDIF

With a statement or statements following on that line, the single statement will be executed provided that
the preceding IF condition is false. No ENDIF statement should be used in this case
ELSE {statement} [{statement}...]

This single-line ELSE branch form is valid only in motion programs. If this is placed in a PLC program,
PMAC will put the statements on the next program line and expect an ENDIF to close the branch. The
logic will not be as expected.

Examples:
This first example has multi-line true and false branches. It can be used in either a motion program or a
PLC program.
IF (M11=1)
 P1=17
 P2=13
ELSE
 P1=13
 P2=17
ENDIF

PMAC Product Guide

Buffer Commands 213

This second example has a multi-line true branch, and a single-line false branch. This can be used only in
a motion program.
IF (M11=0)
 X(P1)
 DWELL 1000
ELSE DWELL 500

This example has a single-line true branch, and a multi-line false branch. This structure can be used only
in a motion program.
IF (SIN(P1)>0.5) Y(1000*SIN(P1))
ELSE
 P1=P1+5
 Y(1100*SIN(P1))
ENDIF

This example has single-line true and false branches. This structure can be used only in a motion
program.
IF (P1 !< 5) X10
ELSE X-10

ENABLE PLC
Function: Enable PLC Buffer(s)
Type: Motion program (PROG and ROT), PLC program
Syntax: ENABLE PLC {constant}[,{constant}...]

ENABLE PLC {constant}[..{constant}]
ENA PLC {constant}[,{constant}...]
ENA PLC {constant}[..{constant}]

This command enables the operation of the specified PLC buffers provided I5 is set properly to allow
their operation.

Examples:
ENABLE PLC 0
ENABLE PLC 1,2,5
ENABLE PLC 1..16
ENA PLC 7

ENDIF
Function: Mark end of conditional block
Type: Motion program (PROG only), PLC program
Syntax: ENDIF

ENDI

This statement marks the end of a conditional block of statements begun by an IF statement. It can close
out the true branch, following the IF statement, in which case there is no false branch, or it can close out
the false branch, following the ELSE statement.

When nesting conditions, it is important to match this ENDIF with the proper IF or ELSE statement. In
a PLC program, every IF or IF/ELSE pair must take an ENDIF, so the ENDIF always matches the
most recent IF statement that does not already have a matching ENDIF. In a motion program an IF or
ELSE statement with action on the same line does not require an ENDIF, so the ENDIF would be
matched with a previous IF statement.

 PMAC Product Guide

214 Buffer Commands

Examples:
IF (P1>0)
 X1000
ENDIF

IF (P5=7)
 X1000
ELSE
 X2000
ENDIF

ENDWHILE
Function: Mark end of conditional loop
Type: Motion program (PROG only), PLC program
Syntax: ENDWHILE

ENDW

This statement marks the end of a conditional loop of statements begun by a WHILE statement. WHILE
loops can be nested, so an ENDWHILE statement matches the most recent WHILE statement not matched
already by a previous ENDWHILE statement.

In a motion program a WHILE statement with an action on the same line does not require a matching
ENDWHILE.

In the execution of a PLC program, when an ENDWHILE statement is encountered, that scan of the PLC
is ended, and PMAC goes onto other tasks (communications, other PLCs). The next scan of this PLC will
start at the matching WHILE statement.

In the execution of a motion program, if PMAC finds two jumps backward (toward the top) in the
program while looking for the next move command, PMAC will pause execution of the program and not
try to blend the moves together. It will go on to other tasks and resume execution of the motion program
on a later scan. Two statements can cause such a jump back: ENDWHILE and GOTO (RETURN does not
count).

The pertinent result is that PMAC will not blend moves when it hits two ENDWHILE statements (or the
same ENDWHILE twice) between execution of move commands.

Examples:
WHILE (Q10<10)
 Q10=Q10+1
ENDWHILE

F{data}
Function: Set move feedrate (velocity)
Type: Motion program (PROG and ROT)
Syntax: F{data}

where
{data} is a positive floating-point constant or expression representing the vector velocity in user length
units per user time units.

This statement sets the commanded velocity for upcoming LINEAR and CIRCLE mode blended moves.
It will be ignored in other types of moves (SPLINE, PVT, and RAPID). It overrides any previous TM or
F statement, and is overridden by any following TM or F statement.

PMAC Product Guide

Buffer Commands 215

The units of velocity specified in an F command are scaled position units (as set by the axis definition
statements) per time unit (defined by Feedrate Time Unit I-Variable for the coordinate system: Ix90).

The velocity specified here is the vector velocity of all of the feedrate axes of the coordinate system. That
is, the move time is calculated as the vector distance of the feedrate axes (square root of the sum of the
squares of the individual axes), divided by the feedrate value specified here. The minimum effective
feedrate value will provide a move time of 223 msec. The maximum effective feedrate value will provide
a move time of 1 msec. Any non-feedrate axes commanded to move on the same move-command line
will move at the speed necessary to finish in this same amount of time.

If the vector distance of a feedrate-specified move is so short that the computed move time (vector
distance divided by feedrate) would be less than the acceleration time currently in force (TA or 2*TS), the
move will take the full acceleration time instead, and the axes will move more slowly than specified by
the F command

Axes are designated as feedrate axes with the FRAX command. If no FRAX command is used, the default
feedrate axes are the X, Y, and Z axes. Any axis involved in circular interpolation is automatically a
feedrate axis, regardless of whether it was specified in the latest FRAX command. In multi-axis systems,
feedrate specification of moves is really only useful for systems with Cartesian geometries, for which
these moves give a constant velocity in the plane or in 3D space, regardless of movement direction.

Note:

If only non-feedrate axes are commanded to move in a feedrate-specified move,
PMAC will compute the vector distance, and so the move time as zero and will
attempt to do the move in the acceleration time (TA or 2*TS), possibly limited by
the maximum velocity and/or acceleration parameters for the motor(s). This will
probably be much faster than intended.

Examples:
F100
F31.25
F(Q10)
F(SIN(P8*P9))

FRAX
Function: Specify feedrate axes
Type: Motion program (PROG and ROT)
Syntax: FRAX [({axis}[,{axis}...])]

where
{axis} is a character (X, Y, Z, A, B, C, U, V, W) specifying which axis is to be used in the vector
feedrate calculations.

This command specifies which axes are to be involved in the vector-feedrate (velocity) calculations for
upcoming feedrate-specified (F) moves. PMAC calculates the time for these moves as the vector distance
(square root of the sum of the squares of the axis distances) of all the feedrate axes divided by the
feedrate. Any non-feedrate axes commanded on the same line will complete in the same amount of time,
moving at whatever speed is necessary to cover the distance in that time.

Vector feedrate has obvious geometrical meaning only in a Cartesian system, for which it results in
constant tool speed regardless of direction, but it is possible to specify for non-Cartesian systems, and for
more than three axes.

 PMAC Product Guide

216 Buffer Commands

Note:
If only non-feedrate axes are commanded to move in a feedrate-specified move,
PMAC will compute the vector distance, and so the move time as zero and will
attempt to do the move in the acceleration time (TA or 2*TS), possibly limited by
the maximum velocity and/or acceleration parameters for the motor(s). This will
probably be much faster than intended.

The FRAX command without arguments causes all axes in the coordinate system to be feedrate axes in
subsequent move commands. The FRAX command with arguments causes the specified axes to be
feedrate axes, and all axes not specified to be non-feedrate axes, in subsequent move commands.

If no motion program buffer is open when this command is sent to PMAC, it will be executed as an on-
line coordinate system command.

Examples:
For a three-axis cartesian system scaled in millimeters:
FRAX(X,Y)
INC
X30 Y40 Z10 F100

Vector distance is SQRT(30
2
 + 40

2
) = 50 mm. At a speed of 100 mm/sec, move time (unblended) is 0.5

sec. X-axis speed is 30/0.5 = 60 mm/sec; Y-axis speed is 40/0.5 = 80 mm/sec; Z-axis speed is 10/0.5 =
20 mm/sec.
Z20

Vector distance is SQRT(0
2
 +0

2
) = 0 mm. Move time (unblended) is 0.0 sec, so Z-axis speed is limited

only by acceleration parameters.
FRAX(X,Y,Z)
INC
X-30 Y-40 Z120 F65

Vector distance is SQRT(-30
2
 + -40

2
 +120

2
) = 130 mm. Move time is 130/65 = 2.0 sec. X-axis speed is

30/2.0 = 15 mm/sec; Y-axis speed is 40/2.0 = 20 mm/sec; Z-axis speed is 120/2.0 = 60 mm/sec.

GOSUB
Function: Unconditional jump with return
Type: Motion program (PROG only)
Syntax: GOSUB{data}

where
{data} is a constant or expression representing the line label to jump to.
{letter} (optional) is any letter character except N or O.

This command causes the motion program execution to jump to the line label (N or O) of the same motion
program specified in {data} with a jump back to the commands immediately following the GOSUB
upon encountering the next RETURN command.

If {data} is a constant, the path to the subroutine will have been linked before program run time, so the
jump is very quick. If {data}is a variable expression, it must be evaluated at run time and the
appropriate label then searched for. The search starts downward in the program to the end, and then
continues (if necessary) from the top of the program down.

A variable GOSUB command permits the equivalent structure to the CASE statement found in many high-
level languages.

If the specified line label is not found, the GOSUB command will be ignored and the program will
continue as if the command had not occurred.

