Universal PMAC Lite

PMAC Product Guide

500-603657-xPGXx

April 21, 2004

A

A DELTA TAU

\\—\ J—’ / Data Systems, Inc.

21314 Lassen Street Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com

Copyright Information

© 2003 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other
uses are unauthorized without written permission of Delta Tau Data Systems, Inc.
Information contained in this manual may be updated from time-to-time due to product
improvements, etc., and may not conform in every respect to former issues.

To report errors or inconsistencies, call or email:

Delta Tau Data Systems, Inc. Technical Support
Phone: (818) 717-5656

Fax: (818) 998-7807

Email: support@deltatau.com

Website: http://www.deltatau.com

Operating Conditions

All Delta Tau Data Systems, Inc. motion controller products, accessories, and
amplifiers contain static sensitive components that can be damaged by incorrect
handling. When installing or handling Delta Tau Data Systems, Inc. products, avoid
contact with highly insulated materials. Only qualified personnel should be allowed to
handle this equipment.

In the case of industrial applications, we expect our products to be protected from
hazardous or conductive materials and/or environments that could cause harm to the
controller by damaging components or causing electrical shorts. When our products
are used in an industrial environment, install them into an industrial electrical cabinet
or industrial PC to protect them from excessive or corrosive moisture, abnormal
ambient temperatures, and conductive materials. If Delta Tau Data Systems, Inc.
products are directly exposed to hazardous or conductive materials and/or
environments, we cannot guarantee their operation.

mailto:support@deltatau.com
http://www.deltatau.com/

PMAC Product Guide

Table of Contents

VI 2 (] 1 L] SRS 1
ATz ALY Y OSSO 1
Sandard Featuresfor a Typical APPIICALIONccieeiiiiieeeeeesees et re e eae e e e e saesrenre e 2
Configuring and Programming PMACcoe oottt see ettt e e e e st ste st sae s e e eneesaestesaesneeseeneensesennsessesns 2
LB L0 0= IS o S 2
S =TSR = (1] o F OSSPSR 2
Programming PIMAC ..ottt ettt et b et h e s bbb b b e bt b e bRt e b e b e st e b et et nb et s b e e 3
Universal PMAC Lite Connectors and INAICALOSceueierere ittt sttt ne e e seesneneas 3
J1 - Display Port OUIPULS (JDTSP POc.cieieiieieseisiesie ettt sbe e sae e ae e s eesbesaesbe s e saesse s e ensessesbesaesaeas 3
J2 - Control-Panel Port 1/0 (JPAN POFT)c.oiiieeiere ettt be et a e et bbb saesse e e e eessesbesaesaeas 3
J3 - Thumbwheel Multiplexer Port 1/0 (JTHW POIL)cceiieieiee ettt sttt e e e et snestesnesneas 3
J4 — RS-232 Serial Port ConneCtion (JRS232 PONT)ccucieiiiieieceeeeieeiesteste sttt s e reesae e sseste e sresresnseaessessesnesnens 3
JAA — RS422 Serial Port ConneCtion (JRAZ22 POIL)......cceiiieeeeierierie e stestesesteseesaestesae e srestesresseeseeseseseessessesnens 3
J5 - General-Purpose Digital Inputs and OUtputs (JOPTO POI)cccviiiiieiereeieeeresese s sesesseeeeseeseesee e sne e 3
J6 - Auxiliary 1/O Port ConneCtOr (JXIO POIT)cceeeerieesisesesteseeeeesees e ste st e e e eaesee st s e sre e eneenseseessessnsnens 4
J7 - AJD POrt CONNECLON (JSL POFT) ..veiuieieeieieieisiesie st stese e esees e e s ste s st s eseese e e saesaesaesseeseesesseeseensensensensessnssens 4
J8 - Position-Compare ConNeCtor (JEQU POIT)c..ciiirieiitereeisiereeieste ettt s sb e s s be b e s sne e 4
J11 - Machine Connector (IMACH CONNECION)eiviuiririeieriereetesie ettt ere st et b e e se b e s b seebesbeseesesbeneas 4
TB1 — Power SUPPIY TEMINGL BIOCK.........ciiiiiiiieeeeee sttt 4
[T g o (o= o] = USSR 4
[T PRSP URUPRORN 4
UNIVErsal PMAC Lite DIMENSIONS.......coiiiiiitirierieeteeteeieeieseeseesteseeste st sses e assasessesbesaesbesseeaeessessebeseesbessesneensesseseseessesss 5
Universal PMAC Lite Jumpers and CONNECLOrS LAYOUL..........ccccoueeieieeeeieeriesieseeste e ereseeee e see e sresresseseessesaeseseesnennas 6
Default JUMPEr CONFIGUIALIONeiuieeeeeiestes e ettt e e s et e e sreste s e esee e e sestesaestesseeseeseeseesteseenteseesressesseenseeenteseearenses 7
I (o100 = 10T 1o TS 8
Getting PMAC t0 COMMUNICALE AQAIN......c.ueieeeeieresestesteseseeseesees e seestes e ssessesseesseseessesseseessessessessesseessensessessessessenns 8
Resetting PMAC t0 FACtOry DEfAUILSccciiiiieiecee e e et ne e e e e naeneenne e 8
[7C (o g =X @ T g To i {0 g o = o 8
PMAC JUMPER CONFIGURATION ...ttt sttt sttt sttt sttt tesae s sbeseesesbesbenessentens 11
Power-Supply ConfigUIation JUMPEIS.........coueiieeeterieeete sttt sttt sttt et b e et bbb e bt b e e bt sbe e ebe s be e ebesbe e sbe b 11
E85, E87, E88: Analog Circuit 1S0lation CONLIOcoeiiiiiieieieieeeeee e e 11
E89-E90: Input Flag SUPPIY CONLIOL........oiiiiiiieeeeeee ettt st e b be sttt e b e b enis 12
Clock CONfiQUIAION JUMELS. ... coueiitiiierte ettt eteeee e e e seesbeseesbesbesaeese st aseeseeaeesbesaeebesaeebeeaeeneeneeebesaeaaeaneeneanbeseenbesaenneas 12
E98: DAC/ADC ClOCK FrequeNCy CONTOL........cceieeeeeeiesiesiesesiesteseeeesaeseestesaesressesseeseessesessessessessesssessensesesssenses 12
E29-E33: Phase Clock FrequenCy CONLIOLccecieiiiieie s etee e ete ettt e e aese e teseesresresneenaeseeaesaesrennas 12
E48: Option CPU Clock FrequenCy CONEIOLcccveiireriesieseseeeeseesiesie e stesesseeeese e srestesaessesseessessesssssesssssesses 12
E3-E6: Servo CloCK FrequENCY CONEIOLcciieeeceerei e steste st seee e te e te et ese e e se e e saesressesneeneeneenseseessennes 12
E34A-E38: ENCOUEr SAMPIE CIOCK......c.eeiiiieiieiiesiece et e e seste st s e ae st te s st sees e e e e seestesaesneeneeneensesaenrenns 13
E40-E43: Servo and Phase Clock DireCtion CONEIOlcoueiiiieinieieinicsiesieesie s 13
Encoder Configuration JUMPETSoiueeeerieieie ettt st sttt st sbe et b e e bt s b et ebe s be e e b e s e et eb e s b e b e s b et ebe s be e ebesbe e ebenbns 13
E24-E27: Encoder Complementary Line CONEIOlccuiiiiiiiriineneenerees et 13
E22-E23: Control-Panel Handwheel ENADIEcooiiieiireececeeeee et 13
E72-E73: Control Panel Analog INput ENADIE...........coie et e e 13
E74-E75: Encoder Sample CIOCK OULPULeieeeeieriiie ettt st sbe e e et e b b e e e e ebesaesneenas 14
BOard RESEL/SAVE JUMPELS ...ttt ettt sttt ehe et e e seesee b e sheeb e s et e ae e e e e e besaeebeeaeeaeems et e sbesheeheeneanteseenbesaeabeas 14
E39: ReSet-From-BUS ENADIE.........coiiieiie ettt sttt ne s nes 14
E50: Flash-Save Enable/Disable CONIOlccuiieiiirieiriiieisiesie ettt st e st se s e esessenes 14
E51: Re-Initialization 0N RESEL COMLIOLcuciiirieiiiiieisiisie sttt st sa s st e e se e eneenensenes 14
E93-E94: Reset from Bus by SOftwar€ ENADIEcc.ooieiiiice ettt s s 14
E103: Watchdog TImMEr DISADIEcc.ecuieeceeescse sttt e et a e s eesreene e e e e e eesaenrenns 15
E106: POWEr-UpP/RESEL LOAA SOUICE.......ecueeiereisieieestesteeeeteseeseseessesseeseessessestesaessessesssesseseessesasssessesseessessensessessenses 15
COMIMUNICELION JUMPEIS ...ttt ettt sttt sttt se ettt se et sb et ebesbe e ebesb e e eb e s e e e eb e sEem e ek e sEemeebeseeneebeseeb e ebeneebeebeseebe et e seenenbeneas 15
E9-E10, E13-E14: Serial Interface Configuration CONLrOl..........cooveeeeeierene e 15

Table of Contents i

PMAC Product Guide

E44-E47: Serial Baud RAte SEIECHION........cci ittt sttt ettt sae et snesne e e e e eeeseenrennas 16
E49: Serial Communications Parity CONIOL..........c.oiiiiiiiieiiieereeesee e 16
E66-E71, E91-E92: | SA Bus Base AAAress CONEIOlc.cvieiririeinesieisisieesesie s ssenes 16
E54-E55, E57-E59, E61-63, EB5: Interrupt SOUrCe COMNLIOl.......oiveiiiirieiriiieisiiieiesiesee st ssenes 18
E76-E84, E86: HOSt INterrupt SGNal SEIECL.ccueieieeeeeeeee et ettt sae e 18
E107-E108: Serial POrt CONfIQUIE.....cciiiiciiiiectieeceeie st ste sttt e e e te e st este st ebe e e esaeseese e tesaesbesteeneeneensenteseenrenns 18
[/O CONfIQUIBLION JUMPETSevietieeeeeetestestesteetesteeseeseessesseseestestesseeseessessestesseatesaeaseeseessessesseteseestenseeseeseessanseseessensens 19
E1-E2: Machine Output SUPPIY CONfIUIE........ccueiecicieese sttt et sa e s b e ae e e e e tesnesreens 19
E7: Machine Input SOUrCe/SINK COMNLIOL.........ciiieie et e e sre st sre e e e e e e snenrenns 19
E17A - E17D: Amplifier-Enable Polarity CONtrolccoviiiireeeeescse st 19
E28: Following Error/Watchdog Timer Signal Control.........oceeeeieieieie e s 20
E100: Auxiliary Sgnals SUPPIY CONIOL......c.coiriiietirieieiesieieie ettt b e b e nn s 20
E101-E102: Auxiliary Signals Output Voltage CONfigUIE..........uoeeririeiriieereeee et 20
E109: Display Port CONfigUIaLIONcc.ooiiiiieieeeeeeeee ettt et sb e it ee e e beseesbesbesae e e e neebesaesrennas 20
E110: Expansion Port COnfiQUIaLION ..ottt st she e e e se et e b e sbe st e e e e ebesaesbennas 20
Reserved ConfiguIation JUMPELS.o.ciiaiirieriere st eteee et te st e seesbesaeehesae s e e eeseesbesbesaeabesaeeseeeebesbesbesaeeneanseseenbesaesreas 21
EO: RESEIVEA fOr FUIUNE USE.....eiiiiieeiieete sttt sttt ettt b e bt st e st b et e b et eneenensenen 21
WIRING GUIDELINES ...ttt ettt e st st e b e e e te b e nesbe b eneetesbeneesenteneenentens 23
LT 070 19 To 1 o o= S 23
S ez TR € oo K @Xe g1 ok i o] o FH TSSO 23
(@7 o1 (0 2T K=o = 1T g T O o T (S 24
EMI, EleCtromagnetiC INtEIfEIENCE. ... cceeeeeeeee s sttt e e sttt e st et et e st e s e eae e e e tesaesreeseeneeneeseensesnenrens 24
QLIS 0= o R = ST 24
S TT= Lo 1=o oSS 25
Wires Separation and LENGEN ...t bbb et 25
Flat Cable SNIEIAINGoveveitiieiiiieieee ettt se et e seeseebesaeseebeseeseebeseeseebeseeseebeseeseabesaeseeteseesentesensentens 25
BasiC RUIES TOF PrOPEr WITINQ ... coueiueeueeeeieriesie ettt et b et sae e se e seesbe s aesheeae e e eneeseesbesaesbesaeeaeenseseenbesaeareas 26
MACHINE CONNECTIONS..... .ottt sttt sttt st b e b sttt b ettt e e b e s b et b s be e ebesbe e sbenbens 27
oY= ST o] o 1= SRR 27
[T To] = I 0T = g U o] o /S 27
ANAIOG POWET SUDPIY ..ttt sttt e e st e e st st esaeeaeesee e e s beseeebesaeeaeeseensenteseentesbesresseensenteseentessenrens 27
[=10 S TS S o] o A (@] oo = 28
Overtravel Limits and HOME SWILCHES.........oiiiiiiiiiene sttt st s st s ne st e 28
TYPES OF OVEITFAVE] LIMITS....cviieeieiteseeieetee sttt st b e et b e et b et bt bt b e b et b b e bt 28
[(000 SIS Y (o 1SR 29
MOLOr SIGNAIS COMMECIONS.veveueeterteeetesie ettt ettt sttt ettt he b st bt b e se e bt s b e s e e bt e b et eb e s b et e b e s b et ebe s be e ebe s b et enenbns 29
Incremental ENCOAEr CONMNECLIONoiuiiiii ettt b et e e e b saesbe bt ebeebe e e anbeseesbesaesneas 29
TEIMMINALTION RESISLOIS. ...ttt ettt e e bt he bt e st e e e s eese e be s bt eheehe e st e ae e e e beseeebesbeeaeenee e eneeseesbenaens 30
(DY O @111 o 1U L0 T = KSR 30
Amplifier Enable Sgnal (AENAX/DIRN)........ccciiieieieieie st ste e e e s e esaesaestestesaestesseeseessessastesaestessessessesssesessessessensens 31
Amplifier Fault SGNAl (FAULTN) .ottt ae et sae s tesaeeseesa e e enteseesbeseesreesesnsentessenressensens 32
General-Purpose Digital Inputs and OUtputs (JOPTO POIt)cccciueieierieieseseeeeseeseesiesees e seestessessesssesssssessessessessens 33
J5 (JOPTO): 1/O POrt CONMECLONc.eeieeriisieiteeteeieeueeeesaesestestesseeseeseenses e seessessessesseesseseessessessessessessessesssnsessessessenns 34
SENTA COMNMECHIONS.......eitiieiietereeeete sttt sttt sttt se e st e bese e st e bese e st ebese e st e besEen e ebeseemeebeseebenbeseebenbeneebenbeneebesbeneenenbenees 35
J4 (JRS232) Serial POrt CONMNECLONccvevieiierieeteeeeeeeeesees e seestesesseeeesees e seestessesaesseeseesaeseessesaesaessesseeneeneenseseessessens 36
JAA (JRHA22): Serial POrt COMMECIONcueuiitiieietereeie sttt sttt sttt st b et b e bbb bt ebe bt b b 37
Maching CONNECEIONS EXBMPIE ..ottt b et b e bbbt et b et bennene 38
ACC-8P/ACC-8D BreakOUt BOAIM.........c.ccuiuirieiiiiieiiiiei st ettt e e besae e s besae e e sesbeneenentens 39
J8 (JEQU): PoSitiON-COomMPAre CONMECLONcc.ciieierierieriertestesieeteeieeeeseessesbesaesbes e sseeeensebeseesbesaessessesneensessensesesssesss 41
TBL (JPWR): POWES SUPPIY ...ttt ettt ettt b et e bbb e st e aeeae e e et seeebesbeebeeb e e e eneese e besaesrennas 41
TBL (4-Pin TErMINGI BIOCK)cueitiieiiiteiieiisie sttt sttt st tesa et bese et be st esesbe e esesbe e esesbe e esestenenseeens 41
PROGRAMMING PMAC ...ttt sttt sttt sttt st sa et s te st ese s be e ese st e e ebe s te e esesbe e ebesbe e esesbeseetesteneesestenensentens 43
Moving a Motor: Jog Commands and MOtioN PrOQramSccceeeieeieieeieeseseesiesiesressessasssesesssessessessessessessssssessessens 43
AXES ANA COOTAINGLE SYSLEIMSueeueeeie st et e e e st e st e s e se e e e e eeseesbesaesseeseeseesee e ensessesresaeaneeseeneanseseenrenanans 44