PMAC Product Guide

Buffer Commands 217

The CALL command is similar, except that it can jump to another motion program.
Examples:
GOSUB300 ; jumps to N300 of this program, to jump back on RETURN
GOSUB8743 ; jumps to N8743 of this program, to jump back on RETURN
GOSUB(P17) ; jumps to the line label of this program whose number matches the current value of P17, to jump

back on return

GOTO
Function: Unconditional jump without return
Type: Motion program (PROG only)
Syntax: GOTO{data}

where
{data} is an integer constant or expression with a value from 0 to 99,999.
This command causes the motion program execution to jump to the line label (N or O) specified in
{data}, with no jump back.
If {data} is a constant, the path to the label will have been linked before program run time, so the jump
is very quick. If {data} is a variable expression, it must be evaluated at run time, and the appropriate
label then searched for. The search starts downward in the program to the end, then continues (if
necessary) from the top of the program down.
A variable GOTO command permits the equivalent structure to the CASE statement found in many high-
level languages (see Examples, below).
If the specified line label is not found, the program will stop and the coordinate system’s run time error bit
will be set.

Note:
Modern philosophies of the proper structuring of computer code strongly
discourage the use of GOTO because of its tendency to make code undecipherable.

Examples:
GOTO750
GOTO35000
GOTO1
GOTO(50+P1)
N51 P10=50*SIN(P11)
GOTO60
N52 P10=50*COS(P11)
GOTO60
N53 P10=50*TAN(P11)
N60 X(P10)

HOME
Function: Programmed homing
Type: Motion program
Syntax: HOME {constant} [,{constant}...]

HOME {constant}..{constant} [,{constant}..{constant}...]
HM {constant} [,{constant}...]
HM {constant}..{constant} [,{constant}..{constant}...]

where
{constant} is an integer from 1 to 8 representing a motor number.

This causes the specified motors to go through their homing search cycles. Note that the motors must be
specified directly by number, not the matching axis letters. Specify which motors are to be homed. All

 PMAC Product Guide

218 Buffer Commands

motors specified in a single HOME command (e.g. HOME1,2) will start their homing cycles
simultaneously. To home some motors sequentially, specify them in consecutive commands (e.g. HOME1
HOME2), even if on the same line.

Any previous moves will come to a stop before the home moves start. No other program statement will
be executed until all specified motors have finished homing. Homing direction, speed, acceleration, etc.
are determined by motor I-Variables. If a motor is specified that is not in the coordinate system running
the program, the command or portion of the command will be ignored, but an error will not be generated.

The speed of the home search move is determined by Ix23. If Ix23=0, then the programmed home
command for that axis is ignored.

Note:

Unlike an on-line homing command, the motor numbers in a program homing
command are specified after the word HOME itself, not before. In addition, an on-
line homing command starts the homing search -- it does not give any indication
when the search is complete; but a program homing command recognizes the end
of the search automatically, and then continues on in the program. A PLC program
can issue only an on-line home command.

Examples:
HOME1 ;These are motion program commands
HM1,2,3
HOME1..3,5..7
HM1..8

#1HOME ;These are on-line commands
#1HM,#2HM,#3HM

HOMEZ
Function: Programmed zero-move homing
Type: Motion program
Syntax: HOMEZ {constant} [,{constant}...]

HOMEZ {constant}..{constant} [,{constant}..{constant}...]
HMZ {constant} [,{constant}...]
HMZ {constant}..{constant} [,{constant}..{constant}...]

where
{constant} is an integer from one to eight representing a motor number.
This commands causes the specified motors to go through pseudo-homing search cycles. In this
operation, the present commanded position of the motor is made the zero position for the motor and the
new commanded position for the motor.
If there is following error and/or an axis definition offset at the time of the HOMEZ command, the reported
position after the command will be equal to the negative of the following error plus the axis definition
offset.
Motors must be specified directly by number, not the matching axis letters. Specify which motors are to
be homed. All motors specified in a single HOMEZ command (e.g. HOMEZ1,2) will home
simultaneously.

Note:
Unlike an on-line homing command, the motor numbers in a program homing
command are specified after the word HOMEZ itself, not before.

PMAC Product Guide

Buffer Commands 219

Examples:
HOMEZ1 ;These are motion program commands
HMZ1,2,3
HOMEZ1..3,5..7
HMZ1..8

#1HOMEZ ;These are on-line commands
#1HMZ,#2HMZ,#3HMZ

I{data}
Function: I-vector specification for circular moves or normal vectors
Type: Motion program (PROG or ROT)
Syntax: I{data}

where
{data} is a floating-point constant or expression representing the magnitude of the I-component of the
vector in scaled user axis units.
In circular moves, this specifies the component of the vector to the arc center that is parallel to the X-axis.
The starting point of the vector is either the move start point (for INC (R) mode -- default) or the XYZ-
origin (for ABS (R) mode).
In a NORMAL command, this specifies the component of the normal vector to the plane of circular
interpolation and tool radius compensation that is parallel to the X-axis.
Examples:
X10 Y20 I5 J5
X(2*P1) I(P1)
I33.333 specifies a full circle whose center is 33.333 units in the positive X-direction from the start and
end point
NORMAL I-1 specifies a vector normal to the YZ plane

I{constant}={expression}
Function: Set I-variable value
Type: Motion program (PROG and ROT), PLC Program
Syntax: I{constant}={expression}

where
{constant} is an integer value from 0 to 1023 representing the I-Variable number.

{expression) represents the value to be assigned to the specified I-Variable.

This command sets the value of the specified I-Variable to that of the expression on the right side of the
equals sign. The assignment is done as the line is processed, which usually in a motion program is one or
two moves ahead of the move actually executing at the time (because of the need to calculate ahead in the
program).

For I-Variable value assignment to be synchronous with the beginning of the next move in the program,
assign an M-Variable to the register of the I-Variable and use a synchronous M-Variable assignment
statement (M{constant}=={expression}).

Examples:
I130=30000
I902=1
I131=P131+1000

 PMAC Product Guide

220 Buffer Commands

IDIS{constant}
Function: Incremental displacement of X, Y, and Z axes
Type: Motion program (PROG and ROT)
Syntax: IDIS{constant}

where
{constant} is an integer representing the number of the first of three consecutive Q-variables to be
used in the displacement vector.

This command adds to the offset values of the currently selected (with TSEL) transformation matrix for
the coordinate system the values contained in the three Q-Variables starting with the specified one. This
has the effect of renaming the current commanded X, Y, and Z axis positions (from the latest
programmed move) by adding the values of these variables (Xnew=Xold+Q{constant},
Ynew=Yold+Q({constant}+1), Znew=Zold+Q({constant}+2)).

This command does not cause any movement of any axes; it simply renames the present positions.

This command is similar to a PSET command, except that IDIS is incremental and does not force a stop
between moves, as PSET does.
Examples:
X0 Y0 Z0
Q20=7.5
Q21=12.5
Q22=20
IDIS 20 ; This makes the current position X7.5, Y12.5, Z20
IDIS 20 ; This makes the current position X15 Y25 Z40

IF ({condition})
Function: Conditional branch
Type: Motion and PLC program
Syntax IF ({condition}) (Valid in fixed motion (PROG) or PLC program only)

IF ({condition}) {action} [{action}...]
 (Valid in rotary or fixed motion program only)

where
{condition} consists of one or more sets of {expression} {comparator} {expression}
joined by logical operators AND or OR.
{action} is a program command.
This command allows conditional branching in the program.
With an action statement or statements following on that line, it will execute those statements provided
the condition is true (this syntax is valid in motion programs only). If the condition is false, it will not
execute those statements; it will only execute any statements on a false condition if the line immediately
following begins with ELSE. If the next line does not begin with ELSE, there is an implied ENDIF at the
end of the line.

Note:
When there is an ELSE statement on the motion-program line immediately
following an IF statement with actions on the same line, that ELSE statement is
matched automatically to this IF statement, not to any preceding IF statements
under which this IF statement may be nested.

PMAC Product Guide

Buffer Commands 221

With no statement following on that line, if the condition is true, PMAC will execute all subsequent
statements on following lines down to the next ENDIF or ELSE statement (this syntax is valid in motion
and PLC programs). If the condition is false, it will skip to the ENDIF or ELSE statement and continue
execution there.
In a rotary motion program, only the single-line version of the IF statement is permitted. No ELSE or
ENDIF statements are allowed.
In a PLC program, compound conditions can be extended onto multiple program lines with subsequent
AND and OR statements.
There is no limit on nesting of IF conditions and WHILE loops (other than total buffer size) in fixed
motion and PLC programs. No nesting is allowed in rotary motion programs.
Examples:
IF (P1>10) M1=1

IF (M11=0 AND M12!=0) M2=1 M3=1

IF (M1=0) P1=P1-1
ELSE P1=P1+1

IF (M11=0)
 P1=1000*SIN(P5)
 X(P1)
ENDIF

IF (P1<0 OR P2!<0)
AND (P50=1)
 X(P1)
 DWELL 1000
ELSE
 X(P1*2)
 DWELL 2000
ENDIF

INC
Function: Incremental move mode
Type: Motion program
Syntax: INC [({axis}[,{axis}...])]

where
{axis} is a letter specifying a motion axis (X, Y, Z, A, B, C, U, V, W), or the letter R specifying the arc
center radial vector.

The INC command without arguments causes all subsequent command positions in motion commands for
all axes in the coordinate system running the motion program to be treated as incremental distances from
the latest command point. This is known as incremental mode, as opposed to the default absolute mode.

An INC statement with arguments causes the specified axes to be in incremental mode, and all others stay
the way they were.

If R is specified as one of the axes, the I, J, and K terms of the circular move radius vector specification
will be specified in incremental form (i.e. as a vector from the move start point, not from the origin). An
INC command without any arguments does not affect this vector specification. The default radial vector
specification is incremental.

If no motion program buffer is open when this command is sent to PMAC, it will be executed as an on-
line coordinate system command.

 PMAC Product Guide

222 Buffer Commands

Examples:
INC(A,B,C)
INC
INC(U)
INC(R)

IROT{constant}
Function: Incremental rotation/scaling of X, Y, and Z axes
Type: Motion program (PROG and ROT)
Syntax: IROT{constant}

where
{constant} is an integer representing the number of the first of nine consecutive Q-Variables to be
used in the rotation/scaling matrix.

This command multiplies the currently selected (with TSEL) transformation matrix for the coordinate
system by the rotation/scaling values contained in the nine Q-Variables starting with the specified one.
This has the effect of renaming the current commanded X, Y, and Z axis positions (from the latest
programmed move) by multiplying the existing rotation/scaling matrix by the matrix containing these Q-
Variables, adding angles of rotation and multiplying scale factors.

The rotation and scaling is done relative to the latest rotation and scaling of the XYZ coordinate system,
defined by the most recent AROT or IROT commands. The math performed is:

[New Rot Matrix] = [Old Rot Matrix] [Incremental Rot Matrix]
[Xrot Yrot Zrot]T = [New Rot Matrix] [Xbase Ybase Zbase]T

This command does not cause any movement of any axes; it simply renames the present positions.

Note:
When using this command to scale the coordinate system, do not use the radius
center specification for circle commands. The radius does not get scaled. Use the
I, J, K vector specification instead.

Examples:
Create a 3x3 matrix to rotate the XY plane by 30 degrees about the origin.
Q40=COS(30) Q41=SIN(30) Q42=0
Q43=-SIN(30) Q44=COS(30) Q45=0
Q46=0 Q47=0 Q48=1
IROT 40 ; Implement the change, rotating 30 degrees from current
IROT 40 ; This rotates a further 30 degrees
Create a 3x3 matrix to scale the XYZ space by a factor of 3
Q50=3 Q51=0 Q52=0
Q53=0 Q54=3 Q55=0
Q56=0 Q57=0 Q58=3
IROT 50 ; Implement the change, scaling up by a factor of 3
IROT 50 ; Scale up by a further factor of 3 (total of 9x)

J{data}
Function: J-Vector specification for circular moves
Type: Motion program (PROG and ROT)
Syntax: J{data}

where
{data} is a floating-point constant or expression representing the magnitude of the J-component of the
vector in scaled user axis units.

PMAC Product Guide

Buffer Commands 223

In circular moves, this specifies the component of the vector to the arc center that is parallel to the Y-axis.
The starting point of the vector is either the move start point (for INC (R) mode -- default) or the XYZ-
origin (for ABS (R) mode).

In a NORMAL command, this specifies the component of the normal vector to the plane of circular
interpolation and tool radius compensation that is parallel to the Y-axis.

Examples:
X10 Y20 I5 J5
Y(2*P1) J(P1)
J33.333 specifies a full circle whose center is 33.333 units in the positive Y-direction

from the start and end point
NORMAL J-1 specifies a vector normal to the ZX plane

K{data}
Function: K-vector specification for circular moves
Type: Motion program (PROG and ROT)
Syntax: K{data}

where
{data} is a floating-point constant or expression representing the magnitude of the K-component of the
vector in scaled user axis units.
In circular moves, this specifies the component of the vector to the arc center that is parallel to the Z-axis.
The starting point of the vector is either the move start point (for INC (R) mode -- default) or the XYZ-
origin (for ABS (R) mode).
In a NORMAL command, this specifies the component of the normal vector to the plane of circular
interpolation and tool radius compensation that is parallel to the Y-axis.
Examples:
X10 Z20 I5 K5
Z(2*P1) K(P1)
K33.333 specifies a full circle whose center is 33.333 units in the positive Z-direction from the

start and end point
NORMAL K-1 specifies a vector normal to the XY plane

LINEAR
Function: Blended linear interpolation move mode
Type: Motion program (PROG and ROT)
Syntax: LINEAR

LIN

The LINEAR command puts the program in blended linear move mode (this is the default condition on
power-up/reset). Subsequent move commands in the program will be processed according to the rules of
this mode. On each axis, the card attempts to reach a constant velocity that is determined by the most
recent feedrate (F) or move time (TM) command.
The LINEAR command takes the program out of any of the other move modes (CIRCLE, PVT, RAPID,
SPLINE). A command for any of these other move modes takes the program out of LINEAR mode.
Examples:
LINEAR ABS

CIRCLE1 X10 Y20 I5
LINEAR X10 Y0

OPEN PROG 1000 CLEAR
N1000 LINEAR RETURN

 PMAC Product Guide

224 Buffer Commands

M{constant}={expression}
Function: Set M-Variable value
Type: Motion program (PROG and ROT)
Syntax: M{constant}={expression}

where
{constant} is an integer constant from 0 to 1023 representing the number of the M-Variable.
{expression} is a mathematical expression representing the value to be assigned to this M-Variable.
This command sets the value of the specified M-Variable to that of the expression on the right side of the
equals sign.

Note:
In a motion program, the assignment is done as the line is processed, not
necessarily in order with the actual execution of the move commands on either side
of it. If it is in the middle of a continuous move sequence, the assignment occurs
one or two moves ahead of its apparent place in the program (because of the need
to calculate ahead in the program).

To have the actual assignment of the value to the variable be synchronous with the beginning of the next
move, use the synchronous M-Variable assignment command M{constant}=={expression}
instead.
Examples:
M1=1
M102=$00FF
M161=P161*I108*32
M20=M20 & $0F

M{constant}=={expression}
Function: Synchronous M-Variable value assignment
Type: Motion program
Syntax: M{constant}=={expression}

where
{constant} is an integer constant from 0 to 1023 representing the number of the M-Variable.
{expression} is a mathematical expression representing the value to be assigned to this M-Variable.
This command allows the value of an M-Variable to be set synchronously with the start of the next move
or dwell. This is useful especially with M-Variables assigned to outputs, so the output changes
synchronously with beginning or end of the move. Non-synchronous calculations (with the single =) are
fully executed ahead of time, during previous moves.
In this form, the expression on the right side is evaluated just as for a non-synchronous assignment, but
the resulting value is not assigned to the specified M-Variable until the start of the actual execution of the
following motion command.

Note:
Remember that if using this M-Variable in further expressions before the next
move in the program is started, the value assigned in this statement will not be
received.

Examples:
X10
M1==1 ; Set Output 1 at start of actual blending to next move.
X20

M60==P1+P2

PMAC Product Guide

Buffer Commands 225

M{constant}&={expression}
Function: M-Variable and-equals assignment
Type: Motion program (PROG and ROT)
Syntax: M{constant}&={expression}

where
{constant} is an integer constant from 0 to 1023 representing the number of the M-Variable.

{expression} is a mathematical expression representing the value to be and with this M-Variable.

This command is equivalent to M{constant}=M{constant}&{expression}, except that the bit-
by-bit AND and the assignment of the resulting value to the M-Variable do not happen until the start of the
actual execution of the following motion command. The expression itself is evaluated when the program
line is encountered, as in a non-synchronous statement.

Note:

Remember that if using this M-Variable in further expressions before the next
move in the program is started, the value assigned in this statement will not be
received.

Examples:
M20&=$FE ; Mask out LSB of byte M20
M346&=2 ; Clear all bits except bit 1

M{constant}|={expression}
Function: M Variable or-equals assignment
Type: Motion program (PROG and ROT)
Syntax: M{constant}|={expression}

where
{constant} is an integer constant from 0 to 1023 representing the number of the M-Variable;
{expression} is a mathematical expression representing the value to be OR with this M-Variable.

This form is equivalent to M{constant}=M{constant}|{expression}, except that the bit-by-bit
OR and the assignment of the resulting value to the M-Variable do not happen until the start of the
following servo command. The expression itself is evaluated when the program line is encountered, as in
a non-synchronous statement.

Note:

Remember that if using this M-Variable in further expressions before the next
move in the program is started, the value assigned in this statement will not be
received.

Examples:
M20|=$01 ; Set low bit of byte M20, leave other bits
M875|=$FF00 ; Set high byte, leaving low byte as is

M{constant}^={expression}
Function: M-Variable XOR equals assignment
Type: Motion program (PROG and ROT)
Syntax: M{data}^={expression}

where
{constant} is an integer constant from 0 to 1023 representing the number of the M-Variable.

 PMAC Product Guide

226 Buffer Commands

{expression} is a mathematical expression representing the value to be XOR with this M-Variable.

This form is equivalent to M{constant}=M{constant}^{expression}, except that the bit-by-bit
XOR and the assignment of the resulting value to the M-Variable do not happen until the start of the
following servo command. The expression itself is evaluated when the program line is encountered, as in
a non-synchronous statement.

Note:

Remember that if using this M-Variable in further expressions before the next
move in the program is started, the value assigned in this statement will not be
received.

Examples:
M20^=$FF ; Toggle all bits of byte M20
M99^=$80 ; Toggle bit 7 of M99, leaving other bits as is

N{constant}
Function: Program line label
Type: Motion program (PROG and ROT)
Syntax: N{constant}

where
{constant} is an integer from 0 to 262,143 (2

18
-1).

This is a label for a line in the program that allows the flow of execution to jump to that line with a GOTO,
GOSUB, CALL, G, M, T, or D statement or a B command.

A line needs a label only to be able to jump to that line. Line labels do not have to be in any sort of
numerical order. The label must be at the beginning of a line. Remember that each location label takes
up space in PMAC memory.

Note:

There is always an implied N0 at the beginning of every motion program. Putting
an explicit N0 at the beginning may be useful in reading the program. Putting an
N0 anywhere else in the program is useless and may confuse those reading the
program.

Examples:
N1
N65537 X1000

NORMAL
Function: Define normal vector to plane of circular interpolation and cutter radius compensation
Type: Motion program (PROG and ROT)
Syntax: NORMAL {vector}{data} [{vector}{data}...]

NRM {vector}{data} [{vector}{data}...]

where
{vector} is one of the letters I, J, and K, representing components of the total vector parallel to the X,
Y, and Z axes, respectively.
{data} is a constant or expression representing the magnitude of the particular vector component.
This statement defines the orientation of the plane in XYZ-space in which circular interpolation and cutter
radius compensation will take place by setting the normal (perpendicular) vector to that plane.