ii Table of Contents

PMAC Product Guide

L@ 0 T T X @00 11 47= 1 1RSSR 44
Buffered (Program) COMIMENGScoceiieiririeiee ettt sttt sttt ie b se bt b e e b b e e e be s b et e be s be e ebesbe e sbe b 45
COMPULBLTIONA FEALUIES. ... ettt ettt st st b e heeae e e et e seeseesbesaeeh e e Rt ehe e e enbesbeebeebeeaeaneeneanbeseenbesaeaneas 45
V=T T= o] 1= TSRS 45
P-VAETADIES. ...ttt b et h e e et e be s e e b e s he e b £ e Rt e R e e m e e eE e beeEeeReeReeReeR e et e nbeneeebesaeebeeaeeanan 46
L@ Y T =1 o= 47
=TTz o] =SS 47
F = Y 0= T 11 1L = SRRPS 48
(01 = 0] =S 49
[T o OSSO 49
L0010 = o 50
[-V BITADIES SEIUD ...ttt bttt et b e et b e s e h e b s e h e e b e se e bt b e e b e b et e bt e b et b e b e e b b e ne s 51
Motor DEfiNition [-VariablES..........ciieieee et eb et e e se e be e s besaeene et e neeeeseenrenns 51
MOLOr SAfELY [-VArTADIESottt h et e e e se e besb e s besbeeae et e neebesaesbeenas 51
S-Curve and Linear ACCEIeration Vari@bIEs....... ..o e e s 52
Rate vs Time: Programming the Maximum Acceleration ParametersS.........ccoeeeeeereeneresesese e 52
Benefits of Using S Curve ACCEIEration ProfilES.........cocii it sttt se et sre s re e 53
MOLOr MOVEMENT [-VAITADIES ..ottt s e b et e b et eneenensenes 53
SErVO CONION [-VAITADIES.......couiieeiriiie ettt st e st e et b et et et e bt e bt 54
Coordinate SyStemM [-VariablES.........c.uceeieereere e r e er e e e e te e nrennn 54
Encoder/Flag SEtUP [-VariablS.........coe it se e besae st s neene e e e e eesaenrenns 55
ENCOTEr CONVErSION TaDI ..ottt et sttt ettt b bt e bbb bt e bt 55
JOGGING MOVES......otiieiiitiieteitee ettt ettt bttt h b h e b e h b e e h e H e s e bt b e s e s e e b e e e Rt e b e b e Rt e b et et e bt b et e b et et eb e et e e eneee 55
JOG ACCEIBIALION ...ttt et ettt b e et b e s e he e b e s e e he b e s e e Rt e b e e e e Rt e b e s e eb e s b et eb e e b et e b e s b et eb e be e nb et ene 55
JOG SOEEU....e ettt b b h e E ek h e R R e R e R e e Rt R e b e h e e eh e Rt ee Rt e b e ne Rt e b neene et 56
N (oo [0 4010 17> LSRR 56
INAEfiNITE JOG COMIMANGSeetiiti ittt et b et ae e e e ee e et e s be s bt ebeeaeeneereebesbeebeeneeneanteseenbesaesaeas 56
Jogging t0 8 SPECIHIOU POSITIONcueiueieiiiieee ettt et b et e et e e bbbt bt b e e aeese e e e eeseesbesaeens 56
Jog Moves Specified by @ Variabl€.........c.ooiiiiiii et s s r e re s 56
I (oo EL o1 1 T o = S 56
HOMING SEAICH MOVES ...ttt e st st e e aeeae et et e be s b e e beeaeeaeeseeseesteseeteseeabesaeeseensesseteseenrens 57
[(000 T a0 Ao ol = = oo 57
L [0 T 00 TR 0= 57
HOME TrigOEr CONTITION ..ottt b e bt e et b e e e bt e e e bt e e e e bt st e bt e eneeneneenes 58
S L ol VA oo S OO TS T U RUP PRSP 58
SOFtWAT € CAPLUNE OPLION.uieiiietiieeiiet ettt b et bbbt bbbt b b et b e b et et e b et et e b e bt eee b 58
Trigger SIQNAIS ANT EAQES......cui ittt ettt b et se e b bt et s b e s aeehe e e et e nbeebesheeaeene e e enbeseesbesrens 58
e e [U1ca Y (oo SR N gTe o L= oo [ST 59
LS gL Yo U= R T o = SRR 59
Yoo o 0 I I e o L= SR 60
0T 0 T o1 1100'= oo T 60
L@ 0 I o T= T o1 4102 (oo OSSR 60
Lo a TR (o T gl 0T T T S 60
L0 a TR (o T a0 = 0] =S 60
Buffered Program COMMEANG..........c.eeeeieeiiererisesesteseeeestesees e ssessessesseesseseesesaessessesssessssssssesssssessesseesessessesssssenses 60
HOMING frOM 8 PLC PrOGIaM.....cccuiitiietiitiiet sttt sttt b e b s b e bt s e e e bt seseeb et e eb e e eneeaennenes 61
MOtioN VS. PLC Program HOMING.......cccetiieeiriieetirteeetesiee et se s s s ese s saese s ssese s s enessesseseesessensesessenes 61
ZEIO-MOVE HOMING. ...ttt ettt ae b st h e bt b e b et bt b et bt s E et e bt e b et e bt s b et eb e e b et e bt s b et ebe s be e neenbns 61
HOMING 1IN0 @ LIMIt SIMTCR......ceiei bt e e s bt bttt b e et eaas 62
MUIti-SLEP HOMING PIrOCEAUESc.eecviieeieeie ettt sttt sttt ae et e e b se b e sae b e e st e ae e e e besbeeaeene et e beseesrennis 63
WWHICh DITECHION 10 HOMIE? ...ttt ettt bbbt bt he et e e e se e b e s besbeebe et enteseenbesaenaeas 63
F == VoV) (o [2SS 64
Command aNd SENA SEALEIMIENTSeiveiiereeeire ettt sttt et tesee e steseesesbeseesesbeseebesbeseetesbeseesesteseesenteseesentesens 65
PMAC POSITION REQISIENS. ... eeviitiiieseceeeeeesteste e ste st se e e e see e srestesseeseeseensenteseesbesaeeseeseeseenseseetessessenneeneenseseenseseessens 66
MOTION PROGRAMS ...ttt sttt sttt sttt s be st et s be e e se s be e e be s be e et e s beseebesbeneebesbe st abesbenensesbenensentens 69

Table of Contents ii

PMAC Product Guide

COONTINGLE SYSEEIMS ... vtttk ettt ettt ettt et b et e bt se e eb s b e e eb e sb e e eh e sbeaeeh e s e e s e eb e s e e s e eb e e e e s e e bt s e e n e eb e sbeneebesb e s eb e st e s enenein 69
F I3 = 14T o] TSP R 69
AXIS DEfINITION SLALEMEINES......eeteiee ettt sttt ettt ae e e e e bese e be s bt e aeeae e e eneeseesbesbesbease e e anteseenbesaenaeas 70

WIITING @ MOLION PIOGIAIML. ...ttt et b et h e h et e e e e be s et eb e e bt eaeen e e e e beebesbesbeeaeese e s eneeseeseenaeene 70

RUNNING 8 MOLTON PIOGIAIM ...ttt h et e et e s be bt b e e aeeae e e e e e beseesbe s bt ebeeheeneanbeseenbesaeareas 72

SUbroutings and SUDPIOGIAIMISciuiiiiie e e et s e e e e se e e sresbesbesresteeaeesee e e seseesbesseeseenseneenteseenteseearens 73
Passing ArgumentSt0 SUDIOULINES...........ccviuiiiiecieeie sttt e e sttt e e sre e e et etesr e besaestestesaeeneensenteseearenns 73

HOw PMAC EXECULES 8 MOLION PrOGIaIM.......ccuiiiiiteetieeeeeie e e ste st ete e e e e e aesresbestesteste s e esaesaetestesresaeensensessensessessens 74

LiNEar BIENUEH MOVES........oo ittt ettt b e st b e et b s e e bt b e s e b b et e b sb et et be e ebesbe e e bt 75
Notes about Linear INtErpolation IMOVES..........viiieeeeecerese s stese e sae s e te s sre e sse e aeseeteseesressesneeneeneenseseessesses 76

L@ 1 (o U= 1 11= 1 oo =4 o 79

SPINEA IMOVES. ...ttt et b e et b e e et bt se e st e bt s e e R e e E e e e e s e eb e sEeReeb e Ao eb e e b e se e b e ebene ekt ebeneebesbeneenenbeneas 81

LV I AV oo (o 1V o Y= S RSRPSRRN 81

Other Programming FEALUIES...........oiiiiieiteeiereeeeee e ettt ebe st et e eese e beseesbe s bt shesae e e aseese e besaesbesaesaeaneeneenteseeabesaeaneas 84
Internal Timebase, the FEarate OVEITIAEc..ci ittt e bbb e e e be e saea 84
SyNCchronouS M-Variahl@ ASSIGNMENL........c..oiiie ettt e e e et e st e b b e s et e ae st e e e e e seenbesaesrennas 84
AXIS TranSfOrmMatiON IMELICESciueieirieieie ittt sttt st et et e e et be st e seebeseeseebeseebesbeseeseebeneenesreneas 84
Learning @ MOION PrOgraM........cciicieiieieiesteste s e eueeseeaestestestesaessesseessesessestesaessesseessessessesteseessessesseessessensessessenses 84

L I O o 0 1] ¥ 2N 1Y TSSO 85

(= Lo = IO . 0o = R SPS 86

L IO o oo = TS {1 o [=R 86

CalCUIELION SEALEMENES ...ttt sttt et et e et b e s e e st et e se et e b e s e e nenbeseebesbeseebenbeneebenbeneenenbeneas 87

L0010l [L0 = IS 1= 0 1= 4] £ 87
Level-Triggeret CONGITiONS.ciueerireeriere ettt e bt et b b b s b e bt s e e e ebese e e eb e st eneeb e e e e ene e enes 87
Edge-Triggered CONUItIONS.........oiueiriiieiiiteeet sttt bbbt bbbt b e e e e e bt se e e eb e b e eb e b e e ene s s 87

RTINS 88

COMMAND N0 SEND SEAEEMENES. ... cueeveiveeirierieesteseesesieseeresteseesessesessesseessessesessessesessessesessessesessessesessessesessessesessesses 88

LI 0= TSR 89

TROUBLESHOOTINGociciiiieiste ettt sttt sttt et st ese et a e s e se s s aseesesseseesesaeneesesseneese st ensesessansesessessenessenen 91

Resetting PMAC t0 FACLOry DEFAUILS.......c.cciieieie ettt st be sttt a e e e et e besbesaeeneeneeseentesaenrens 91

The Watchdog Timer (REA LED)ccuiieieiece sttt st s e e s re st s e e et seestesaeeresbe e e eneensenteseesrenns 91

Establishing COMMUNICALIONSccueeuieeeieriesiesese st eseeeee e s e e see e e sse e e e e e eesresbesaesseeseeseenseseesessessesseeneenseseensessessens 92
LC T 1 | SO S 92
[TU Y @00 0 8Tl o7 o] S 93
SEri@l COMIMUNICALIONS. ... ciueeuieieie et sie et ae st et e et ste s e ese e e e eesee st esbeseeebesaeeseenee st enteseesbeseeeseeseeneenseneenteseesrenns 93

Y Ko 0 gl == 0 1 . U ST 93

Y Ko 1T gl oo = 10 01 S SO STSPRURRN 94

L IO e (0o £ 0 ST RSP U PR 95

Y Y = s TSRS 97

L€ Tol o= I R = = o] =SSR 97
S = T [=0T 1Y oo LTSRN 97
I5 PLC Programs On/Off ..o cieiee e s et e e st e e s e s te s e esaeee s e beseeabesaeeaeeseesessesteesesnsenseseentessensens 98
L = o g = =0T 1o 1Y oo L= SRS 98
[7 IN-P0SitioN NUMDEr Of CYCIESeieeiesiesie ettt sttt e e e e naesesreeseenneneeseentenaennens 99
18 Real TIME INEITUPE PEIIOM ... c.veceeeecese ettt sttt st se s e e e e see st e s nesneere e e eneenaeneenrenns 100
19 Full/Abbreviated Program LiSting FOMM ..ot e 100
113 Programmed Move SEgmentation TIME.........coieiriieiineriee ettt sttt 101
115 Degree/Radian Control for User Trig FUNCLIONS........cooeiiirieiienieese ettt 102
150 Rapid MOVE MOOE CONEFO ...ttt h ettt st b et ae e e e e e e b e saesaeebe e e et e seeneesee e 102
52\ ProgramHOId SOW RALE..........cooiieeeee ettt b e bbb e s se e e e seesbesaeebe e e e s e neeseeseeae 102
153 Program Step MOAE CONLIOc.iiiiieieeeeeee ettt b et re e e se e b e b s et ebe e e e b e neesee b e 102