PMAC Product Guide

Buffer Commands 227

The vector components that can be specified are I (X-axis direction), J (Y-axis direction), and K (Z-axis
direction). The ratio of the component magnitudes determines the orientation of the normal vector, and
therefore, of the plane. The length of this vector does not matter -- it does not have to be a unit vector.

The direction sense of the vector does matter, because it defines the clockwise sense of an arc move and
the sense of cutter-compensation offset. PMAC uses a right-hand rule; that is, in a right-handed
coordinate system (I x J = K), if the right thumb points in the direction of the normal vector specified
here, the right fingers will curl in the direction of a clockwise arc in the circular plane, and in the direction
of offset-right from direction of movement in the compensation plane.
Examples:
The standard settings to produce circles in the principal planes will therefore be:
NORMAL K-1 ; XY plane -- equivalent to G17
NORMAL J-1 ; ZX plane -- equivalent to G18
NORMAL I-1 ; YZ plane -- equivalent to G19
By using more than one vector component, a circular plane skewed from the principal planes can be
defined:
NORMAL I0.866 J0.500
NORMAL J25 K-25
NORMAL J(-SIN(Q1)) K(-COS(Q1))
NORMAL I(P101) J(P201) K(301)

O{constant}
Function: Alternate line label
Type: Motion program (PROG and ROT)
Syntax: O{constant}

where
{constant} is an integer from 0 to 262,143 (2

18
-1)

This is an alternate form of label in the motion program. It allows the flow of execution to jump to that
line with a GOTO, GOSUB, CALL, G, M, T, or D statement or a B command. PMAC will store and report
this as an N{constant} statement, but O labels are legal to send to the program buffer. (N10 and O10
are identical labels to PMAC.)

A line needs a label only to be able to jump to that line. Line labels do not have to be in any sort of
numerical order. The label must be at the beginning of a line. Remember that each location label takes
up space in PMAC memory.

Examples:
O1
O65537 X1000

OR({condition})
Function: Conditional OR
Type: PLC program
Syntax: OR ({condition})

This statement forms part of an extended compound condition to be evaluated in a PLC program. It must
follow an IF, WHILE, AND, or OR statement immediately. This OR is a boolean operator logically
combining the condition on its line with the condition on the program line above.

It takes lower precedence than operators within a compound condition on a single line (those within
parentheses) and also lower precedence than an AND operator that starts a line. (ORs operate on groups of
ANDed conditions.)

 PMAC Product Guide

228 Buffer Commands

In motion programs, there can be compound conditions within one program line, but not across multiple
program lines, so this statement is not permitted in motion programs.

This logical OR, which acts on conditions, should not be confused with the bit-by-bit | (vertical bar) or-
operator, which operates on values.

Examples:
IF (M11=1) ; This branch increments P1 every cycle that
AND (M12=0) ; inputs M11 and M12 are different, and decrements
OR (M11=0) ; them every cycle that they are the same.
AND (M12=1)
 P1=P1+1
ELSE
 P1=P1-1
ENDIF

IF (M11=1 AND M12=0) ; This does the same as above
OR (M11=0 AND M12=1)
 P1=P1+1
ELSE
 P1=P1-1
ENDIF

P{constant}={expression}
Function: Set P-Variable value
Type: Motion program (PROG and ROT)
Syntax: P{constant}={expression}
where
{constant} is an integer constant from 0 to 1023 representing the P-Variable number.
{expression} represents the value to be assigned to this P-Variable.

This command sets the value of the specified P-Variable to that of the expression on the right side of the
equals sign. The assignment is done as the line is processed, which usually in a motion program is one or
two moves ahead of the move actually executing at the time (because of the need to calculate ahead in the
program).

Examples:
P1=0
P746=P20+P40
P893=SIN(Q100)-0.5

PSET
Function: Redefine current axis positions (position SET)
Type: Motion program
Syntax: PSET{axis}{data} [{axis}{data}...]

where
{axis} is the character specifying which axis (X, Y, Z, A, B, C, U, V, W).
{data} is a constant or an expression representing the new value for this axis position.

This command allows the user to re-define the value of an axis position in the middle of the program. It
is equivalent to the RS-274 G-Code G92. No move is made on any axis as a result of this command -- the
value of the present commanded position for the axis is merely set to the specified value.

PMAC Product Guide

Buffer Commands 229

Internally, this command changes the value of the position bias register for each motor attached to an axis
named in the command. This register holds the difference between the axis zero point and the motor zero
(home) point.

This command forces a temporary pause in the motion of the axes automatically; no moves are blended
through a PSET command. For more powerful and flexible offsets that can be done on the fly (X, Y, and
Z axes only), refer to the matrix manipulation commands such as ADIS and IDIS.

Examples:
X10Y20
PSET X0 Y0 ; Call this position (0,0)

N92000 READ(X,Y,Z) ; To implement G92 in PROG 1000
PSET X(Q124)Y(Q125)Z(Q126) ; Equivalent of G92 X..Y..Z..

PVT{data}
Function: Set position-velocity-time mode
Type: Motion program (PROG and ROT)
Syntax: PVT{data}

where
{data} is a positive constant or expression representing the time of a segment in milliseconds (PMAC
will round this value to the nearest integer in actual use).
This command puts the motion program into Position-Velocity-Time move mode, and specifies the time
for each segment of the move. In this mode, each move segment in the program must specify the ending
position and velocity for the axis. Taking the starting position and velocity (from the previous segment),
the ending position and velocity, and the segment time, PMAC computes the unique cubic position profile
(parabolic velocity profile) to meet these constraints.
The segment time in a sequence of moves can be changed on the fly, either with another PVT command,
or with a TA command. TS, TM, and F settings are irrelevant in this mode.
The PVT command takes the program out of any of the other move modes (LINEAR, CIRCLE, SPLINE,
RAPID), and any of the other move mode commands takes the program out of PVT move mode.
Refer to the Writing a Motion Program section of this manual for more details of this mode.
Examples:
INC ; incremental mode, specify moves by distance
PVT200 ; enter this mode -- move time 200ms
X100:1500 ; cover 100 units ending at 1500 units/sec
X500:3000 ; cover 500 units ending at 3000 units/sec
X500:1500 ; cover 500 units ending at 1500 units/sec
X100:0 ; cover 100 units ending at 0 units/sec
PVT(P37)

Q{constant}={expression}
Function: Set Q-Variable value
Type: Motion program (PROG and ROT); PLC program
Syntax: Q{constant}={expression}

where
{constant} is an integer value from 0 to 1023 representing the Q-Variable number.
{expression} represents the value to be assigned to the specified Q-Variable.
This command sets the value of the specified Q-Variable to that of the expression on the right side of the
equals sign. The assignment is done as the line is processed, which usually in a motion program

 PMAC Product Guide

230 Buffer Commands

performing a continuous move sequence is one or two moves ahead of the move actually executing at the
time (because of the need to calculate ahead in the program).
Because each coordinate system has its own set of Q-Variables, it is important to know which coordinate
system’s Q-Variable is affected by this command. When executed from inside a motion program, this
command affects the specified Q-variable of the coordinate system running the motion program.
When executed from inside a PLC program, this command affects the specified Q-Variable of the
coordinate system specified by the most recent ADDRESS command executed inside that PLC program.
If there has been no ADDRESS command executed since power-on/reset, it affects the Q-Variable of
Coordinate System 1.
Examples:
Q1=3
Q99=2.71828
Q124=P100+ATAN(Q120)

R{data}
Function: Set circle radius
Type: Motion program (PROG or ROT)
Syntax: R{data}

where
{data} is a constant or expression representing the radius of the arc move specified in user length units.
This partial command defines the magnitude of the radius for the circular move specified on that
command line. It does not affect the moves on any other command lines. (If there is no R radius
specification and no IJK vector specification on a move command line, the move will be done linearly,
even if the program is in CIRCLE mode.)
If the radius value specified in {data} is greater than zero, the circular move to the specified end point
will describe an arc of less than or equal to 180

 o
 with a radial length of the specified value. If the radius

value specified in {data} is less than zero, the circular move to the specified end point will describe an
arc of greater than or equal to 180

o
 with a radial length equal to the absolute value of {data}. If using

the AROT or IROT commands to scale the coordinate system, do not use the radius center specification
for circle commands. The radius does not get scaled. Use the I, J, K vector specification instead.

Note:
If the distance from the start point to the end point is more than twice the
magnitude specified in {data}, there is no circular arc move possible. If the
distance is greater than twice {data} by an amount less than Ix96 (expressed in
user length units), PMAC will execute a spiral to the end point. If the distance is
greater by more than Ix96, PMAC will stop the program with a run-time error.

Examples:
RAPID X0 Y0 ; Move to origin
CIRCLE1 ; Clockwise circle mode
X10 Y10 R10 ; Quarter circle to (10, 10)
X0 Y0 R-10 ; Three-quarters circle back to (0, 0)
X(P101) R(P101/2) ; Half circle to (P101, 0)

PMAC Product Guide

Buffer Commands 231

RAPID
Function: Set rapid traverse mode
Type: Motion program (PROG and ROT)
Syntax: RAPID

RPD

This command puts the program into a mode in which all motors defined to the commanded axes move to
their destination points in jog-style moves. This mode is intended to create the minimum-time move from
one point to another. Successive moves are not blended together in this mode and the different motors do
not necessarily all reach their end points at the same time.
The accelerations and decelerations in this mode are controlled by motor jog-acceleration I-Variables
Ix19, Ix20, and Ix21. If global I-variable I50 is set to 0, the velocities in this mode are controlled by the
motor jog speed I-variables Ix22. If I50 is set to 1, they are controlled by the motor maximum speed I-
Variables Ix16. Only the motor with the greatest distance-to-speed ratio for the move actually moves at
this speed; all other motors are slowed from the specified speed to complete the move in approximately
the same time, so that the move is nearly linear.
The RAPID command takes the program out of any of the other move modes (LINEAR, CIRCLE, PVT,
SPLINE); any of the other move-mode commands takes the program out of RAPID mode.
Examples:
RAPID X10 Y20 ; Move quickly to starting cut position
M1=1 ; Turn on cutter
LINEAR X12 Y25 F2 ; Start cutting moves
...
M1=0 ; Turn off cutter
RAPID X0 Y0 ; Move quickly back to home position

READ
Function: Read arguments for subroutine
Type: Motion program (PROG only)
Syntax: READ({letter},[{letter}...])

where
{letter} is any letter of the English alphabet, except N or O, representing the letter on the calling
program line whose following value is to be read into a variable

Note:
No space is allowed between READ and the left parenthesis.

This statement allows a subprogram or subroutine to take arguments from the calling routine. It looks at
the remainder of the line calling this routine (CALL, G, M, T, D), takes the values following the specified
letters and puts them into particular Q-Variables for the coordinate system. For the Nth letter of the
alphabet, the value is put in Q(100+N).
It scans the calling line until it sees a letter that is not in the list of letters to READ, or until the end of the
calling line. Each letter value successfully read into a Q-Variable causes a bit to be set in Q100, noting
that it was read (bit N-1 for the Nth letter of the alphabet). For any letter not successfully read in the most
recent READ command, the corresponding bit of Q100 is set to zero.

 PMAC Product Guide

232 Buffer Commands

The Q-Variable and flag bit of Q100 associated with each letter are shown in the following table:

Letter Target
Variable

Q100 Bit Bit Value
Decimal

Bit Value
Hex

A Q101 0 1 $01
B Q102 1 2 $02
C Q103 2 4 $04
D Q104 3 8 $08
E Q105 4 16 $10
F Q106 5 32 $20
G Q107 6 64 $40
H Q108 7 128 $80
I Q109 8 256 $100
J Q110 9 512 $200
K Q111 10 1,024 $400
L Q112 11 2,048 $800
M Q113 12 4,096 $1000
N Q114* 13* 8,192* $2000*
O Q115* 14* 16,384* $4000*
P Q116 15 32,768 $8000
Q Q117 16 65,536 $10000
R Q118 17 131,072 $20000
S Q119 18 262,144 $40000
T Q120 19 524,288 $80000
U Q121 20 1,048,576 $100000
V Q122 21 2,097,152 $200000
W Q123 22 4,194,304 $400000
X Q124 23 8,388,608 $800000
Y Q125 24 16,777,216 $1000000
Z Q126 25 33,554,432 $2000000

*Cannot be used

Any letter may be read except N or O, which are reserved for line labels (and should only be at the
beginning of a line anyway). If a letter value is read from the calling line, the normal function of the
letter (e.g. an axis move) is overridden, so that letter serves merely to pass a parameter to the subroutine.
If there are remaining letter values on the calling line that are not read, those will be executed according
to their normal function after the return from the subroutine.

Examples:
In standard machine tool code, a two-second DWELL would be commanded in the program as a G04
X2000, for instance. In PMAC, a G04 is interpreted as a CALL to label N04000 of PROG 1000, so to
implement this function properly, PROG 1000 would contain the following code:
N04000 READ(X)
DWELL (Q124)
RETURN

In standard machine tool code, the value assigned to the current position of the axis may be changed with
the G92 code, followed by the letters and the new assigned values of any axes (e.g. G92 X20 Y30). It
is important only to assign new values to axes specified in this particular G92 command, so the PMAC
subroutine implementing G92 with the PSET command must check to see if that particular axis is
specified:

PMAC Product Guide

Buffer Commands 233

N92000 READ(X,Y)
IF (Q100 & $800000 > 0) PSET X(Q124)
IF (Q100 & $1000000 > 0) PSET Y(Q125)
IF (Q100 & $2000000 > 0) PSET Z(Q126)
RETURN

RETURN
Function: Return from subroutine jump/end main program
Type: Motion program (PROG only)
Syntax: RETURN

RET

The RETURN command tells the motion program to jump back to the routine that called the execution of
this routine. If this routine was started from an on-line command (RUN), program execution stops and the
program pointer is reset to the top of this motion program -- control is returned to the PMAC operating
system.

If this routine was started from a GOSUB, CALL, G, M, T, or D command in a motion program, program
execution jumps back to the command immediately following the calling command.

When the CLOSE command is sent to end the entry into a motion program buffer, PMAC automatically
appends a RETURN command to the end of that program. When the OPEN command is sent to an
existing motion program buffer, the final RETURN command is removed automatically.
Examples:
OPEN PROG 1 CLEAR
X20 F10
X0
CLOSE ; PMAC places a RETURN here

OPEN PROG 1000 CLEAR
N0 RAPID RETURN ; Execution jumps back after one-line routine
N1000 LINEAR RETURN ; Ditto
N2000 CIRCLE1 RETURN ; Ditto
...
CLOSE ; PMAC places a RETURN here

SEND
Function: Cause PMAC to send message
Type: Motion program (PROG and ROT); PLC program
Syntax: SEND"{message}"

SENDS"{message}"
SENDP"{message}"

This command causes PMAC to send the specified message out of one of PMAC’s communications
ports. This is useful particularly in the debugging of applications. It can be used also to prompt an
operator or to notify the host computer of certain conditions.
If I62=0, PMAC issues a carriage-return (<CR>) character at the end of the message automatically. If
I62=1, PMAC does not issue a <CR> character at the end of the message; a SEND^M must be used to
issue a <CR> in this case.

 PMAC Product Guide

234 Buffer Commands

Note:
If there is no host on the port to which the message is sent or the host is not ready
to read the message, the message is left in the queue. If several messages back up
in the queue this way, the program issuing the messages will halt execution until
the messages are read. This is a common mistake when the SEND command is
used outside of an edge-triggered condition in a PLC program. See Writing A
PLC Program section in this manual for more details.

On the serial port, it is possible to send messages to a non-existent host by disabling the port handshaking
with I1=1.
SEND transmits over the active communications response port whether serial, parallel host port (PC-Bus
or STD-Bus), VME-Bus port, or ASCII DPRAM buffer.
SENDS always transmits over the serial port regardless of what is the current active response port.
SENDP always transmits over the parallel host port (PC-Bus or STD-Bus), regardless of which port is the
current active response port.
There is no SENDV command for the VME bus exclusively. The SEND command must be used with the
VME port as the active response port.
When PMAC powers up or resets, the active response port is the serial port. When any command is
received over a bus port, the active response port becomes the bus port. PMAC must then receive a
<CONTROL-Z> command to cause the response port to revert back to the serial port.

Note:
If a program, particularly a PLC program, sends messages immediately on power-
up/reset, it can confuse a host-computer program (such as the PMAC Executive
Program) that is trying to find PMAC by querying it and looking for a particular
response.

It is possible, particularly in PLC programs, to order the sending of messages faster than the port can
handle them. Usually, this will happen if the same SEND command is executed every scan through the
PLC. For this reason, have at least one of the conditions that causes the SEND command to execute to be
set false immediately to prevent execution of this SEND command on subsequent scans of the PLC.

Note:
To cause PMAC to send the value of a variable, use the COMMAND statement
instead, specifying the name of the variable in quotes (e.g. CMD"P1").

Examples:
SEND"Motion Program Started"
SENDS"DONE"
SENDP"Spindle Command Given"

IF (M188=1) ; Coordinate System 1 Warning Following Error Bit set?
 IF (P188=0) ; But not set last scan? (P188 follows M188)
 SEND"Excessive Following Error" ; Notify operator
 P188=1 ; To prevent repetition of message
 ENDIF
ELSE ; Following Error bit not set
 P188=0 ; To prepare for next time
ENDIF

SEND"THE VALUE OF P7 IS:" ; PMAC to send the message string
CMD"P7" ; PMAC to return the value of P7

PMAC Product Guide

Buffer Commands 235

SEND^{letter}
Function: Cause PMAC to send control character
Type: Motion program (PROG and ROT); PLC program
Syntax: SEND^{letter}

SENDS^{letter}
SENDP^{letter}

where
{letter} is one of the characters in @ABC...XYZ[\]^_
This command causes PMAC to send the specified control character over one of the communications
ports. These can be used for printer and terminal control codes, or for special communications to a host
computer
Control characters have ASCII byte values of 0 to 31 ($1F). The specified {letter} character determines
which control character is sent when the statement is executed. The byte value of the control character
sent is 64 ($40) less than the byte value of {letter}. The letters that can be used and their corresponding
control characters are:

{letter} Letter
Value

Control
Character

Value

@ 64 NULL 0
A 65 <CTRL-A> 1
B 66 <CTRL-B> 2
C 67 <CTRL-C> 3
...
X 88 <CTRL-X> 24
Y 89 <CTRL-Y> 25
Z 90 <CTRL-Z> 26
[91 ESC 27
\ 92 28
] 93 29
^ 94 30
_ 95 31

Note:

Do not put the up-arrow character and the letter in quotes (do not use SEND"^A")
or PMAC will attempt to send the two non-control characters ^ and A for this
example, instead of the control character.

SEND transmits over the active communications response port, whether serial, parallel host port (PC-Bus
or STD-Bus), or VME-Bus port.

SENDS always transmits over the serial port regardless of what is the current active response port.

SENDP always transmits over the parallel host port (PC-Bus or STD-Bus), regardless of which port is the
current active response port.

There is no SENDV command for the VME bus exclusively. The SEND command must be used with the
VME port as the active response port.

When PMAC powers up or resets, the active response port is the serial port. When any command is
received over a bus port, the active response port becomes the bus port. PMAC must then receive a
<CONTROL-Z> command to cause the response port to revert back to the serial port.

 PMAC Product Guide

236 Buffer Commands

It is possible, particularly in PLC programs, to order the sending of messages faster than the port can
handle them. This will almost always happen if the same SEND command is executed every scan through
the PLC. For this reason, it is good practice to have at least one of the conditions that causes the SEND
command to execute to be set false immediately to prevent execution of this SEND command on
subsequent scans of the PLC.