MOtOr DEfINIION |-V @TADIES.......couieiiiee ettt bbbt e st sbenaene 103
D (0[O Vo (o Y 1Y (=SSP 103
IX01 Motor x PMAC-Commutation ENADIE ... e 103

iv Table of Contents

PMAC Product Guide

Ix02 Motor x Command OUPUL (DAC) AQANESS.......c.eierirerieieereeete ettt s b e be e 103
IX03 Motor x Position Loop Feedback AQArESS.........cccii i 104
IX04 Motor x Velocity Loop FEeADaCK AQArESS.........ooi it 105
IX05 Motor x Master (Handwheel) POSItion AQArESScocoiiiiiieieeee et e 106
Ix06 Motor x Master (Handwheel) Following ENabIe.............o.ooiiiiiiii e 106
IXO7 Motor x Master (Handwheel) SCal@ FACLOTccceviiiiecicecee e st 107
IXO8 MOLOr X POSItION SCAIE FACLONc.iiiiicieieeieie ettt sttt s st sttt sttt st st e 107
IX09 Motor X VEloCity LOOP SCAIE FACLONcccuiiieiiice ettt sttt st st r e e re s e e e e e nnesee e s 107
Ko (o TS = Y Y o) = 108
Ix11 Motor x Fatal (Shutdown) FOlloWIiNg Error LiMit.........ccceeeeeeeiercse e s 108
Ix12 Motor x Warning FOHOWING EFror LiMit........ccecoeionirieieseseseeeeseese s see e s sre e e sne s sne s 108
Ix13 Motor x Positive Software POSItION LIMIt..........cccoiiriiiiiiineeee e 109
Ix14 Motor x Negative Software POSITION LIMITccooiiiieinereeseree st 109
Ix15 Motor x Deceleration Rate on PoSition Limit OF ADOITocoiiiiiiiiiiesereeee e e 110
Ix16 Motor x Maximum Permitted Motor Program VEIOCILYccoeiiriieiiiineeeeee et 110
Ix17 Motor x Maximum Permitted Motor Program ACCEIErationccooeieierieeiieienese e 110
Ix19 Motor x Maximum Permitted Motor JOg/HOME ACCEIENationcceveeeeeeieeriesesie st 111
MOLtOr MOVEMENE |-V ATADIES......oeceiieiieiree ettt et e et e b st e st e sbeneens 112
IX20 Motor X JOg/HOME ACCEIEIatioN TIME.......c.cceeieiieiteste e ste et e e ste e e st s te e se e e e sa e e sre st e saeeaeese e e enteseentesreens 112
IX21 MOtOr X JOG/HOME S-CUIVE TIMIE....eveiveeieeeeeeeseesiestestestesseeseeseeseeseestestessessesseeseessessesseseestessessessesseensessessensenes 112
DTV o (o g [o RS o == 113
Ix23 Motor x Homing Speed and Dir@CHION.cveriie et ce ettt e e st sresneese e e eaenaeneeneenes 113
Ix25 Motor x Limit/Home Flag/AmMP FIag AAreSS..........coeiireiiereereeee sttt s 113
IX26 MOLOr X HOME OffSELeieeieceee ettt sttt se e e e e e see et e sbesaeese e e e nteneeneeneenns 116
IX27 Motor X POSItion ROHOVEr RANGEc..ciiirieiiti ettt sttt bbb 116
[X28 MOLOr X IN-POSITION BANM ...ttt ettt bbbt ae e e e e e e b e sbe s et ebe e e e s e neeseenbeee 117
IX29 Motor X Output - Or First Phase - DAC BiaS........cccoiriiiiiiiieiieee ettt s s 117
SErVO CONLIOI I-V@ITANIES. ...t b bt a e bt et e s e e be s besbe s beeaeeae e e e eeseeseesaeee 118
IX30 Motor X PID Proportional GaiN...........cccieieiieieeieeiieieeseste e e seeteeeesaesaesaes e srestesseeseesaessenseseessessesssessessessenes 118
IX3L MOLOr X PID DEIVALIVE GAIN......ceiieeiiieieiisieieete st nese st tesaeseste e e tese e sbeseesesbe e sseste e sbestenessestenestessenestensns 119
Ix32 Motor x PID Velocity Feedforward GaiN...........ccccceiiieieserieciese st st saesae e sre e sae e sseesaestesnessesneens 119
IX33 MOtOr X PID INtEYIrAl GAIN.....ceeieeiererieresie st eeete s e st ese e e e e te s e stesbesneeseeseeseeeessensesaeeseeneeneeneensenseses 119
IX34 Motor X PID INteQration MOGE........cc.ccereeieieriese s stese s eeeseese st se e teseestesresnesse e e esesseeneensenaensensenes 120
Ix35 Motor x PID Acceleration FEedforward GaiN...........ocuovieeereeiieieresie s et see e 120
IX68 MOtOr X Friction FEEOFOrWAITccoiiiiieieieieere sttt st e se s b e s ne s e e teseesee e e 120
Ix69 Motor x Output Command (DAC) LiMit........cccciiirriieieeeseee ettt 121
IXB0 MOLOr X POWEN -UP MOOE.......ceeeuieieeiesiiie ettt ettt s st beehe e e e e e se e b e sbesaeebe e e e beseeseesaeene 121
Coordinate SYSLEM [-VaralIES........oouieieeeee et b e bbbttt e e ee e e e 122
Ix87 Coordinate System x Default Program ACCEleration TIME.........coiveierererieeie e e 122
Ix88 Coordinate System x Default Program S-CUrVE TIME.......cceieeieeieriesie st eeeee e se s re e sre e e seesaesaesresne s 123
Ix89 Coordinate System x Default Program Feedrate/MoVe TIME.........ccvieieeeeieeie et 123
IX90 Coordinate System X Feedrate TIME UNILScoiiiiiiiie et st sne st sne s 124
Ix91 Coordinate System x Default Working Program NUMDESc.coevireieseneceeecsese e s 124
IX92 Coordinate System x Move Blend DISabIe..........cccooiviiiiececcescses et 124
Ix94 Coordinate System x Time Base Sew Rate (and LiMit).......cccceoeeierinieiiseneceereesese s s 124
Ix95 Coordinate System x Feed Hold DeCeleration RALE...........ccoeeeirierieirieiene e 125
IX96 Coordinate System X Circle Error LIMit........coooiieiiiieieneseesie et 125
Encoder/Flag SEtUP -V alTallES.........coiuiieiei bbb b b 126
1900, 1905, ... 1975 Encoder n Decode Control Encoder [-Variable 0 ..o 126
1902, 1907, ... 1977 Encoder n Position Capture Control Encoder [-Variable 2ccoooviiniiniininc e 127
1903, 1908, ... 1978 Encoder n Flag Select Control Encoder 1-Variable ... 128
ONLINE COMMANDS......coo ettt sttt se e e st et s te st e te s be e e te s be e e be st eseebesaeseabesaeseatesseseetesseneetesteneatesaeneeransens 129
CCONTROL-AS ...ttt sttt sttt st be st e ae s be st e st s be st e be e Ee st ebe e Eeneebe e Eese e bt s Ee e e Rt e be e e bt s be e ebesbeneebesbeneebeneenenteene 129
SCONTROL-B> ... et st b e bt be bt b e s b et bt s Ee e e bt s A et e b e bt e b e s b e ne e b e s be e nbeneenesbeene 129
CCONTROL-C> ..ottt sttt sttt sttt et et be st st s be st e bt s b e e e bt b e e e bt s b e e e b s b et e b e s b e ne e b e s be e e b e st eneebesbe e sbeneenesbesne 130

Table of Contents v

PMAC Product Guide

OO)V I (] 5 RS 130
000)V I] SR 130
SO0)V I O | I € SRS 131
SO0)V IO] I SRS 131
00)V I] TSR 131
SO0) I O] I ST RURRPRR 132
SO0)V I O] I TSRS 132
SO0) I (O] I @ >TSS 132
01 VI S 133
COONTROL Q> oot ees e eeee e et eess s eee e et e se s esesesseseeesee s et eee s es et sseseee s e s et eeeseeseee s esene s eseneseeseeeeeesaeseeeseesees 133
00 V8 I S 133
OO)V I (O] > SR 134
OO)V I (O | AV > SR 134
SO0) IO] I > SRS 134
SO0)V I (O] B TSRS 135
CCONTROL-Z> ...ttt sttt st s et s a e e e ae e e s b et e aae e e eheeeaaeeesaeeaasee e b ee e Re e e saeeaaeeesabeeeaeeeasbeesnseesneeenneaennte s 135
ST ROT RPN 136
o) 1S - | SRS 136
o] 1S = SRS 136
o] 1S = 1SS 137
F{ constant} ->{ aXIS AEFINITIONTooeiiece e e e se et e s aesreeresneene e e eneeneenrenrs 137
T 139
B ettt et et ebe e et teateateaaeebeeheeaeeaeeteteateebe bt eteeae et eteasebeiheebeeaeeaeeteeseteateateateeteeteenseneeseteatesreas 139
B K ittt ettt et e e et e teateabeateebeaheeae et et eteateebeiteeteeaeeteteateabeiheeheeaeeateseeseteateateeteeteeteeneentesetentesrens 140
TSP 141
B e 0 = = USSR 141
LR wla g =01 USRS 142
R SRS 142
L et e ettt et et e teaEeaEeeAeeaeeaeeseateaEeate Rt eReeReeasenteaeeteaEeaReeReeaeeneeatetenteaReeteaaeeReeretentenrenres 143
QTSRS 143
First Word Returned (X: $003D, X:$0079, ELC.) ..vecvrvereererrerireeieeresieesessesesessesessssesesessssessssesessssesessssessssssesensssesens 144
Second Word Returned (Y:$0814, Y:$0BDA, ELC.) .cverveririirerririineetirieeeiesieeeiestees st sse st see e s seenes 145
S 147
First Word Returned (X:$0818, X:$0BD8, ELC.)cueururrrerirererereririerereersesesesesesesesessssesesssesesensssssssssssssesesesesessssenens 147
Second Word Returned (Y:$0817, Y:B0BD7, ELC.) ...vvrvrrrerererurerierererereeesesesesesessssesesssssesesesessssssssssssssesesesssenssssesens 148
Second Word Returned (Y:$0817, Y:B08D7, EIC.) ..c.cviviriieerereiicteeeieteee sttt ettt ssebene s b e snnas 150
T OSSR 152
First Word RetUrNEd (X:BO003)......c.curueueeererererereeteteseseenesesesesesessesesesesasesess st sesessssssesesasasasasesssssssssssasesesesenensnsnens 152
Second WOrd RETUTNEd (Y:BO003)c.evrueueeeeeeereneeiereseresesesesteseseseseseeesesesesssesbssesesesesese e e st aess s b sstesesesesesensnssncas 154

ettt ettt e e e et e et e e e —eteteereereeteeaeeaeeteate EeateaReaaeeaeeseateateate Rt eReeReeasenteareteaEeeReeReeaeeneeasetenteaReetenaeeaeeeentetenrenres 155
NSRS 155
N = SRS PR 156
= S R[0T =L S 156
o] 1S = | 157
L 0 S 157
L I S PS 158
JIOONSEAINL] ...ttt h bbbt b e b et bt s e e e bt s R e e e bt s R e R e e R e e R e e eR e R e e bt R e e ekt e R et eb e s e e e b e neenea 158
N I PRI 159
DL 1 N I O PRI 159
DELETE GATHER ..ottt sttt st st st e e st e e s st e e eate e s s be e e s te e sabeesateeeabeeenbeeanbeeanbeesaseesnsenans 159
0L I I = 1 1 PSRRI 160
DT BTN I o I PRSPPI 160
N N Y I o I PP RPN 161
PSP PP PRPPPPRPRTPR 161
L Y PSP PP PPPPRPRTRI 162
TSRS 162

Vi Table of Contents

PMAC Product Guide

HOME ...ttt sttt ettt e e s s e e st A e st e s e e R e s s e st e s e st ese e R et ene e R e s b e st e R e tese e R et e se e R et eneeRenteneabeaenenrenens 163
HOMELZ ...ttt ettt ettt s e b s a e e s e A et e s e e A et e st e s e st ese e s et e ne e R et ese e R e bese e e e s e seebe st eneebaseneabetenenrannens 163
B oe 1 = | USSP 164
[{ CONSLANT} Z{EXPIESSION ...ttt et e et bt b e e et e s e et e e e beseeebe s et eheeae e besbesbesbeeaeeaee e eneaneeseeneas 165
R oo = USSP 165
TR 165
OSSPSR 166
SRS 166
PSSP PRPITSPRTRN 167
OSSPSR PSSP 167
B 0 - LSOO 167
B SRRSO 168
B R STPSSTSTRRTN 168
JE{ICONSLANL]Y ...ttt e b e b e et b e e aeehe e e e a e e b e sE e e be s Rt eb £ e e e eeeEeeEeebeeReeheene et e neenteneenaea 169
B SRRSO 169
JES{ICONSLANL] ...ttt et b e bbb e et e s e e e e b e e EeeR e ehe e Rt eR £ e e e eeeEeeEeebeeheeRe et et et e ntentenaens 170
B0 =1 RSSO 170
TSP SPSSN 171
{100 COMMEANA} M CONSEANE}e.veveeieceeeesie et et e e e e s e e be s aesbeeseeseesaeseebeseeeteseesaeeseensensessenseseesanns 171
SOOI 172
[OSSP 173
S OO 174
1S I = TSR 174
I IS I = TSR 175
LIST PLC ittt sttt sttt etk ettt b st s e h e Rt £ e b e Rt se e E e Rt £ b e Rt AE R e Rt e A b e Rt e A e R eRe S b e Rt ee R eRe e eAe Rt eeebeReneneeneateeas 175
LIST PROGRAMooitiietiiteiett et et ste et s teessessasessessesessessessesessessesessansasessessasessassesestensesesseneesessansesessensesessensesessensans 176
oo 0 =L TS OT 177
Y Ree g g = d 0=\ o] | TSP 177
o0 01) PSR 178
o0 01 RS 178
oo 01 e B R = [0 =) RS 179
oo 01 e I = (0| O 179
oo 01 o A 0 1o (0| == O 179
IMIFLUSH etttk ettt h et 2 b e Rt 42 b et £ b e Rt s e b e Rt s £ b e me e e e R e At e e e b e st seeEebeaesbe st senbebeseseenenetas 181
L@ oo 0 = 0 | OSSOSO USRPR PR 181
OPEN PLC ..ttt sttt ettt sttt st £ e b e st e b e se £ e b e me e e b et A2 e b e Rt e A b et e 4 e b ene e b b e neseebeneseebeneseebenesesbeneseeas 182
OPEN PROGRAM ..ottt sttt sttt ste s te st te s tesesteste st eseste e steste e atesbeseeseste e atesbeseabesbeseatesteseebesbeneatesteneabeseesentensns 182
TSRS 183
oL = | SO 183
P{CONSEANE} ={ EXPIESSION] . .ecuveiiie ettt e s e et e e aeeae et e e e e seesbesaeeaeesee e enbesseatesbesaeeseenseneeeeneesrens 184
PASSWORDZ{SITNG} ...veiveeetiriinietiriiieestestesesteeesesesesessesesessesesessessesessessesessensesessensesessessesessessesessessenessessesessessens 184
OSSO 185
e OSSP 186
PIMATCH ettt b et bt b e H e b e b bt Hen b e b et e Rt b e R £ e Rt e b et Rt e R e bRt b et e Rt b e bRt nbe et s be e 186
L TSSO 187
L@ o0 01 = 0 | SO OSSR US SR USRPRP 188
Q{CONSLANE} ={ EXPIESSION]veeeieeteieeeete ettt sttt e b e bbbt b e s b et bt s bt e bt s bt e b e s b et e bt s b et e b e b et et e se et ebe e 188
TSP 188
L] = Lo =-S) SRS 189

... 190
SAVE. .. ittt ettt sttt R et Rt EeE Rt Ee e e Re e Re e Re e Re e e Re R et eRe e Re e eReeRe e eReeRe e eEenAe Rt eRente e eEenteneerenns 190
S 7 SRS 191
I 0 =TSSP PPSURTN 192
UNDERINE ...ttt b e bt £ e e b b et b et st s b e e Rt s b et Rt e b et e st s b et e nesbe et sbenne 192
UNDERFINE ALL 1ottt ettt bbb e et b et b et e b e e ne s b et e nenb et et nbe s e 193
TSR 193

Table of Contents Vii

PMAC Product Guide

VERSION ..ottt sttt s et st et et e s e e seetesaeseebe s e eseeteseese et e sseseebeseene et e seeseebesaese et e aseseateseeseabeseeseste e esestensereseeneas 194
WWV{BHOIESS] ...ttt ettt b et h bbbt e h Rt e e b h e e e b E et eb e b e e e Rt e e st e bt b e s e e bt b e st e b e e b e enes 194
PSPPSR 195
BUFFER COMMANDS..... oottt ettt et b et b et s b et b et et s b et et s b et e e sbe st e sbenene 197
{aXiSH{ data} [{ @XISH{OBEA} ...] cerveeererieiererieere ettt sttt sttt et et et sa e b e e re st st reete e etente e testeneerenaeneas 197
{axis}{data} :{data} [{axiS}{data} :{data}...]ccccerieriririericere e et sreere 197
{axis}t{data} M data} [{ axiS}{ data} M{ Aata) ...]...veerereeireiee e e e re e 198
{axis}{data} [{axis}{data}...] {vector}{data} [{vector}{data}...]ccccerrmrrmrmimiirirrere e 199
F o L= TR 200
N = TSRO 201
ADDRESS........oottiiite st b b e b e R bt A e R R A e R £ Rt A e R e Rt A e e R e AR e e R e A e R e AR e Rt R et e Rt Rt e e R eenes 201
ADIS[CONSLANTY ...ttt ettt h bt e bt bt h b e b h e eb b e s e b e b e s e b e Rt E e st e bt eeen e e bt b e e bt b et b e enes 202
AND ({CONTITTIONT) ..ttt sttt b et bbbt et b e st b e e b b s e bt b e e e bt s e st e bt e e e e bt b e s e e b e b et b et enes 202
F Y (O B R w00 = gL USSR 203
2T = SRS 204
]IS 17N = OSSR 204
BLOCK STOP..... ettt sttt ettt ettt be st e s s e e s e e s e st en s e st s b e s e e se b e s s e Re s b e s e e se e b e e e be s R et e seeb et ene s b e te st sbentenenbenene 204
L0 = SRS 205
L L TSRS 205
L0311 SOOI 206
L0311 I ST 207
COMMAND™" { COMMEBNG} "eeeeeeeesiesere sttt e e st s e e ese e e see st e s aesaeeseeseesseseenteseesaessenneeneeneeneenseneeneens 207
L@@ 1Y Y N N L T 1 = o ST 209
LI I 0 = - | TR 210
DISABLE PLC {constant} [,{ CONSLANT}verieieriiieirierieesteieese sttt 210
DISPLAY [{CONSIANt}] "{MESSAGES " ... eiie ettt sttt ettt et b e bt st ae e e et e sb e b e s besaesae e e e nseneeseenaees 210
DISPLAY ... {VAIHBDIE} ...ttt st e se st e e se st e tesenbenaenesbenens 211
DWVELL ..otttk s et s et e e se s e s bt s e s et e st b e e Rt R et e st R e ARt R et e Rt e R et e Rt e R et e nenEentenenEenns 211
L S ettt ettt bbbt R AR £ R R e £ R e R e e R e R e £ e R e R e e R e R e ARt R et e Re R et e Rt e Ee b e Rt ebentenenEeeene 212
L N = I = SRR 213
L |5 SO 213
ENDWHILE ..ottt et b e bbb £t bRt b e £t b et e b e et s b et e nesb et nesbe e e 214
L {0 7 7= SRS 214
FRA X ettt ettt ettt ettt A e R et Rt R et eR e A et e Rt R e At e Rt R et e At Re At eRe e R e teReeReaeReeteteneeEete st ntentenenrenens 215
LT 11 SRS STS R 216
LT 1 1 S 217
HOME ...ttt ettt et et b e e st e e s e st Ae st e st b e s e st s e st e st b et e Re e R e s b e st e b e ae st R et e Rt e b et e st e b e aeneaEenaenenEenens 217
HOMELZ ...ttt ettt ettt ettt s b s A e st e st e b e e st s e e st b e £ e Rt e R e e se e R e b e st b e s e st e b et e st n b et e st abeaenenbenns 218
R = TSR 219
o0 1S = = 1= 0] SRS 219
IDIS{CONSLANT}veiveiteitieeeteeee e s e st e e e st et e e s te st e besaeetesaeesee s e s e tesae et e saeeseeseeseenteseebeseeenee s enteseeseeseesneeneensenseeenretes 220
B oo o T o) | 3 SRS 220
TSRS 221
(O 1 R o= | SRS 222
I 0= - OSSPSR 222
0T - TSRS 223
I N RSSO 223
M{ CONSLANE} Z{ EXPIESSION]etieeieitiiet ettt bbb b st b e e st b e et e b e b e st e b e b et et e et b e e 224
Y R e g T e = d 0=\ (o] | OSSP 224
M{ CONSLANT} & ={ EXPIIESSION]eiteiee ettt sttt e e et be e aeehe e e e e e seesbesbesaeebe e st enee s e besbesaeebeeneeneeneaneenaeee 225
Y Ree g T N = o (=SS o] | TSSO 225
R0 01 e =t (=S o] S 225
N L0 0 =L OSSR 226
N A OSSP 226
L@ o7 r= 1 S 227

Viii Table of Contents

PMAC Product Guide

OR{CONAITIONT) ..ttt sttt b e et b e et b e s e et b s e e Rt ek e s e e bt s bt e b e s b et e b e s b et sbenee st ebe s 227
P{CONSLANE} ={ EXPIESSION] ...ttt bbb bbbt b bbbt b e b et e b e bt nb e bt sbe e 228
S LTSS T TSR TRTOTUTTPRTTRTOR 228
PV T{OBEA} ...ttt ettt b bbb s e b bbb s e b e b e £ R e R e e e b e bt e b e b e Rt eE ek eb e e b e bt senbebene b e ne e b 229
Q CONSLANE} ={ EXPIESSION]verieeiieeetete ettt ettt et ae b ae e e e e e e beseeebesbesaeebeeaeesseseebesbesbesbeeaeene e e eneeneeseeneene 229
R{GBLAY ...ttt b bRt e bR e R RS e R AR R AR R R R R R e R Rt e R Rt e R R e r R ras 230
RAPID ..ottt e h e R e R AR R R e R R AR R R SRR AR E SRR R AR R R e e R Rt R R e Rt e R Rt e r Rt e nras 231
READ .ttt e R R R R R AR RS R R R e SRR AR E SR e AR SRR e AR R R e e R R e Rt R R Rt e E Rt enr Rt nas 231
RETURN ...ttt e ne R e s R R AR R e R e e R R e e Rt ne R Rt e Rt nenr b e nenrene e nen 233
SEND .ttt R R RS R e R R AR R R R e AR R e Re R e R R e Rt e R Rt e r e ran 233
R N L L= = o TSP SE TP PP PTPTR 235
SPLINEL.... ettt stttk ettt sttt s £ e R e e b bt se £ e R e e b b e ee £ e R e e e R e b e ee £ e R e Rt e A b et eEeReReee ke Rt et ebeneseeeeneaeras 236
SPLINEZ.....c ettt sttt et bt st eh e bt s £ e R e e b b e ee £ R e e b e b e ee £ e R e Rt e bk et eE ek eReee ke Rt et ebeneseeteneaeeas 236
STIOP .ttt ettt bt st b bt e bkt eE A b £ SRR e eE AR e £ SR eR e SE A SR e £ R R e eE A e R e AE S A SR e £ eEeEeRE SR b et eEeReRe e R be Rt neebebene b ene e e 237
TALAAAY ..eeeeeeeeet etttk et b e b b e A b E R R e AR e £ SRR e e A e b e R e A e R e e A eReRe R e b et e e b e ne e b et st ebenees 237
TN T ettt etk b bt bbb b se b e b e e e E e b e 4E £ e b e e e b e b e 4E A e b2 e S E e b e AE £ e E e e e A e R e e e A ek e RE b e b et e R e b e Rt e e b et et enees 238
LI R e = - TSP SO PSRRI 238
TS{ABEA} ...ttt R R R e R R R R R R e R R e R Rt R bRt R bt nerene s 239
QLIRS = O o0 = RSO 239
L6 - TSSO STTRSTTTSTR 240
BT = SRRSO 240
WV ABEA] ... R R R R R R R R R R r e n s 240
L N ST SR T ST 241
WHILE({ CONITION]) ...ttt b et e et b bbb bbbt st e bt e bt e b e enes 241
D0 - OSSR 243
Y {IOBEAY ...ttt etttk b et b £ E R £ A bR E AR e e A SRR RE AR e A eE e R £ R e R e e A e b e Re R e b et e A e b ene b b ettt enees 243
Z{UBEAY ..ottt bbb £ b b e AR £ bRt eE AR e £ SRR e £ A e R e R £ A eR e e A eR e R e R e b et e e e b e Rt b et et et ebenees 243

Table of Contents iX

PMAC Product Guide

X Table of Contents

PMAC Product Guide

INTRODUCTION

This manual isthe main source of information for installing and programming the Universal PMAC-Lite
motion controller for atypical application. A typical application in this case is composed of up to four
amplifiers each requiring asingle £10V differential command signal or DAC, a single quadrature
incremental encoder per motor and a maximum of eight general-purpose digital inputs and outputs.

The manual sections are in the following sequence:

* Description of PMAC capabilities and features

e Description of PMAC on-board configuration jumpers

e Complete description of how to connect PMAC to the machine
e Complete description of how to program PMAC

* Description of the EZ-PMAC Setup Software

The PMAC motion controller isrich in features and expansion capabilities. Because this manual
illustrates the implementation of PMAC in atypical application, some of the PMAC advanced features
are not described. Further information of all PMAC features can be obtained from the PMAC Software
Reference, the PMAC User and the PMAC Hardware Reference manuals.

Use the EZ-PMAC program as a software tool for configuring and programming PMAC. All the example
programs provided in this manual can be found in the samples folder of the EZ-PMAC Setup Software
installation directory.

What is PMAC?

PMAC, pronounced Pe' -MAC, stands for Programmable Multi-Axis Controller. It isafamily of high-
performance servo motion controllers capable of commanding up to 32 axes of motion simultaneously
with ahigh level of sophistication.

The Universal PMAC-Lite board, member of the PMAC family, isa4-axis motion controller. The term
Lite stands to indicate a maximum of four on-board axes of motion control. The term “Universal”
indicates that this motion controller can have different types of on-board backup memory, either battery
based type or flash type.

Each axisis controlled by an independent channel circuitry which in turn is composed of the following
features:

e A singledifferential 16-bits DAC output

* Amplifier enable output

* Onequadrature incremental encoder input

* Four dedicated flag inputs: two end-of-travel limits, one home input and one amplifier fault input

The Universal PMAC-Lite can be programmed to control the motion of up to four motorsin any
coordinated fashion, either independently of each other or coordinated with, for example, linear or
circular interpolation.

The Universal PMAC-Lite is not only a sophisticated motion controller but it isalso a PLC device
(Programmable Logic Controller). PLC programsin PMAC run independently of each other and of
motion programs and can be tightly synchronized to the motion sequence.

The Universal PMAC-Lite can be installed inside a computer on an ISA bus type and can be programmed
through bus communications. Alternatively, it can be installed in a stand-alone configuration outside the
computer and programmed using serial communications. Either RS-232 or RS-422 serial
communications are supported.

Introduction 1

PMAC Product Guide

PMAC hasits own on-board memory. Programs and motion parameters can be kept in memory without
the need to re-program each time PMAC is power up.

Standard Features for a Typical Application

* Motorola DSP 56k Digital Signal Processor e 256 mation programs capacity

e Four digital-to-analog converter (DAC) outputs * Asynchronous PLC program capability

e Four full encoder channels * 36-bit position range (+/- 64 billion counts)
* 16 general purpose I/0, OPTO-22 compatible e 16-bit DAC output resolution

e Overtravel limit, home, amplifier fault/enableflags ¢ S-curve acceleration and deceleration

e Display port for LCD and VFD displays e Cubic trgjectory calculations, splines

* Bus, RS-422 and/or RS-232 control * Position, velocity and time PVT move types
* Stand-alone operation e Advanced PID servo motion algorithms

e Linear and circular interpolation

Configuring and Programming PMAC

Hardware Setup

On the PMAC, there are many jumpers (pairs of metal prongs) called E-points. Some have been shorted
together. Others have been left open. These jumpers customize the hardware features of the board for a
given application. For example, some of these jumpers set the baud rate for serial communications while
others determine the type of amplifier enable signals that PMAC can output.

Check each jumper configuration before installation to the machine. Details of each jumper function and
setting are provided in the chapters of this manual. Once PMAC jumpers are properly set, install it in the
machine either in a stand-alone configuration or inside the computer on the ISA bus.

Software Setup

PMAC has alarge set of initialization parameters (1-Variables) that determine the personality of the card
for a specific application. Many of these are used to configure a motor properly. Once set up, these
variables may be stored in non-volatile EAROM memory (using the SAVE command) so thecard is
always configured properly. (PMAC loads the EAROM I-variable valuesinto RAM on power up.)

Note:

The EZ-PMAC Setup Software provides dedicated screens as well asaterminal
window for configuring each I-Variable.

In aterminal window, the value of any I-Variable may be queried smply by typing in the name of the |-
Variable. For instance, typing | 900<CR> causes the value of the 1900 to be returned. Change the value
by typing in the name, an equals sign, and the new value (e.g. | 900=3<CR>). To change any |-Variables
during this setup, use the SAVE command before powering down or resetting the card or the changes
made will be lost.

2 Introduction

PMAC Product Guide

Programming PMAC
Buffered commands for Motion programs or PLC programs are entered in any text file and then
downloaded to PMAC with the EZ-PMAC Setup Software or equivalent software.

With online commands, immediately jog motors, change variables, report variables values, start and stop
programs, query for status information and even write short motion and PLC programs from the terminal
window.