SPLINE1
Function: Put program in uniform cubic spline motion mode
Type: Motion program (PROG and ROT)
Syntax: SPLINE1

This modal command puts the program in cubic spline mode. In SPLINE1 mode, each programmed
move takes TA time (Ix87 is default) -- there is no feedrate specification allowed. Each move on each
axis is computed as a cubic position trajectory in which the intermediate positions are relaxed somewhat
so there are no velocity or acceleration discontinuities in blending the moves together.

Before the first move in any series of consecutive moves, a starting move of TA time is added to blend
smoothly from a stop. After the last move in any series of consecutive moves, an ending move of TA
time is added to blend smoothly to a stop. If the TA time is changed in the middle of a series of moves,
there will be a stop generated, with an extra TA1 move and an extra TA2 move added.

This command will take the program out of any of the other move modes (LINEAR, CIRCLE, PVT,
RAPID). The program will stay in this mode until another move mode command is executed.

Examples:
RAPID X10 Y10
SPLINE1 TA100
X20 Y15
X32 Y21
X43 Y26
X50 Y30
DWELL100
RAPID X0 Y0

SPLINE2
Function: Put program in non-uniform cubic spline motion mode
Type: Motion program (PROG and ROT)
Syntax: SPLINE2

This modal command puts the program in non-uniform cubic spline mode. This mode is virtually
identical to the SPLINE1 uniform cubic spline mode described above, except that the TA segment time
can vary in a continuous spline. This makes SPLINE2 mode more flexible than SPLINE1 mode, but it
takes slightly more computation time.

Examples:
RAPID X10 Y10
SPLINE2
X20 Y15 TA100
X32 Y21 TA120
X43 Y26 TA87
X50 Y30 TA62
DWELL100
RAPID X0 Y0

PMAC Product Guide

Buffer Commands 237

STOP
Function: Stop program execution
Type: Motion program (PROG)
Syntax: STOP

This command suspends program execution, whether started by RUN or STEP, keeping the program
counter pointing to the next line in the program, so that execution may be resumed with a RUN or STEP
command.

Examples:
A10 B10
A20 B0
STOP
A0 B0

TA{data}
Function: Set acceleration time
Type: Motion program (PROG and ROT)
Syntax: TA{data}

where
{data} is a constant or expression representing the acceleration time in milliseconds

This statement specifies the commanded acceleration time between blended moves (LINEAR and
CIRCLE mode), and from and to a stop for these moves. In PVT and SPLINE1 mode moves, generally
which are continually accelerating and decelerating, it specifies the actual move segment time. The units
are milliseconds. PMAC will round the specified value to the nearest integer number of milliseconds
when executing this command (no rounding is done in storing the value in the buffer).

Note:

Make sure the specified acceleration time (TA or 2*TS) is greater than zero, even
if planning to rely on the maximum acceleration rate parameters (Ix17). A
specified acceleration time of zero will cause a divide-by-zero error. The
minimum specified time should be TA1 TS0.

If the specified S-curve time (from TS, or Ix88) is greater than half the TA time, the time used for the
acceleration for blended moves will be twice the specified S-curve time.

The acceleration time is also the minimum time for a blended move; if the distance on a feedrate-
specified (F) move is so short that the calculated move time is less than the acceleration time, or the time
of a time-specified (TM) move is less than the acceleration time, the move will be done in the acceleration
time instead. This will slow down the move. If TA controls the move time, it must be greater than the
I13 time and the I8 period.

Note:

The acceleration time will be extended automatically when any motor in the
coordinate system is asked to exceed its maximum acceleration rate (Ix17) for a
programmed LINEAR mode move with I13=0 (no move segmentation).

A move executed in a program before any TA statement will use the default acceleration time specified by
coordinate system I-Variable Ix87.

In executing the TA command, PMAC rounds the specified value to the nearest integer number of
milliseconds (there is no rounding done when storing the command in the buffer).

 PMAC Product Guide

238 Buffer Commands

Examples:
TA100
TA(P20)
TA(45.3+SQRT(Q10))

TINIT
Function: Initialize selected transformation matrix
Type: Motion program (PROG and ROT)
Syntax: TINIT

This command initializes the currently selected (with TSEL) transformation matrix for the coordinate
system by setting it to the identity matrix. This makes the rotation angle 0, the scaling 1, and the
displacement 0, so the XYZ points for the coordinate system are as the axis definition statements created
them. PMAC will still perform the matrix calculations, even though they have no effect. TSEL0 should
be used to stop the matrix calculations

Subsequently, the matrix can be changed with the ADIS, IDIS, AROT, and IROT commands.

Examples:
TSEL 4 ; Select transformation matrix 4
TINIT ; Initialize it to the identity matrix
IROT 71 ; Do incremental rotation/scaling with Q71-Q79

TM{data}
Function: Set move time
Type: Motion program
Syntax: TM{data}

where
{data} is a floating-point constant or expression representing the move time in milliseconds. The
maximum effective TM value is 223 msec. The minimum effective TM value is 1 msec.

This command establishes the time to be taken by subsequent LINEAR or CIRCLE mode (blended)
motions. It overrides any previous TM or F statement, and is overridden by any subsequent TM or F
statement. It is irrelevant in RAPID, SPLINE, and PVT move modes, but the latest value will stay active
through those modes for the next return to blended moves.

The acceleration time is the minimum time for a blended move; if the specified move time is shorter than
the acceleration time, the move will be done in the acceleration time instead. This will slow down the
move. If TM controls the move time it must be greater than the I13 time and the I8 period.

Note:

For LINEAR mode moves with I13=0 (no move segmentation), if the commanded
velocity (distance/TM) of any motor in the move exceeds its maximum limit
(Ix16), all motors in the coordinate system will be slowed down in proportion so
that no motor exceeds its limit.

Examples:
TM30
TM47.635
TM(P1/3)

PMAC Product Guide

Buffer Commands 239

TS{data}
Function: Set S-Curve acceleration time
Type: Motion program (PROG and ROT)
Syntax: TS{data}

where
{data} is a positive constant or expression representing the S-curve time in milliseconds.

This command specifies the time, at both the beginning and end of the total acceleration time, in LINEAR
and CIRCLE mode blended moves that is spent in S-curve acceleration.

If TS is zero, the acceleration is constant throughout the TA time and the velocity profile is trapezoidal.
If TS is greater than zero, the acceleration will start at zero and linearly increase through TS time, then
stay constant (for time TC) until TA- TS time, and linearly decrease to zero at TA time (that is,
TA=2TS+TC). If TS is equal to TA/2, the entire acceleration will be spent in S-curve form (v values
greater than TA/2 override the TA value; total acceleration time will be 2TS.

Note:
For LINEAR mode moves with PMAC not in segmentation mode (I13=0), if the
rate of acceleration for any motor in the coordinate system exceeds that motor’s
maximum as specified by Ix17, the acceleration time for all motors is increased so
that no motor exceeds its maximum acceleration rate.

TS does not affect RAPID, PVT, or SPLINE mode moves, but it stays valid for the next return to blended
moves.

Note:
Make sure the specified acceleration time (TA or 2*TS) is greater than zero, even
if planning to rely on the maximum acceleration rate parameters (Ix17). A
specified acceleration time of zero will cause a divide-by-zero error. The
minimum specified time should be TA1 TS0.

In executing the TS command, PMAC rounds the specified value to the nearest integer number of
milliseconds (there is no rounding done when storing the command in the buffer).

A blended move executed in a program before any TS statement will use the default S-curve time
specified by coordinate system I-variable Ix88.

Examples:
TS20
TS(Q17)
TS(39.32+P43)

TSELECT{constant}
Function: Select active transformation matrix for X, Y, and Z axes
Type: Motion program (PROG and ROT)
Syntax: TSELECT{constant}

where
{constant} is an integer representing the number of the matrix to be used.

This command selects the specified matrix for use as the active transformation matrix for the X, Y, and Z
axes of the coordinate system running the motion program. This matrix can then be modified using the
TINIT, ADIS, AROT, IDIS, and IROT commands to perform translations, rotations, and scaling of the
three axes. This matrix will be used until another one is selected.

 PMAC Product Guide

240 Buffer Commands

This matrix must have been created already with the on-line DEFINE TBUF command. That command
specifies the number of matrices to create, and it must have specified a number at least as high as the
number used in TSEL (a matrix cannot be selected that has not been created).

TSEL0 deselects all transformation matrices, saving calculation time.

Examples:
DEFINE TBUF 5 ; Create 5 transformation matrices
OPEN PROG 10 CLEAR
...
TSEL 3 ; Select transformation matrix 3 (of 5)
TINIT ; Make matrix 3 the identity matrix

U{data}
Function: U-axis move
Type: Motion program
Syntax: U{data}

where
{data} is a floating point constant or expression representing the position or distance in user units for
the U-axis.
This command causes a move of the U-axis. (See {axis}{data} description in this section.)
Examples:
U10
U(P17+2.345)
X20 U20
U(COS(Q10)) V(SIN(Q10))

V{data}
Function: V-axis move
Type: Motion program (PROG and ROT)
Syntax: V{data}

where
{data} is a floating point constant or expression representing the position or distance in user units for
the V-axis.

This command causes a move of the V-axis. (See {axis}{data} description in this section.)

Examples:
V20
U56.5 V(P320)
Y10 V10
V(SQRT(Q20*Q20+Q21*Q21))

W{data}
Function: W-axis move
Type: Motion program
Syntax: W{data}

where
{data} is a floating point constant or expression representing the position or distance in user units for
the W-axis.

This command causes a move of the W-axis. (See {axis}{data} description in this section.)

PMAC Product Guide

Buffer Commands 241

Examples:
W5
W(P10+33.5)
Z10 W10
W(ABS(Q22*Q22))

WAIT
Function: Suspend program execution
Type: Motion program (PROG and ROT)
Syntax: WAIT

This command may be used on the same line as a WHILE condition to hold up execution of the program
until the condition goes false. When the condition goes false, program execution resumes on the next
line. Use of the WAIT statement allows indefinite pauses without the need for repeated use of a servo
command (e.g. DWELL or DELAY) to eat up the time.