Once loaded, each enabled PLC program will run automatically on power-up provided that the 15 I-
variable has been properly set. Motion programs can be started from the terminal window by typing the
B1R command or can be started automatically on power-up from a PLC program.

Note:

Type SAVE in the terminal window to keep any changes that made to PMAC's
memory. The EZ-PMAC Setup Software gives areminder to save the PMAC
parameters on each exit.

Universal PMAC Lite Connectors and Indicators

J1 - Display Port Outputs (JDISP Port)

The JDISP connector connects the PMAC to the ACC-12 or ACC-12A liquid crystal displays or the
ACC-12C vacuum fluorescent display. Both text and variable values may be shown on these displays
through the use of the DISPLAY command, executing in either motion or PLC programs.

J2 - Control-Panel Port 1/0O (JPAN Port)
This connector is considered an advanced feature and it is not used on a standard application.

J3 - Thumbwheel Multiplexer Port I1/O (JTHW Port)

The Thumbwheel Multiplexer Port, or Multiplexer Port, on the JTHW connector has eight input lines and
eight output lines. The output lines can be used to multiplex large numbers of inputs and outputs on the
port and Delta Tau provides accessory boards and software structures (special M-V ariable definitions) to
capitalize on this feature. Up to 32 of the multiplexed 1/0 boards may be daisy-chained on the port, in
any combination.

J4 — RS-232 Serial Port Connection (JRS232 Port)

Both RS-232 and RS-422 ports are always provided, and jumpers must be set correctly to use the port of
choice. Jumpers E107 and E108 must connect pins 1 and 2 to use the RS-232 port on the J4 connector. J4
and J4A cannot be used at the same time.

J4A — RS-422 Serial Port Connection (JRS422 Port)

Both RS-232 and RS-422 ports are always provided and jumpers must be set correctly to use the port of
your choice. Jumpers E107 and E108 must connect pins 2 and 3 to use the RS-422 port on the 4A
connector. J4 and J4A cannot be used at the same time.

J5 - General-Purpose Digital Inputs and Outputs (JOPTO Port)

PMAC’ s JOPTO connector provides eight general-purpose digital inputs and eight general-purpose
digital outputs. Each input and each output has its own corresponding ground pin in the opposite row.
The 34-pin connector was designed for easy interface to OPTO-22 or equivalent optically isolated I/0
modules. Delta Tau's ACC-21F isasix-foot cable used for this purpose.

Introduction 3

PMAC Product Guide

J6 - Auxiliary 1/0 Port Connector (JXIO Port)
This connector is considered an advanced feature and it is not used on a standard application.

J7 - A/ID Port Connector (JS1 Port)
This connector is considered an advanced feature and it is not used on a standard application.

J8 - Position-Compare Connector (JEQU Port)

For atypical application, the most important feature of this connector is to connect an external power
supply to use flag sensorsin the 12 to 24V range which is otherwise limited to up to a 15V operation.
Other features of this connector are considered advanced and are not used on a standard application.

J11 - Machine Connector (JMACH Connector)

This connector, labeled J11, contains the pins for four channels of machine 1/0: analog outputs,
incremental encoder inputs, and associated input and output flags, plus power supply connections.
Usually, lines on this connector are accessed through the ACC-8P or ACC-8D breakout boards.

TB1 — Power Supply Terminal Block

Thisterminal block can be used to provide the input for the power supply for the circuits on the PMAC-
Lite board when it is not in a bus configuration. However, it is recommended to use the ACC-8P or
equivalent terminal block for the power supply connections.

LED Indicators

The Universal PMAC Lite hasthree LED indicators: red, yellow, and green. When the green LED islit,
thisindicates that power is applied to the +5V input; when the red LED islit, this indicates that the
watchdog timer has tripped and shut down the PMAC.

Theyellow LED located beside the red and green LEDs, when lit, indicates that the phase-locked |oop
that multiplies the CPU clock frequency from the crystal frequency on the Option CPU is operational and
stable. Thisindicator isfor diagnostic purposes only; it may not be present on your board.

Fuse
The 5V output through the J5 JOPTO connector is protected by F1, which isa2-Amp fuse of the
following type:

Manufacturer: LittleFuse
Part Number: 021-273002-004

4 Introduction

uo1PNPO.IU |

Y

R

M T [

rgr—
mﬁ&
ey
BT
'ﬂw—"
S —
T
1] m—-l
3
]

suolsuawiq 8117 DVINd [esianiun

apINY PNPo.Id DV INd

PMAC Product Guide

1.0 - Introduction

L L
L il]

L&

s EF ERER:

EESET

AEPEAE AdsA A EAREAE || Sab kAR bAadab b || AbadEAREABARERAREE || - Ll AL 4 E:I e i
LA E LA L2 FEFERTFFR IR | FFREEFER TSR || P FP RN RIS SRS LA i L L e L
Bleo

E107
E108

E1 EER

L]

E2

MA

w23 W3

B 3
E [ﬂ% Eg
‘g p5 o

"B
453
i3
©E3
ZFS T
LEa S

?3
ER T
v (e
¢35 o

623 3 EEa LM g3

o
ved Pl es g [i
eio el oI O T
cd P e Li3
£ES ara 2.3

3
ﬁ[ﬂ VFES

A2

F1

F1

Bl

C2

Bl

Bl

Bl
Gl

F1

E106

E107

E108

E109

E110

D1

D2

D3
D21

F1

G2

D3

D3

C3

C3

F3
H1

H1

H1
Al

EQ90
E91
E92
E93
E94
E98
E100

E101

E102

E103

F3

F3

F3
G3

G3

G3

G3

G3

H3
G2

E80
E81
E82
E83
E84
E85
E86
E87
E88
E89

D3

D3

E2

E2

E2

E2

F3

F3

F3

F3

E70
E71
E72
E73
E74
E75
E76
E77
E78
E79

£r3
LE]
53
L E]
E¥3d
£¥3
]

FFFRPPY
§ g

—

>

o

>

@©

—

(%0}

-

o

—

O

(]

g G EREE p

o o i T T l L

U s L e L L e e Ll ?:g
EXT) i3 égg

© 853

c 53

853

CG L=E]

[0}

% . 3

a g

o

E E=ea

> Efza

™ E= -

(O] 5 s

@) =

Eg LT

o O s

©

n

-

2 - ~ ©

=

)

C3

C3

D3

D3

D3

D3

D3

D3

D3

D3

E58
E59
E61
E62
E63
E65
E66
E67

E68
E69

C2

D2

D2

D1

D1

C1

C1

C3

C3

C3

E45
E46
E47
E48
E49
E50

E51
E54

E55

E57

E3

F3

F3

F3

D3

Cc2

Cc2

Cc2

Cc2

C2

E35
E36
E37
E38
E39
E40
E41
E42
E43
E44

H2

H2

E3
F3

F3

F3

E3

E3

E3

E3

E26
E27
E28
E29
E30
E31

E32
E33
E34A

E34

F1

F1
Gl

Gl

Gl

Gl

Gl

H2

H2

E13
E1l4
E17A
E17B

E17/C | G1

E17D
E22
E23

E24
E25

E1l

E1l

E1l

F3
F3
F3
F3
D1

F1

F1

EOQ

El

E2

E3

E4

E5

E6

E7

E9
E10

I ntroduction

PMAC Product Guide

Default Jumper Configuration

Jumper L ocation Default Jumper L ocation Default
EO El OFF E55 C3 OFF
El El 1-2 E57 C3 OFF
E2 El 1-2 E58 C3 OFF
E3 F3 OFF E59 C3 OFF
E4 F3 OFF E61 D3 OFF
ES5 F3 ON E62 D3 OFF
E6 F3 ON EG3 D3 OFF
E7 D1 1-2 EG5 D3 OFF
E9 F1 1-2 E66 D3 OFF

E10 F1 1-2 E67 D3 ON
E13 F1 1-2 E6G8 D3 ON
El4 F1 1-2 E69 D3 ON
E17A Gl OFF E70 D3 ON
E17B Gl OFF E71 D3 OFF
E17C Gl OFF E72 E2 OFF
E17D Gl OFF E73 E2 OFF
E22 Gl OFF E74 E2 OFF
E23 Gl OFF E75 E2 OFF
E24 H2 1-2 E76 F3 OFF
E25 H2 1-2 E77 F3 OFF
E26 H2 1-2 E78 F3 OFF
E27 H2 1-2 E79 F3 OFF
E28 E3 2-3 E80 F3 OFF
E29 F3 OFF E81 F3 OFF
E30 F3 OFF E82 F3 OFF
E31 F3 ON E83 G3 OFF
E32 E3 OFF E84 G3 OFF
E33 E3 OFF E85 G3 OFF
E34A E3 OFF E86 G3 OFF
E34 E3 ON E87 G3 OFF
E35 E3 OFF E88 H3 OFF
E36 F3 OFF E89 G2 ON
E37 F3 OFF E90 G2 1-2
E38 F3 OFF E91 D3 ON
E39 D3 OFF E92 D3 ON
E40 Cc2 ON E93 C3 OFF
E41 Cc2 ON E94 C3 OFF
E42 Cc2 ON E98 F3 1-2
E43 Cc2 ON E100 H1 1-2
E44 Cc2 OFF E101 H1l 1-2
E45 Cc2 ON E102 H1l 1-2
E46 D2 ON E103 Al OFF
E47 D2 OFF E106 A2 OFF
E48 D1 OFF E107 F1 1-2
E49 D1 ON E108 F1 1-2
ES0 C1 ON E109 Bl OFF
E51 C1l OFF E110 Cc2 1-2
E54 C3 OFF

Introduction

PMAC Product Guide

Troubleshooting

Getting PMAC to Communicate Again
1. Turnoff PMAC or the host computer where PMAC isinstalled.

2. Remove dl cables connected to PMAC and only connect the serial port and power cables if
necessary.

3. Check that all PMAC jumpers are at the default configuration or properly changed to accommodate
the particular setup for the machine. Make sure that jumper E5O0 is properly installed because
otherwise any SAVE command issued to PMAC will not have any effect (and the problem will return
when E51 isremoved).

Install jumper E51. Thisis ahardware re-initialization jumper that takes effect on power-up.

After power-up, try establishing communications again with a software package like PEWIN or EZ-
PMAC Setup Software provided by Delta Tau.

6. If communication is established, perform the reset procedure described in the following section.

Resetting PMAC to Factory Defaults
1. Typethefollowing commands on the terminal window. This procedure will set all PMAC variables
to their default configuration and any Motion Program and PLC program will be erased from

memory.

PP ** : d obal Reset

PO. . 1023=0 . Reset P-vari abl es val ues

Q0. .1023=0 : Reset Qvari abl es val ues

MD. . 1023->* MD..1023=0 ; Reset Mvari abl es definitions and val ues
UNDEFI NE ALL ; Undef i ne Coordi nate Systens

SAVE ;Save this initial, “clean” configuration

2. If there-initiaization E51 jumper was installed, remove it at thistime. Restore all PMAC
connections and power it up.

3. Try communications again and configure PMAC for the application. Save a backup file to the host
computer with all the parameters and programs that PMAC needs to run the application. Furthermore,
since the host computer can also fail and be replaced, save the configuration file both in the host
computer and in afloppy disk stored in a safe place. This file must be downloaded and a SAVE
command must be issued to PMAC.

Note:

The EZ-PMAC Setup Software has a set of step-by-step procedures for
establishing PMAC communications, for performing different reset procedures,
and also has dedicated screens for backup and restoring a particular PMAC
configuration.

Before Calling for Help
One of the most important services that Delta Tau provides is the excellent technical support for all its
products. To provide better service, have the following information prepared before contacting us:

1. ThePMAC moddl. Inthiscase, it isthe Universa PMAC Lite board.
2. Theinformation from these commands issued from aterminal window: Type, Version and Date.

3. The part number read from the PMAC board (usually located on the soldering side of the board). In
this case, use the number 602402 followed by three more digits describing the revision number.

8 Introduction

PMAC Product Guide

4. The operating system of the computer communicating with PMAC (i.e. the version of Windows
installed in the host computer).

5. The name and version of the software being used for communicating with PMAC. In most cases this
will be either PEWIN or EZ-PMAC Setup Software, both provided by Delta Taw.

6. Prepare a concise description of the problem and identify the problem as either software or hardware
related. For example, problems with motion programs or PLC programs are software related whereas
amotor that does not run properly could be a problem either software or hardware related.

Introduction

PMAC Product Guide

10

I ntroduction

PMAC Product Guide

PMAC JUMPER CONFIGURATION

On the PMAC, there are many jumpers (pairs of metal prongs), called E-points. Some have been shorted
together; others have been left open. These jumpers customize the hardware features of the board for a
given application. For example, some of these jumpers set the baud rate for serial communications while
others determine the type of amplifier enable signals that PMAC can output.

In the following description, ajumper that by default is not present or removed isindicated as OFF. A
jumper that is present or installed isindicated as ON. For athree-position jumper, the proper
configuration will be indicated either 1-2, 2-3 or OFF. For the location of each configuration jumper refer
to the Universal PMAC Lite Connectors and Indicators section of this manual.

Power-Supply Configuration Jumpers

(12-24V) A+V (pin 9)

J8 (JEQU)

E89

L L T
+12V EB5S
E & - r‘ A+15V

®] 4
+5V T E90 E100 +5V
1

o L
L |
A Input AENAs [AGND DAC Ao VE fAENR
Flags (EQUS) # '
E87

GND I GND

@
-12v EB8 A-15V

a e o @ ’-lL

P1 (Bus)/ TB1 JMACH1

E85, E87, E88: Analog Circuit Isolation Control

Default Configuration
E85 E87 E88
OFF OFF OFF

The PMAC-Lite board circuitry is divided in two parts that can be electrically isolated from each other.
The analog circuitry interfaces, among other signals, the amplifier control lines like the DAC (+ 10V)
command output and amplifier enable and fault signals. The digital circuitry includes the CPU aswell as
the encoder input circuitry.

These jJumpers control whether the analog circuitry on the PMAC-Lite isisolated from the digital
circuitry, or electrically tied to it. In the default configuration, these jumpers are off, keeping the circuits
isolated from each other (provided separate isolated supplies are used).

PMAC Jumper Configuration 11

PMAC Product Guide

Putting E87 ON ties the digital GND reference signal to the analog AGND reference signal, defeating the
isolation between the circuits. Putting E85 ON tiesthe digital +12V supply line to the analog A+15V
supply line. Putting E88 ON tiesthe digital —12V supply line to the analog A-15V supply line. Putting
these jumpers on permits the bus +/-12V supply to power PMAC' s analog circuits.

E89-E90: Input Flag Supply Control

Default Configuration
E89 E90
ON 1-2

If E90 connects pins 1 and 2 and EB9 is ON, the input flags (+LIMn, -LIMn, HMFLn, and FAULTn) are
supplied from the analog A+15V supply, which can be isolated from the digital circuitry. If E90 connects
pins 1 and 2 and E89 is OFF, the input flags are supplied from a separate A+V supply brought in on pin 9
of the J8 JEQU connector. This supply can bein the +12V to +24V range, and can be kept isolated from
both the analog and digital circuits. If E90 connects pins 2 and 3, the input flags are supplied from the
digital +12V supply, and isolation from the digital circuitry is defeated.

Clock Configuration Jumpers

E98: DAC/ADC Clock Frequency Control

Default Configuration
E98
1-2

This jumper is related to an advanced feature and should not be changed from defaullt.
E29-E33: Phase Clock Frequency Control

Default Configuration
E29 E30 E31 E32 E33
OFF OFF ON OFF OFF

These jJumpers are related to an advanced feature and should not be changed from default.
E48: Option CPU Clock Frequency Control

Default Configuration
E48
OFF

This jumper is related to an advanced feature and should not be changed from defauilt.
E3-E6: Servo Clock Frequency Control

Default Configuration
E3 E4 ES E6
OFF OFF ON ON

These jumpers are related to an advanced feature and should not be changed from default.

12 PMAC Jumper Configuration

PMAC Product Guide

E34A-E38: Encoder Sample Clock

Default Configuration
E34A E34 E35 E36 E37 E38
OFF ON OFF OFF OFF OFF

These jJumpers are related to an advanced feature and should not be changed from default.
E40-E43: Servo and Phase Clock Direction Control

Default Configuration
E40 E41 E42 E43
ON ON ON ON

These jumpers are related to an advanced feature and should not be changed from default.
Encoder Configuration Jumpers

E24-E27: Encoder Complementary Line Control

Default Configuration
E24 E25 E26 E27
1-2 1-2 1-2 1-2

These jumpers, one per encoder, control the voltage to which the complementary channels A/, B/, and C/
are pulled. The default setting for each jumper, connecting pins 1 and 2, ties the complementary linesto
2.5V. Thissetting isrequired for single-ended encoders and is best if the channel is left unconnected. If
encoders with differential line drivers are used, the setting of these jumpers does not matter. Changing
the jumpers to connect pins 2 and 3 ties the complementary linesto 5V. This setting is used for (now
obsolete) complementary open-collector encoders, or if external exclusive-or loss-of-encoder circuitry is
used.

The following table shows which jumper affects which encoder channel:

ENC1 | ENC2 | ENC3 | ENC4
E27 E26 E25 E24

E22-E23: Control-Panel Handwheel Enable

Default Configuration
E22 E23
OFF OFF

These jJumpers are related to an advanced feature and should not be changed from default.
E72-E73: Control Panel Analog Input Enable

Default Configuration
E72 E73
OFF OFF

These jumpers are related to an advanced feature and should not be changed from default.

PMAC Jumper Configuration 13

PMAC Product Guide

E74-E75: Encoder Sample Clock Output

Default Configuration
E74 E75
OFF OFF

These jJumpers are related to an advanced feature and should not be changed from default.
Board Reset/Save Jumpers

E39: Reset-From-Bus Enable

Default Configuration
E39
OFF

This jumper is related to an advanced feature and should not be changed from default.
E50: Flash-Save Enable/Disable Control

Default Configuration
E50
ON

If E50is ON (default), the active software configuration of the PMAC can be stored to non-volatile flash
memory with the SAVE command. If the jumper on E50 is removed, this Save function is disabled, and
the contents of the flash memory cannot be changed.

E51: Re-Initialization on Reset Control

Default Configuration
E51
OFF

If E51 is OFF (default), PMAC executes a normal reset, loading active memory from the last saved
configuration in non-volatile flash memory. If E51is ON, PMAC re-initializes on reset, loading active
memory with the factory default values.

Note:

If communications with PMAC cannot be established, try installing E51 and power
PMAC up again. If installing E51 enables communications, type Save on the
terminal window and remove the E51 jumper. All memory contents will be cleared
to factory defaults.

E93-E94: Reset from Bus by Software Enable

Default Configuration
E93 E94
OFF OFF

These jumpers are related to an advanced feature and should not be changed from default.

14 PMAC Jumper Configuration

PMAC Product Guide

E103: Watchdog Timer Disable

Default Configuration
E103
OFF

If E103 isinstalled the watchdog safety function will be disabled. This jumper isfor testing purposes
only.

E106: Power-Up/Reset Load Source

Default Configuration
E106
OFF

If E106 isinstalled when the PMAC-Lite executesits reset cycle, PMAC enters a special re-initialization
mode that permits the downloading of new firmware either through the serial port or the bus port. Under
these conditions, an appropriate program like Delta Tau’s PEWIN Software allows the downloading of a
firmwarefile.

Note:

Compiled PLCs must be recompiled for running under a different firmware
version. Before attempting to upgrade PMAC operational firmware, make sure all
of PMAC configuration has been stored to disk on a backup file. Also, if compiled
PL Cs are used, make sure to store their source code separately, which is not saved
automatically in a backup file.

After the firmware has been changed and before the memory configuration has
been restored, it isimportant to send the $$$* * * command to clear all memory
and buffers.

Communication Jumpers

E9-E10, E13-E14: Serial Interface Configuration Control

Default Configuration
E9 E10 E13 E14
ON ON ON ON

The E9, E10, E13, and E14 jumpers control whether the RS-232 serial port will bein DCE or DTE
format. The default configuration permits straight-across connection to a PC DB-9 serial port.

Jump, E9-1 to E9-2 to allow RXD/ to be input on J4-3.
Jump E10-1 to E10-2 to allow TXD/ to be output on J4-5.
Jump E9-1 to E10-1 to allow TXD/ to be output on M4-3.
Jump E9-2 to E10-2 to allow RXD/ to be input on J4-5.
Jump E13-1 to E13-2 to allow RTSto be input on J4-7.
Jump E14-1 to E14-2 to allow CTS to be output on JM4-9.
Jump E13-1 to E14-1 to allow CTSto be output on J4-7.
Jump E13-2 to E14-2 to allow RTSto be input on J4-9.

PMAC Jumper Configuration 15

PMAC Product Guide

E44-E47: Serial Baud Rate Selection

Default Configuration
E44 E45 E46
OFF ON ON

E47
OFF

The configuration of these jumpers and the particular CPU option ordered (usually written on chip U13
on PMAC) determine the baud rate at which PMAC will communicate through its J4 or J4A serial port.

Baud Rate_ Contral Baud Rate
E Points
Battery CPU, 40
20 MHz Flash ' 60 MHz Flash 80 MHz Flash
E44 | B4S | B46 | B47 | cpyopraay | MH (ZOF;;""';A)CPU CPU (Opt 58B) CPU (Opt 5C)
ON ON ON ON Disabled Disabled Disabled Disabled
OFF | ON ON ON 300 600 900 1200
ON | OFF | ON ON 400* 800* 1200 1600*
OFF | OFF | ON ON 600 1200 1800 2400
ON ON | OFF | ON 800* 1600* 2400 3200*
OFF | ON | OFF | ON 1200 2400 3600 4800
ON | OFF | OFF | ON 1600* 3200* 4800 6400*
OFF | OFF | OFF | ON 2400 4800 7200 9600
ON ON ON | OFF 3200* 6400* 9600 12800*
OFF | ON ON | OFF 4800 9600 14400 19200
ON | OFF | ON | OFF 6400* 12800* 19200 25600*
OFF | OFF | ON | OFF 9600 19200 28800 38400
ON ON | OFF | OFF 12800* 25600* 38400 51200*
OFF | ON | OFF | OFF 19200 38400 57600 76800
ON | OFF | OFF | OFF 25600* 51200* 76800 102400*
OFF | OFF | OFF | OFF 38400 76800 115200 153600
*Non-standard baud rate
E49: Serial Communications Parity Control
Default Configuration
E49
ON
This jumper is related to an advanced feature and should not be changed from default.
E66-E71, E91-E92: ISA Bus Base Address Control
Default Configuration
E66 E67 E68 E69 E70 E71 E91 E92
OFF ON ON ON ON OFF ON ON

Jumpers E91, E92, E66, E67, E68, E69, E70, and E71 on the PMAC-Lite determine the base address of
the card in the I/O space of the host PC’ s expansion bus. Together, they form a binary number that
specifies the 16 consecutive addresses on the bus where the card can be found. The jumpers form the base
address in the following fashion:

16 PMAC Jumper Configuration

PMAC Product Guide

Jumper E91 | E92 | E66 | E67 | E6G8 | EG9 | E70 | E71
Bit # 11 10 9 8 7 6 5 4
Dec Value 2048 | 1024 | 512 256 128 64 32 16
Hex Value 800 400 200 100 80 40 20 10

e |f ajumper isON, the value it contributes to the base address is zero.
* If ajumper is OFF, the value it contributes to the base addressis given in the table above.

On the PMAC-Lite, the jumpers are physically arranged in the same order they are presented in the above
table.

From Jumper Configuration To Address
To determine the address specified by a given jumper configuration, use the following formula:

(Decimal)
Address = 2048*E91 + 1024* E92 + 512* E66 + 256* E67 + 128*E68 + 64*E69 + 32*E70 + 16*E71

(Hexadecimal)
Address = $800* E91 + $400* E92 + $200* E66 + $100* E67 + $80* E68 + $40* E69 + $20*E70 +
$10*E71

In each case, Exx = 1 if the jumper is OFF; Exx = 0 if the jumper is ON.
Example: On a PMAC card, the jumpers are in the following configuration:

E91 | E92 | E66 | E67 | E68 | E69 | E70 | E71
ON ON OFF | OFF | ON ON ON ON

The address can be computed as:
Decimal Address=0+0+512+256+0+0+0+0=768
Hex Address=0+ 0+ $200 + $100+ 0+ 0+ 0+ 0= $300

From Address To Jumper Configuration
Once an /O address on the PC expansion port has been selected, the following procedure can be used to
et the address jumpers.

1. Convert the addressto a 3-digit hexadecimal value ($000 to $FFF, representing 0 to 4095). If the
value does not fit in thisrange, PMAC cannot be set for this address. Make surethelast digitisO;
only addresses divisible by 16 are permitted as PMAC base addresses.

2. Takethefirst hex digit and convert it to binary. The binary digits represent bits 11 through 8 of the
base address. Assign each binary digit to jumpers as follows:

Bit # 11(MSB) 10 9 8(LSB)
Jumper E9l E92 E66 E67
Digit Value 8 4 2 1
Setting for 1 OFF OFF OFF OFF
Setting for 0 ON ON ON ON

3. Takethe second hex digit and convert it to binary. The binary digits represent bits 7 through 4 of the
base address. Assign each binary digit to jumpers as follows:

PMAC Jumper Configuration 17

PMAC Product Guide

Bit # 7(MSB) 6 5 4(LSB)
Jumper E68 E69 E70 E71
Digit Value 8 4 2 1
Setting for 1 OFF OFF OFF OFF
Setting for 0 ON ON ON ON

Example 1: To set up the card to be at base address 992 decimal on the PC expansion bus:

1. 992 decimal isequal to 3EO hexadecimal.
2. Thefirst digit of 3isbinary 0011. Thissets E91 ON, E92 ON, E66 OFF, E67 OFF.
3. Thesecond digit of Eisbinary 1110. This sets E68 OFF, E69 OFF, E70 OFF, E71 ON.

Example 2: To set up the card to be at base address 528 decimal on the PC expansion bus:

1. 528 decimal isequal to 210 hexadecimal.
2. Thefirst digit of 2 isbinary 0010. This sets E91 ON, E92 ON, E66 OFF, E67 ON.
3. Thesecond digit of E isbinary 0001. This sets E68 ON, E69 ON, E70 ON, E71 OFF.

Example 3: To set up the card to be at base address 544 decimal on the PC expansion bus:

1. 544 decimadl isequal to 220 hexadecimal.
2. Thefirst digit of 2 isbinary 0010. This sets E91 ON, E92 ON, E66 OFF, E67 ON.
3. Thesecond digit of E isbinary 0010. This sets E68 ON, E69 ON, E70 OFF, E71 ON.

E54-E55, E57-E59, E61-63, E65: Interrupt Source Control

Default Configuration
E54 E55 E57 E58 E59 E61 E62 E62 E63 E65
OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF

These jumpers are related to an advanced feature and should not be changed from default.
E76-E84, E86: Host Interrupt Signal Select

Default Configuration
E76 E77 E78 E79 E80 E81 E82 E83 E84 E86
OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF | OFF

These jJumpers are related to an advanced feature and should not be changed from default.
E107-E108: Serial Port Configure

Default Configuration
E107 E108
1-2 1-2

Both RS-232 and RS-422 serial ports are provided as standard on the Universal PMAC-Lite board.
Jumpers E107 and E108 must be set correctly to use the port of choice. Both jumpers E107 and E108
must connect pins 1 and 2 to use the RS-232 port on the J4 connector. Otherwise, both jumpers E107 and
E108 must connect pins 2 and 3 to use the RS-422 port on the J4A connector.

18 PMAC Jumper Configuration

PMAC Product Guide

I/O Configuration Jumpers

E1-E2: Machine Output Supply Configure

Default Configuration
El E2
1-2 1-2

Chip U26 on the Universal PMAC Lite controls the general -purpose digital outputs on connector J5
JOPTO.

With the default sinking output driver IC (ULN2803A or equivalent) in U26, these jumpers must connect
pins 1 and 2 to supply the IC correctly. If thisIC isreplaced with a sourcing output driver IC
(UDNZ2981A or equivalent), these jJumpers must be changed to connect pins 2 and 3 to supply thenew IC
correctly.

Warning:

The jumper setting must match the type of driver IC, or damage to the | C will
result.

E7: Machine Input Source/Sink Control

Default Configuration
E7
1-2

With this jumper connecting pins 1 and 2 (default), the machine input lines on the J5 JOPTO port are
pulled up to +5V or to the externally provided supply voltage for the port. This configuration is suitable
for sinking drivers. If the jumper is changed to connect pins 2 and 3, these lines are pulled down to GND.
This configuration is suitable for sourcing drivers.

E17A - E17D: Amplifier-Enable Polarity Control

Default Configuration
E17A E17B E17C E17D
OFF OFF OFF OFF

Jumpers E17A through E17D control the polarity of the amplifier enable signal for the corresponding
motor 1 to 4. When the jumper is OFF (default), the amplifier-enable line for the corresponding motor is
low true so the enable state is low-voltage output and sinking current, and the disable state is not
conducting current. With the default ULN2803A sinking driver used by the PMAC-Lite, thisisthe fail-
safe option alowing the circuit to fail in the disable state. With this jumper ON, the amplifier-enable line
is high true so the enable state is not conducting current, and the disable state is low-voltage output and
sinking current. Generally, this setting is not recommended. The following table shows which jumper
affects which channel:

AENA1

AENA2

AENA3

AENA4

E17A

E17B

E17C

E17D

PMAC Jumper Configuration

19

PMAC Product Guide

E28: Following Error/Watchdog Timer Signal Control

Default Configuration
E28
2-3

1. Jump pin 1to 2 to alow warning following error (Ix12) for the selected coordinate system to control
FEFCO/ on J8-57.
2. Jump pin 2 to 3 to cause watchdog timer output to control FEFCO/.