However, it is impossible to predict how long the pause will be.

WAIT permits a faster resumption of the program upon the WHILE condition going false. Also, the
program timer is halted when waiting, which allows the In-position bit to go true (which can be used to
trigger an action, or the next move).

Since PMAC executes a WHILE ({condition}) WAIT statement every real time interrupt until the
condition goes false, essentially it is the same as a PLC0. This could use excessive processor time and in
severe cases, trip the watchdog timer on PMAC’s that simultaneously run several motion programs that
use WAIT statements and or large PLC0 programs.

For example, if the condition only needs to be checked every 20 msec and not every real time interrupt,
use a DWELL command to regulate the execution time of the WHILE loop.
WHILE ({condition})
 DWELL20
ENDW

Examples:
WHILE (M11=0) WAIT ; Pause here until Machine Input 1 set

WHILE (M187=0) WAIT ; Pause here until all axes in-position
M1=1 ; Turn on Output 1 to activate punch

WHILE({condition})
Function: Conditional looping
Type: Motion program (PROG only); PLC program
Syntax: WHILE ({condition})

WHILE ({condition}) {action}

where
{condition} consists of one or more sets of {expression} {comparator} {expression},
joined by logical operators AND or OR.

{action} is a program command.

This statement allows repeated execution of a statement or series of statements as long as the condition is
true. It is PMAC’s only looping construct. It can take two forms:

(Valid in motion program only) With a statement following on the same line, it will repeatedly execute
that statement as long as the condition is true. No ENDWHILE is used to terminate the loop.

 PMAC Product Guide

242 Buffer Commands

WHILE ({condition}) {action}

(Valid in motion and PLC programs) With no statement following on the same line, it will execute
statements on subsequent lines down to the next ENDWHILE statement.
WHILE ({condition})
 {statement}
 [{statement}
 ...]
ENDWHILE

If a WHILE loop in a motion program has no move, DWELL, or DELAY inside, PMAC will attempt to
execute the loop twice (while true) each real-time interrupt cycle (stopped from more loops only by the
"double-jump-back" rule), much like a PLC0. This can starve the background tasks for time, possibly
even tripping the watchdog timer. PMAC will not attempt to blend moves through such an empty WHILE
loop if it finds the loop condition true twice or more.

In PLC programs, extended compound WHILE conditions can be formed on multiple program lines
through use of AND and OR commands on the program lines immediately following the WHILE command
itself (this structure is not available in motion programs). Conditions in each program line can be either
simple or compound. AND and OR operations within a program line take precedence over AND and OR
operations between lines.

Examples:
WHILE (P20=0)
 ...
ENDWHILE

WHILE (Q10<5 AND Q11>1)
 ...
ENDWHILE

WHILE (M11=0) WAIT ; sit until input goes true
INC
WHILE (M11=0 OR M12=0) X100 ; increment until 2 inputs true
To do the equivalent of a For/Next loop:
P1=0 ; Initialize loop counter
WHILE (P1<10) ; Loop until counter exceeds limit
 X1000 ; Perform action to be repeated
 P1=P1+1 ; Increment loop counter
ENDWHILE ; Loop back
To do a timed wait in a PLC program, use the servo cycle counter as timer:
P90=16777216 ; Counter rollover value (2^24)
P91=M0 ; Store starting value of M0 (X:$0) counter
P92=0 ; Time elapsed so far
WHILE (P92<P93) ; Loop until past specified time
 P92=(M0-P91)%P90 ; Calculate time elapsed
 ; Modulo (%) operation to handle rollover
ENDWHILE ; Loop back
To do extended compound conditions in a PLC program:
WHILE (M11=1 AND M12=1)
OR (M13=1 AND M14=1)
AND (P1>0)
 ...
ENDWHILE

PMAC Product Guide

Buffer Commands 243

X{data}
Function: X-axis move
Type: Motion program
Syntax: X{data}

where
{data} is a floating point constant or expression representing the position or distance in user units for
the X-axis.

This command causes a move of the X-axis. (See {axis}{data} description in this section.)

Examples:
X10
X15 Y20
X(P1) Y30
X(Q10*COS(Q1)) Y(Q10*SIN(Q1))
X3.76 Z2.92 I0.075 K3.42

Y{data}
Function: Y-axis move
Type: Motion program
Syntax: Y{data}

where
{data} is a floating point constant or expression representing the position or distance in user units for
the Y-axis.

This command causes a move of the Y-axis. (See {axis}{data} description in this section.)

Examples:
Y50
Y(P100)
X35 Y75
Y-0.221 Z3.475
Y(ABS(P3+P4)) A(INT(P3-P4))

Z{data}
Function: Z-axis move
Type: Motion program
Syntax: Z{data}

where
{data} is a floating point constant or expression representing the position or distance in user units for
the W-axis.

This command causes a move of the Z-axis. (See {axis}{data} description in this section.)

Examples:
Z20
Z(Q25)
X10 Y20 Z30
Z23.4 R10.5
Z(P301+2*P302/P303)

	What is PMAC?
	Standard Features for a Typical Application

	Configuring and Programming PMAC
	Hardware Setup
	Software Setup
	Programming PMAC

	Universal PMAC Lite Connectors and Indicators
	J1 - Display Port Outputs (JDISP Port)
	J2 - Control-Panel Port I/O (JPAN Port)
	J3 - Thumbwheel Multiplexer Port I/O (JTHW Port)
	J4 – RS-232 Serial Port Connection \(JRS232 Port
	J4A – RS-422 Serial Port Connection \(JRS422 Por
	J5 - General-Purpose Digital Inputs and Outputs (JOPTO Port)
	J6 - Auxiliary I/O Port Connector (JXIO Port)
	J7 - A/D Port Connector (JS1 Port)
	J8 - Position-Compare Connector (JEQU Port)
	J11 - Machine Connector (JMACH Connector)
	TB1 – Power Supply Terminal Block
	LED Indicators
	Fuse

	Universal PMAC Lite Dimensions
	Universal PMAC Lite Jumpers and Connectors Layout
	Default Jumper Configuration
	Troubleshooting
	Getting PMAC to Communicate Again
	Resetting PMAC to Factory Defaults
	Before Calling for Help

	Power-Supply Configuration Jumpers
	E85, E87, E88: Analog Circuit Isolation Control
	E89-E90: Input Flag Supply Control

	Clock Configuration Jumpers
	E98: DAC/ADC Clock Frequency Control
	E29-E33: Phase Clock Frequency Control
	E48: Option CPU Clock Frequency Control
	E3-E6: Servo Clock Frequency Control
	E34A-E38: Encoder Sample Clock
	E40-E43: Servo and Phase Clock Direction Control

	Encoder Configuration Jumpers
	E24-E27: Encoder Complementary Line Control
	E22-E23: Control-Panel Handwheel Enable
	E72-E73: Control Panel Analog Input Enable
	E74-E75: Encoder Sample Clock Output

	Board Reset/Save Jumpers
	E39: Reset-From-Bus Enable
	E50: Flash-Save Enable/Disable Control
	E51: Re-Initialization on Reset Control
	E93-E94: Reset from Bus by Software Enable
	E103: Watchdog Timer Disable
	E106: Power-Up/Reset Load Source

	Communication Jumpers
	E9-E10, E13-E14: Serial Interface Configuration Control
	E44-E47: Serial Baud Rate Selection
	E49: Serial Communications Parity Control
	E66-E71, E91-E92: ISA Bus Base Address Control
	E54-E55, E57-E59, E61-63, E65: Interrupt Source Control
	E76-E84, E86: Host Interrupt Signal Select
	E107-E108: Serial Port Configure

	I/O Configuration Jumpers
	E1-E2: Machine Output Supply Configure
	E7: Machine Input Source/Sink Control
	E17A - E17D: Amplifier-Enable Polarity Control
	E28: Following Error/Watchdog Timer Signal Control
	E100: Auxiliary Signals Supply Control
	E101-E102: Auxiliary Signals Output Voltage Configure
	E109: Display Port Configuration
	E110: Expansion Port Configuration

	Reserved Configuration Jumpers
	E0: Reserved for Future Use

	Ground Loops
	Star Ground Connection

	Opto-Isolation Circuits
	EMI, Electromagnetic Interference
	Twisted Wires
	Shielded Cable
	Wires Separation and Length

	Flat Cable Shielding
	Basic Rules for Proper Wiring
	Power Supplies
	Digital Power Supply
	Analog Power Supply
	Flags Power Supply (Optional)

	Overtravel Limits and Home Switches
	Types of Overtravel Limits
	Home Switches

	Motor Signals Connections
	Incremental Encoder Connection
	Termination Resistors
	DAC Output Signals
	Amplifier Enable Signal (AENAx/DIRn)
	Amplifier Fault Signal (FAULTn)

	General-Purpose Digital Inputs and Outputs (JOPTO Port)
	J5 (JOPTO): I/O Port Connector

	Serial Connections
	J4 (JRS232) Serial Port Connector
	J4A (JRS422): Serial Port Connector

	Machine Connections Example
	ACC-8P/ACC-8D Breakout Board
	J8 (JEQU): Position-Compare Connector
	TB1 (JPWR): Power Supply
	TB1 (4-Pin Terminal Block)

	Moving a Motor: Jog Commands and Motion Programs
	Axes and Coordinate Systems
	Online Commands
	Buffered (Program) Commands
	Computational Features
	I-Variables
	P-Variables
	Q-Variables
	M-Variables
	Array Capabilities
	Operators
	Functions
	Comparators

	I-Variables Setup
	Motor Definition I-Variables
	Motor Safety I-Variables
	S-Curve and Linear Acceleration Variables
	Rate vs Time: Programming the Maximum Acceleration Parameters
	Benefits of Using S-Curve Acceleration Profiles
	Motor Movement I-Variables
	Servo Control I-Variables
	Coordinate System I-Variables
	Encoder/Flag Setup I-Variables

	Encoder Conversion Table
	Jogging Moves
	Jog Acceleration
	Jog Speed
	Jog Commands
	Indefinite Jog Commands
	Jogging to a Specified Position
	Jog Moves Specified by a Variable
	Jog-Until-Trigger

	Homing Search Moves
	Homing Acceleration
	Homing Speed
	Home Trigger Condition
	Specify Flag Set
	Software Capture Option
	Trigger Signals and Edges
	Torque-Mode Triggering
	Merits of Dual Trigger
	Action on Trigger
	Home Command
	On-Line Command
	Monitoring for Finish
	Monitoring for Errors
	Buffered Program Command
	Homing from a PLC Program
	Motion vs. PLC Program Homing
	Zero-Move Homing
	Homing Into a Limit Switch
	Multi-Step Homing Procedures
	Which Direction to Home?
	Already Into Home?