Low true output in either case.

E100: Auxiliary Signals Supply Control

Default Configuration
E100
1-2

The U54 driver IC controls the AENA and EQU signals on the J8 JEQU connector. If E100 connects pins
1 and 2, U54 will be supplied from the analog A+15V supply which can be isolated from the digital
circuitry. If E100 connects pins 2 and 3, U54 will be supplied from a separate A+V supply brought in on
pin 9 of the J8 JEQU connector. This supply can bein the +12V to +24V range and can be kept isolated
from the digital and analog circuits.

E101-E102: Auxiliary Signals Output Voltage Configure

Default Configuration
El E2
1-2 1-2

The U54 driver IC controls the AENA and EQU signals on the J8 JEQU connector. With the default
sinking output driver IC (ULN2803A or equivalent) in U54 for the J8 JEQU port outputs, these jumpers
must connect pins 1 and 2 to supply the IC correctly. If this|C is replaced with a sourcing output driver
IC (UDN2981A or equivaent), these jumpers must be changed to connect pins 2 and 3 to supply the new
IC correctly.

Warning:

The jumper setting must match the type of driver IC, or damage to the | C will
result.

E109: Display Port Configuration

Default Configuration
E109
OFF

Thisjumper is related to an advanced feature and should not be changed from default.
E110: Expansion Port Configuration

Default Configuration
E110
1-2

This jumper is related to an advanced feature and should not be changed from default.

20 PMAC Jumper Configuration

PMAC Product Guide

Reserved Configuration Jumpers

EO: Reserved for Future Use

Default Configuration

EO

OFF

Thisjumper isreserved for future use and should not be changed from default.

PMAC Jumper Configuration

21

PMAC Product Guide

22

PMAC Jumper Configuration

PMAC Product Guide

WIRING GUIDELINES

Proper wiring, grounding and shielding are essential to prevent unwanted electrical noise and to assure
proper servo operation and performance. The most common symptoms resulting from improper wiring
are inaccurate positioning, poor servo control and, in the worst case, will damage parts of the controller’s
hardware. These are some known noise sources:

e Switches operating inductive loads such as relays and solenoids
e Solid state relays or PWM servo amplifiers

* Arcwelding and plasma torch machines

* Heavy current carrying wires

* Fluorescent lights

* Neonlights

The following sectionsiillustrate the most common wiring problems and methods for reducing
electromagnetic noise.

Ground Loops

Ground is an equipotential circuit reference point. A ground loop can be defined as electrical grounds that
are not at the same electrical potential, namely zero volts AC and DC. As aresult, aground loop
generates a potential difference along the ground line connecting two electrical devices. Thisoriginates
the following important consequences:

1. Anéectrical current will circulate along the ground wire, dissipating power and generating heat.
Wire insulators will be degraded and eventually damaged.

2. Theground electric potential will change resulting in awrong signal reference. Some electrical
signalsin PMAC will change state above 0.7V against ground. If the ground reference rises above 1V
an evident unreliable behavior will result.

3. In some cases the ground line is used as a safety mechanism against electric shocks. Therefore, the
ground line must be kept as a zero volts reference point.

Star Ground Connection

All component chassis ground points and signal ground or common points should be tied together at a
single point (star connection). This point should then be tied with a single conductor to an earth ground
point. This form of grounding prevents ground loops and ensures that all components are properly
grounded against shock hazard.

Device 1 Device 2 Device 3

7/ Z//////7/7//777/7ZZ/77Z7;7/Z

This configuration applies only for common ground connections and it does not apply for devices with
opto-isolation circuits. If PMAC is powered with separate analog and digital power supplies (the
recommended method) do not tie the PMAC analog and digital grounds together.

Wiring Guidelines 23

PMAC Product Guide

Opto-Isolation Circuits

Delta Tau provides several opto-isolating boards allowing separate ground circuits. Opto-isolating
accessories for encoder signals, serial communications and digital inputs and outputs are available.

Example:
Independent ground connections
resulting in a ground loop
15
Serial connection L
PMAC installed in a Laptop communicating
desktop PC serially with PMAC
Solution:

ACC-264 L!‘
Serial isolator J_[L)

PMAC installed in a Laptop communicating
desktop PC serially with PMAC

In this case, aserial communications isolator board will keep the laptop and desktop grounds separated
avoiding a ground loop.

EMI, Electromagnetic Interference

Electromagnetic interference (EMI) is an electrical noise which creates a disturbance or undesired
response in one or more circuits, equipment, or systems. Usually EMI is due to magnetic fields originated
by nearby high current cables or transformers. Other sources of EMI include high voltage spikes
generated by nearby solenoids, relays and arc welding machines.

Twisted Wires
In order to reduce electromagnetic interference, twisting of the power wiresis highly recommended. Two
wires carrying high current originates an inductive loop that is proportional to the areain between them:

24 Wiring Guidelines

PMAC Product Guide

Shielded Cable

In generd, it isgood practice to shield all wires carrying low-level signals. Thisisimportant especialy if
the signal level wires are run near power level wiring such as motor wires or relays wires. When shielding
wires connect only one end of the shield, preferably the source end. Connecting both ends of a shield will

result in ground loops. It is recommended that the unconnected end of the shield be insulated to prevent

accidental connection.

Wires Separation and Length

Since the el ectromagnetic interference drastically decreases with distance, the best method to prevent
EMI isto separate the power cables from the signal cables. In addition, since the capacitance and
inductive characteristics of a cable increases with the distance, delicate signal cables must be kept short.
PMAC's IMACH cable should not exceed the 36 inches in length whereas PMAC’ s JEXP cable should

not exceed the 6 inchesin length.

Flat Cable Shielding

When using shielded flat cables, select arounded cable with IDC connectors in both sides. With the

addition of ground bars this configuration makes a good reliabl e shielded connection.

Shielded round cable

Shield /

Ground Bar

=

=

\

1DC connector

Wiring Guidelines

25

PMAC Product Guide

Basic Rules for Proper Wiring

1

Take the time to sketch the system out before installing. This graphic representation of the installation
will help avoid introducing ground loops and will serve as aroad map for eliminating noiseif itis
present.

Do not introduce ground loops. Ground loops are created whenever a ground reference is established
at more than one location.

Never run signal wires alongside power cables. Thisistrue especialy in installations where high-
powered amplifiers are used. Large amplifiers are capable of drawing large currents. These currents
vary the electromagnetic field surrounding the power cable. The more current that flows through the
wire, the bigger this field becomes. If signal cables are located in close proximity to this fluctuating
electromagnetic field, noise could be induced into the system.

Do not route signal and power wiring through common junctions. Consider using double-shielded
cablesif there is no way to separate the wires.

Use a shielded signal cable connecting only one end of the shield, preferably the source end (the point
where the signal is generated). This will ensure maximum protection against induced noises by power
cables and other sources of electromagnetic interference.

Twist pairs of power wires from DC power supplies, DC brush motors and other high current cables.
Cable intersections should always occur at right angles to minimize magnetic coupling.

Keep signal cables short. PMAC’'s IMACH cable should not exceed the 36 inches in length whereas
PMACs JEXP cable should not exceed the 6 inchesin length.

Use a separate analog and digital power supply. Thiswill eliminate noise entering the digital circuits
from the machine connections.

When possible use differential instead of single-ended signals. Differential signals will have common
mode rejection for noise spikes. If asingle-ended signal is used, do not ground the remaining
associated signal and leave it floating. The ACC-35A and ACC-35B pair is a good example of using
differential signals for long distance connections. By using the ACC-35A and ACC-35B pair,

PMAC's JTHW connection can be extended from 3 to 100 meters for remote I/O operation.

Noise spike will be suppressed by the common rejection mode of the differential input.

10.

11.

12.

B TRy
Use opto-isolation circuits when possible. Delta Tau provides a variety of opto-isolation boards for
different signals.

A diode must be connected across arelay or solenoid coils in order to reduce inductive voltage.

i

In some cases, when the el ectromagnetic noise affecting an input signal cannot be minimized
otherwise, use an RC filter. The values of the RC filter must be selected carefully in order to not
interfere with the safe operation of the input signal to filter.

!

26

Wiring Guidelines

PMAC Product Guide

MACHINE CONNECTIONS

Typically, the user connections are made to the ACC-8P terminal block that is attached to the IMACH
connector by aflat cable. The pinout numbers on the terminal block are the same as those on the IMACH
connector for PMAC-Lite.

c000c0660

Power Supplies

Digital Power Supply
1.75A @ +5V (+/-5%) (8.75 W)
(Four-channel configuration, with atypical load of encoders)

* Thehost computer provides the 5V power supply if PMAC isinstalled in itsinternal bus.

With the board plugged into the bus, it will pull +5V power from the bus automatically and it cannot
be disconnected. In this case, there must be no external +5V supply, or the two supplies will fight
each other, possibly causing damage. This voltage can be measured between pins 1 and 3 of the
terminal block.

* Inastand-alone configuration, when PMAC is not plugged in a computer bus, it will need an external
5V supply to power itsdigital circuits. The +5V line from the supply should be connected to pin 1 or
2 of the terminal block, and the digital ground to pin 3 or 4.

Analog Power Supply
0.3A @ +12to +15V (4.5W)
0.25A @ -12to -15V (3.8W)
(Eight-channel configuration)

The analog output circuitry isthe part of PMAC circuitry directly related to the amplifier signalslike the
DAC command outputs and amplifier fault\enable lines. The analog circuitry on PMAC is optically
isolated from the digital computation circuitry, and so requires a separate power supply. Thisis brought
in on the IMACH connector. The positive supply -- +12 to +15V -- should be brought in on the A+15V
line on pin 59. The negative supply -- -12 to -15V -- should be brought in on the A-15V line on pin 60.
The analog common should be brought in on the AGND line on pin 58.

Typically, this supply can come from the servo amplifier. Many commercia amplifiers provide such a
supply. If thisisnot the case, an external supply may be used. Even with an external supply, the AGND
line should be tied to the amplifier common. It is possible to get the power for the analog circuits from the
bus, but doing so defeats optical isolation. In this case, no new connections need to be made. However,
be sure jumpers E85, E87, E88, E89, and E9O0 are set up for this circumstance. (The card is not shipped
from the factory in this configuration.)

Machine Connections 27

PMAC Product Guide

Note:

The PMAC installed in an I SA bus can either use the bus +12V power supply or an
external * 15V power supply. It is recommended that an external power supply is
used that will keep the digital and analog circuits separate and that will provide
better electrical noise isolation to PMAC.

Flags Power Supply (Optional)

Each channel of PMAC has four dedicated digital inputs on the machine connector: +LIMn, -LIMn
(overtravel limits), HMFLn (home flag), and FAULTn (amplifier fault). In the Universal PMAC-Lite,
these inputs can be kept isolated from other circuits. A power supply from 12 to 24V connected on pin 9
of J8 can be used to power the corresponding opto-isolators. In this case, jumper E89 must be removed
and jumper E90 must connect pins 1-2.

Overtravel Limits and Home Switches

When assigned for the dedicated uses, these signal's provide important safety and accuracy functions.
+LIMn and -LIMn are direction-sensitive overtravel limits which must be actively held low (sourcing
current from the pins to ground) to permit motion in their direction. The direction sense of +LIMn and -
LIMnisasfollows: +LIMn should be placed at the negative end of travel, and -LIMn should be placed at
the positive end of travel.

Note:

The Flags screen of the EZ-PMAC Setup Software allows the setup and monitoring the end-of-travel limit
flags. These flags must be disabled or properly connected to allow motion of the corresponding motor.

Types of Overtravel Limits

PMAC expects a closed-to-ground connection for the limits to not be considered on fault. This
arrangement provides afailsafe condition and therefore it cannot be reconfigured differently in PMAC.
Usually a passive normally closed switch is used. If a proximity switch is needed instead, use a 15V
normally closed to ground NPN sinking type sensor.

JMACH1 JMACH1 JMACH1
+Lim
51
51 +Lim +15Y Output JEQU, PIN 9
59 | %
- 12-24V
G
AGnd
58 58 AGnd
Dry Contact 15 Volts proximity 15-24 Volts proximity
E89: ON E:89 ON E&9: OFF
ES0:1-2 E:90 OFF E9Q: 1-2

28 Machine Connections

PMAC Product Guide

Home Switches

While normally closed-to-ground switches are required for the overtravel limits inputs, the home switches
can be either normally closed or normally open types. The polarity is determined by the home sequence
setup, through the I-Variables 1902, 1907, ... 1977. However, for the following reasons, the same type of
switches used for overtravel limits are recommended:

* Normally closed switches are proven to have greater electrical noise rejection than normally open

types.
e Using the same type of switches for every input flag simplifies maintenance stock and replacements.

Motor Signals Connections

Incremental Encoder Connection

The IMACH connector provides two +5V outputs and two logic grounds for powering encoders and other
devices. The +5V outputs are on pins 1 and 2; the grounds are on pins 3 and 4. The encoder signal pins
are grouped by number: all those numbered 1 (CHA1, CHAL/, CHB1, CHCL, etc.) belong to encoder #1.
The encoder number does not have to match the motor number, but usually does. If the PMAC is not
plugged into a bus and drawing its +5V and GND from the bus, use these pinsto bring in +5V and GND
from the power supply. Connect the A and B (quadrature) encoder channels to the appropriate terminal
block pins. For encoder 1, the CHAlispin 25, CHB1lispin 21. If thereisasingle-ended signal, leave
the complementary signal pins floating -- do not ground them. However, if single-ended encoders are
used, make sure that the corresponding jumpers E24 to E27 are set on position 1-2.

For adifferential encoder, connect the complementary signal lines-- CHA1/ ispin 27, and CHB1/ ispin
23. Thethird channel (index pulse) is optional; for encoder 1, CHC1 ispin 17, and CHCY/ is pin 19.

Example: differential quadrature encoder connected to channel #1.

JMACHA1
rﬁ 17

19
21
23
25
27
{ 1

HAs

Note:

The Encoders screen of the EZ-PMAC Setup Software checks the proper direction
and functioning of any encoder input in PMAC.

Machine Connections 29

PMAC Product Guide

Termination Resistors
The PMAC-Lite provides sockets for termination resistors on differential input pairs coming into the
board. As shipped, there are no resistor packsin these sockets. If these signals are brought long distances
into the PMAC-Lite board and ringing at signal transitionsis a problem, 6-pin SIP resistor packs may be
mounted in these sockets to reduce or eliminate the ringing. All termination resistor packs are the type
that has independent resistors (no common connection) with each resistor using two adjacent pins. The

following table shows which packs are used to terminate each input device:

Device Resistor Pack Device Resistor Pack
Encoder 1 RP51 Encoder 3 RP53
Encoder 2 RP52 Encoder 4 RP54

DAC Output Signals

If PMAC is not performing the commutation for the motor, only one analog output channel is required to
command the motor. This output channel can be either single-ended or differential, depending on what
the amplifier is expecting.

For a single-ended command using PMAC channel 1, connect DAC1 (pin 43) to the command input on
the amplifier. Connect the amplifier’'s command signal return line to PMAC' s AGND line (pin 58). In
this setup, leave the DAC1/ pin floating; do not ground it.

For adifferential command using PMAC channel 1, connect DAC1 (pin 43) to the plus command input
on the amplifier. Connect DACL/ (pin 45) to the minus-command input on the amplifier. PMAC's
AGND should till be connected to the amplifier common. If the amplifier is expecting separate sign and
magnitude signals, connect DACL (pin 43) to the magnitude input. Connect AENAL/DIRL (pin 47) to the
sign (direction input). Amplifier signal returns should be connected to AGND (pin 58). Thisformat
requires some parameter changes on PMAC (see Ix25 and 1x02). Jumper E17 controls the polarity of the
direction output; this may have to be changed during the polarity test. This magnitude-and-direction mode
is suited for driving servo amplifiers that expect thistype of input, and for driving voltage-to-frequency
(V/F) converters, such as PMAC's ACC-8D Option 2 board, for running stepper motor drivers.

To limit the range of each signal to +/- 5V, use parameter 1x69. Any analog output not used for dedicated
Servo purposes may be utilized as a general -purpose analog output. Usualy, thisis done by defining an
M-Variable to the digital-to-anal og-converter register (suggested M-V ariable definitions M 102, M202,
etc.), and then writing values to the M-V ariable. The analog outputs are intended to drive high-impedance
inputs with no significant current draw. The 220Q output resistors will keep the current draw lower than
50 mA in all cases and prevent damage to the output circuitry, but any current draw above 10 mA can
result in noticeable signal distortion.

Example:
JMACH1
DAC1
43
DAC1/ Connect to the
45 amplifier +10V
command input
58 AGND

30 Machine Connections

PMAC Product Guide

Note:

The DAC screen of the EZ-PMAC Setup Software allows outputting a particular
voltage to the appropriate DAC output which can then be measured with a
voltmeter.

Amplifier Enable Signal (AENAX/DIRnN)

Most amplifiers have an enable/disable input that permits compl ete shutdown of the amplifier regardiess
of the voltage of the command signal. PMAC’s AENA line is meant for this purpose. If not using a
direction and magnitude amplifier or voltage-to-frequency converter, use this pin to enable and disable
the amplifier (wired to the enable line). AENAL/DIR1 ispin 47. Jumpers E17A through E17D control
the polarity of thissignal and the default is conducting enable.

JMACHA
AEMAT
47 Connect to the amplifier
AGND enable signal
58

The amplifier enable signals are controlled by chip U54. If jumper E100 connects pins 1 and 2, U54 will
be supplied from the analog A+15V supply which can be isolated from the digital circuitry. 1f E100
connects pins 2 and 3, U54 will be supplied from a separate A+V supply brought in on pin 9 of the J8
JEQU connector. This supply can bein the +12V to +24V range and can be kept isolated from both the
digital and analog circuitry. This also allows 24V operation of thissignal.

By default, the PMAC Liteis provided with a sinking output driver IC (ULN2803A or equivalent) in
U54. In this configuration, jumpers E101 and E102 must connect pins 1 and 2 to supply the IC correctly.
If thisIC is replaced with a sourcing output driver IC (UDN2981A or equivalent), E101 and E102 must
be changed to connect pins 2 and 3 to supply the new IC correctly.

Warning:
A wrong setting of these jJumpers will damage the associated output IC.

For any other kind of amplifier enable signal, such asa5V signal, adry contact of arelay or a solid-state
relay can be used:

JMACH1 JMACH1
+158V
59 ide
+15V
3 w — ¥ /1{ To the amplifier
< l\ To the amplifier 5 / L enable signal
47 | AENA1 f enable signal 47| AENA1 —————

Machine Connections 31

PMAC Product Guide

Note:

The DAC screen of the EZ-PMAC Setup Software allows changing the state of the
amplifier enable signal which could then be measured with a voltmeter.

Amplifier Enable Jumpers- Summary Table

Amplifier Enableswith PMAC Jumper Configuration Output Chip (U54)
AGND (fail safe) E17: OFF | E100:1-2 | E101:1-2 | E102: 1-2 ULN2803A (default)
12-15v E17: ON E100: 1-2 | E101:1-2 | E102: 1-2 ULN2803A (default)

12-15V (fail safe) E17: OFF | E100: 1-2 | E101: 2-3 | E102: 2-3 | UDN2981A (must replace)
15-24v E17: ON E100: 2-3 | E101: 1-2 | E102: 1-2 ULN2803A (default)

15-24V (fail safe) E17: OFF | E100: 2-3 | E101: 2-3 | E102: 2-3 | UDN2981A (must replace)
Other (userelay) E17: OFF | E100: 1-2 | E101:1-2 | E102: 1-2 ULN2803A (default)

Fail safe indicates that the output chip must be operating properly for the amplifier enable output to
enable the amplifier. Other configurations might still enable the amplifier even if the output chipis
damaged or not operating properly.

Amplifier Fault Signal (FAULTN)

Thisinput can take a signal from the amplifier so PMAC knows when the amplifier is having problems
and can shut down action. The polarity is programmable with I-Variable 1x25 (1125 for motor #1) and the
return signal is analog ground (AGND). FAULT1 ispin 49. With the default setup, this signal must
actively be pulled low for afault condition. In this setup, if nothing iswired into thisinput, PMAC will
consider the motor not to bein afault condition.

JMACH JMACHA

JEQU, PING

FALLTA
49 lg—
Connect to the

amplifier fault Connect to the

AGND output = - amplifier fault
5 — s output
FALLTY
40 |g
12-15V Signal 15-24V Signal
EB9: ON E89: OFF
E90: 1-2 E90: 1-2

Note:

The Flags screen of the EZ-PMAC Setup Software allows the setup and
monitoring the state of the amplifier fault signal.

32 Machine Connections

PMAC Product Guide

General-Purpose Digital Inputs and Outputs (JOPTO Port)

PMAC's J5 or JOPTO connector provides eight general-purpose digital inputs and eight general-purpose
digital outputs. Each input and each output has its own corresponding ground pin in the opposite row.
The 34-pin connector was designed for easy interface to OPTO-22 or equivalent optically isolated 1/0
modules. The JOPTO port has these characteristics:

* 16 1/0O points (100 mA per channel, up to 24V)

* Hardware selectable between sinking and sourcing in groups of eight; default is all sinking (inputs
can be changed simply by moving a jumper; sourcing outputs must be special-ordered or field-
configured)

e Eight inputs, eight outputs only; no changes. Paralel (fast) communicationsto PMAC CPU

* Not opto-isolated; easily connected to Opto-22 (PB16) or similar modules through ACC-21F cable

Jumper E7 controls the configuration of the eight inputs. If it connects pins 1 and 2 (the default setting),
the inputs are biased to +5V for the OFF state, and they must be pulled low for the ON state. If E7
connects pins 2 and 3, the inputs are biased to ground for the OFF state, and must be pulled high for the
ON state. In either case, a high voltage isinterpreted as a 0 by the PMAC software and alow voltageis
interpreted asa 1.

PMAC is shipped standard with a ULN2803A sinking (open-collector) output | C for the eight outputs.
These outputs can sink up to 100 mA, but must have a pull-up resistor to go high.

Warning:

Do not connect these outputs directly to the supply voltage, or damage to the
PMAC will result from excessive current draw.

A high-side voltage (+5 to +24V) can be provided into Pin 33 of the JOPTO connector which allows this
to pull up the outputs by connecting pins 1 and 2 of Jumper E1. Jumper E2 must also connect pins 1 and
2 for aULN2803A sinking output. It is possible for these outputs to be sourcing drivers by substituting a
UDN2981A IC for the ULN2803A. ThisU26 IC is socketed, and so may easily be replaced. For this
driver, pull-down resistors should be used. With a UDN2981A driver IC, Jumper E1 must connect pins 2
and 3, and Jumper E2 must connect pins 2 and 3.

Warning:

The jumper setting must match the type of driver IC, or damage to the | C will
result

Example: Standard configuration using the ULN2803A sinking (open-collector) output IC

JOPTO
Input switch
M1
15 =
16 | GND

Load (100 ma max)
31 | MO1 — | |
- + | + -
33 |4y J Optional 5 to 24V |
. , |
'|

DC power suppl
34 [GND p pply

Machine Connections 33

PMAC Product Guide

Note:

The 1/0 Port screen of the EZ-PMAC Setup Software allows monitoring the state
of the general-purpose JOPTO digital inputs as well as setting the state of each
genera-purpose JOPTO digital output.

J5 (JOPTO): I/0 Port Connector

. Lk [ololelelololelelololelelolelelelol L
J5JOPTO (34-Pin Connector) 34000 0000000000000 2
Front View
Pin # Symbol Function Description Notes
1 MI8 INPUT Machine Input 8 Low istrue
2 GND COMMON PMAC Common
3 MI7 INPUT Machine Input 7 Low istrue
4 GND COMMON PMAC Common
5 MI16 INPUT Machine Input 6 Low istrue
6 GND COMMON PMAC Common
7 MI5 INPUT Machine Input 5 Low istrue
8 GND COMMON PMAC Common
9 MI14 INPUT Machine Input 4 Low istrue
10 GND COMMON PMAC Common
11 MI3 INPUT Machine Input 3 Low istrue
12 GND COMMON PMAC Common
13 MI2 INPUT Machine Input 2 Low istrue
14 GND COMMON PMAC Common
15 MI1 INPUT Machine Input 1 Low istrue
16 GND COMMON PMAC Common
17 MO8 OUTPUT Machine Output 8 Low-true (sinking);
High-true (sourcing)
18 GND COMMON PMAC Common
19 MQ7 OUTPUT Machine Output 7
20 GND COMMON PMAC Common
21 MO6 OUTPUT Machine Output 6
22 GND COMMON PMAC Common
23 MQO5 OUTPUT Machine Output 5
24 GND COMMON PMAC Common
25 MO4 OUTPUT Machine Output 4
26 GND COMMON PMAC Common
27 MO3 OUTPUT Machine Output 3
28 GND COMMON PMAC Common
29 MO2 OUTPUT Machine Output 2
30 GND COMMON PMAC Common
31 MO1 OUTPUT Machine Output 1
32 GND COMMON PMAC Common
33 +V INPUT/ +V Power |/O +V = +5Vio +24V
OUTPUT +5v out from PMAC, f5 to_+24\/_ in
from external source, diode isolation
from PMAC
34 GND COMMON PMAC Common
This connector provides means for eight general-purpose inputs and eight general-purpose outputs. Inputs
and outputs may be configured to accept or provide either +5V or +24V signals. Outputs can be made
sourcing changing |C U26 to UDN2981 and jumpers E1 and E2 to position 2-3. E7 controls whether the
inputs are pulled up or down internally. Outputs are rated at 100mA per channel

34 Machine Connections

PMAC Product Guide

Serial Connections

The PMAC Liteis provided with both RS232 and RS422 serial ports. To use the RS232 port on the 10-
pin J4 connector, jumpers E107 and E108 must connect pins 1 and 2. To use the RS422 port on the 26-pin
JAA connector, jJumpers E107 and E108 must connect pins 2 and 3. Connectors J4 and JAA cannot be
used at the same time.

Delta Tau provides cables for connecting PMAC with a host computer. Accessory 3D connects MA to a
DB-25 connector; ACC-3L connects J4 to a DB-9 connector. Standard DB-9-to-DB-25 or DB-25-to-DB-
9 adapters may be needed for a particular setup.

If a cable needs to be made, the easiest approach isto use aflat cable prepared with flat-cable type

connectors as indicated in the following diagrams:

DB-9 PMAC (IDC-10) | PC (DB-9)
Female IDC-10 ; - (DlSR)
: . 3 2 (RXD)
4 7 (RT9)
5 3(TXD)
6 8(CT9)
| 7 4(DTR)
Do not connect 8 9
wire #10 9 5(GND)
10 No connect
DB-25
Female IDC-26 PMAC (IDC-26) | PC (DB-25)
— 1 1 1 1
2 14
3 2 (TXD)
4 15
5 3 (RXD)
6 16
7 4(RTS)
8 17
9 5(CTS)
L 10 18
L] 11 6 (DSR)
Do not connect 12 19
wire #26 13 7 (GN D)
14 20 (DTR)
15 8
16 21
17 9
18 22
19 10
20 23
21 11
22 24
23 12
24 25
25 13
26 No connect
Machine Connections 35

PMAC Product Guide

J4 (JRS232) Serial Port Connector

. 9 |O00OCO
J4 JRS232 (10-Pin Connector) 1wloocoo0]2
Front View
Pin # Symbol Function Description Notes
1 PHASE OUTPUT Phasing Clock
2 DTR BIDIRECT Data Term Ready Tied to DSR
3 TXD/ INPUT Receive Data Host transmit data
4 CTS INPUT Clear to Send Host ready bit
5 RXD/ OUTPUT Send Data Host receive data
6 RTS OUTPUT Req. to Send PMAC ready bit
7 DSR BIDIRECT Data Set Ready Tiedto DTR
8 SERVO OUTPUT Servo Clock
9 GND COMMON PMAC Common
10 +5V OUTPUT +5VDC Supply Power supply out
The JRS232 connector provides the PMAC2-PC with the ability to communicate serially with an RS232
port. E107 and E108 must connect pins 1 and 2 to use this connector.

36

Machine Connections

PMAC Product Guide

J4A (JRS422). Serial Port Connector

) 251000 0000COCO0OO
J4A JRSA22 (26-Pin Connector) 26/ Q00000000000 0|2
Front View
Pin # Symbol Function Description Notes
1 CHASSI COMMON PMAC Common
2 S+5V OUTPUT +5Vdc Supply Deactivated by E8
3 RD- INPUT Receive Data Diff. 1/o low true **
4 RD+ INPUT Receive Data Diff. l/o high true *
5 SD- OUTPUT Send Data Diff. l/o low true **
6 SD+ OUTPUT Send Data Diff. l/o high true *
7 CS+ INPUT Clear to Send Diff. I/o high true **
8 CS INPUT Clear to Send Diff. 1/o low true *
9 RS+ OUTPUT Reg. to Send Diff. l/o high true **
10 RS OUTPUT Reg. to Send Diff. l/o low true*
11 DTR BIDIRECT | Data Term Ready Tied to DSR
12 INIT/ INPUT PMAC Reset Low isreset
13 GND COMMON PMAC Common **
14 DSR BIDIRECT | Data Set Ready Tiedto DTR
15 SDIO- BIDIRECT | Specia Data Diff. I/O low true
16 SDIO+ BIDIRECT | Specia Data Diff. I/O high true
17 SCIO- BIDIRECT | Specid Citrl. Diff. I/O low true
18 SCIO+ BIDIRECT | Specia Citrl. Diff. I/O high true
19 SCK - BIDIRECT | Specia