	Command and Send Statements
	PMAC Position Registers
	Coordinate Systems
	Axis Definitions
	Axis Definition Statements

	Writing a Motion Program
	Running a Motion Program
	Subroutines and Subprograms
	Passing Arguments to Subroutines

	How PMAC Executes a Motion Program
	Linear Blended Moves
	Notes about Linear Interpolation Moves

	Circular Interpolation
	Splined Moves
	PVT-Mode Moves
	Other Programming Features
	Internal Timebase, the Feedrate Override
	Synchronous M-Variable Assignment
	Axis Transformation Matrices
	Learning a Motion Program

	Entering a PLC Program
	PLC Program Structure
	Calculation Statements
	Conditional Statements
	Level-Triggered Conditions
	Edge-Triggered Conditions

	WHILE Loops
	COMMAND and SEND statements
	Timers
	Resetting PMAC to Factory Defaults
	The Watchdog Timer (Red LED)
	Establishing Communications
	General
	Bus Communications
	Serial Communications

	Motor Parameters
	Motion Programs
	PLC Programs
	Global I-Variables
	I1 Serial Port Mode
	I5 PLC Programs On/Off
	I6 Error Reporting Mode
	I7 In-Position Number of Cycles
	I8 Real Time Interrupt Period
	I9 Full/Abbreviated Program Listing Form
	I13Programmed Move Segmentation Time
	I15 Degree/Radian Control for User Trig Functions
	I50 Rapid Move Mode Control
	I52 \ Program Hold Slew Rate
	I53 Program Step Mode Control

	Motor Definition I-Variables
	Ix00Motor x Activate
	Ix01 Motor x PMAC-Commutation Enable
	Ix02 Motor x Command Output (DAC) Address
	Ix03Motor x Position Loop Feedback Address
	Ix04Motor x Velocity Loop Feedback Address
	Ix05 Motor x Master (Handwheel) Position Address
	Ix06 Motor x Master (Handwheel) Following Enable
	Ix07 Motor x Master (Handwheel) Scale Factor
	Ix08 Motor x Position Scale Factor
	Ix09 Motor x Velocity Loop Scale Factor

	Motor Safety I-Variables
	Ix11 Motor x Fatal (Shutdown) Following Error Limit
	Ix12 Motor x Warning Following Error Limit
	Ix13 Motor x Positive Software Position Limit
	Ix14 Motor x Negative Software Position Limit
	Ix15 Motor x Deceleration Rate on Position Limit or Abort
	Ix16 Motor x Maximum Permitted Motor Program Velocity
	Ix17 Motor x Maximum Permitted Motor Program Acceleration
	Ix19 Motor x Maximum Permitted Motor Jog/Home Acceleration

	Motor Movement I-Variables
	Ix20 Motor x Jog/Home Acceleration Time
	Ix21 Motor x Jog/Home S-Curve Time
	Ix22 Motor x Jog Speed
	Ix23 Motor x Homing Speed and Direction
	Ix25 Motor x Limit/Home Flag/Amp Flag Address
	Ix26 Motor x Home Offset
	Ix27 Motor x Position Rollover Range
	Ix28 Motor x In-position Band
	Ix29 Motor x Output - or First Phase - DAC Bias

	Servo Control I-Variables
	Ix30 Motor x PID Proportional Gain
	Ix31 Motor x PID Derivative Gain
	Ix32 Motor x PID Velocity Feedforward Gain
	Ix33 Motor x PID Integral Gain
	Ix34 Motor x PID Integration Mode
	Ix35 Motor x PID Acceleration Feedforward Gain
	Ix68 Motor x Friction Feedforward
	Ix69 Motor x Output Command (DAC) Limit
	Ix80 Motor x Power-Up Mode

	Coordinate System I-Variables
	Ix87 Coordinate System x Default Program Acceleration Time
	Ix88 Coordinate System x Default Program S-Curve Time
	Ix89 Coordinate System x Default Program Feedrate/Move Time
	Ix90 Coordinate System x Feedrate Time Units
	Ix91 Coordinate System x Default Working Program Number
	Ix92 Coordinate System x Move Blend Disable
	Ix94 Coordinate System x Time Base Slew Rate (and Limit)
	Ix95 Coordinate System x Feed Hold Deceleration Rate
	Ix96 Coordinate System x Circle Error Limit

	Encoder/Flag Setup I-Variables
	I900, I905, ... I975 Encoder n Decode Control Encoder I-Variable 0
	I902, I907, ... I977 Encoder n Position Capture Control Encoder I-Variable 2
	I903, I908, ... I978 Encoder n Flag Select Control Encoder I-Variable 3

	<CONTROL-A>
	<CONTROL-B>
	<CONTROL-C>
	<CONTROL-D>
	<CONTROL-F>
	<CONTROL-G>
	<CONTROL-H>
	<CONTROL-I>
	<CONTROL-K>
	<CONTROL-M>
	<CONTROL-O>
	<CONTROL-P>
	<CONTROL-Q>
	<CONTROL-R>
	<CONTROL-S>
	<CONTROL-V>
	<CONTROL-X>
	<CONTROL-Y>
	<CONTROL-Z>
	#
	#{constant}
	#{constant}->
	#{constant}->0
	#{constant}->{axis definition}
	$
	$$$
	$$$ ***
	%
	%{constant}
	&{constant}
	&
	/
	?
	First Word Returned (X:$003D, X:$0079, etc.)
	Second Word Returned (Y:$0814, Y:$08D4, etc.)

	??
	First Word Returned (X:$0818, X:$08D8, etc.)
	Second Word Returned (Y:$0817, Y:$08D7, etc.)
	Second Word Returned (Y:$0817, Y:$08D7, etc.)

	???
	First Word Returned (X:$0003)
	Second Word Returned (Y:$0003)

	
	A
	ABS
	{axis}={constant}
	B{constant}
	CLEAR
	CLOSE
	{constant}
	DATE
	DEFINE TBUF
	DELETE GATHER
	DELETE TBUF
	DISABLE PLC
	ENABLE PLC
	F
	FRAX
	H
	HOME
	HOMEZ
	I{constant}
	I{constant}={expression}
	I{constant}=*
	INC
	J!
	J+
	J-
	J/
	J:{constant}
	J:*
	J=
	J={constant}
	J=*
	J=={constant}
	J^{constant}
	J^*
	{jog command}^{constant}
	K
	LEARN
	LIST
	LIST PC
	LIST PE
	LIST PLC
	LIST PROGRAM
	M{constant}
	M{constant}={expression}
	M{constant}->
	M{constant}->*
	M{constant}->D:{address}
	M{constant}->L:{address}
	M{constant}->X/Y:{address}
	MFLUSH
	O{constant}
	OPEN PLC
	OPEN PROGRAM
	P
	P{constant}
	P{constant}={expression}
	PASSWORD={string}
	PC
	PE
	PMATCH
	Q
	Q{constant}
	Q{constant}={expression}
	R
	R[H]{address}
	S
	SAVE
	SIZE
	TYPE
	UNDEFINE
	UNDEFINE ALL
	V
	VERSION
	W{address}
	Z
	{axis}{data}[{axis}{data}...]
	{axis}{data}:{data} [{axis}{data}:{data}...]
	{axis}{data}^{data}[{axis}{data}^{data}...]
	{axis}{data} [{axis}{data}...] {vector}{data} [{vector}{data}...]
	A{data}
	ABS
	ADDRESS
	ADIS{constant}
	AND ({condition})
	AROT{constant}
	B{data}
	BLOCKSTART
	BLOCKSTOP
	C{data}
	CALL
	CIRCLE1
	CIRCLE2
	COMMAND"{command}"
	COMMAND^{letter}
	DELAY{data}
	DISABLE PLC {constant}[,{constant}...]
	DISPLAY [{constant}] "{message}"
	DISPLAY ... {variable}
	DWELL
	ELSE
	ENABLE PLC
	ENDIF
	ENDWHILE
	F{data}
	FRAX
	GOSUB
	GOTO
	HOME
	HOMEZ
	I{data}
	I{constant}={expression}
	IDIS{constant}
	IF ({condition})
	INC
	IROT{constant}
	J{data}
	K{data}
	LINEAR
	M{constant}={expression}
	M{constant}=={expression}
	M{constant}&={expression}
	M{constant}|={expression}
	M{constant}^={expression}
	N{constant}
	NORMAL
	O{constant}
	OR({condition})
	P{constant}={expression}
	PSET
	PVT{data}
	Q{constant}={expression}
	R{data}
	RAPID
	READ
	RETURN
	SEND
	SEND^{letter}
	SPLINE1
	SPLINE2
	STOP
	TA{data}
	TINIT
	TM{data}
	TS{data}
	TSELECT{constant}
	U{data}
	V{data}
	W{data}
	WAIT
	WHILE({condition})
	X{data}
	Y{data}
	Z{data}

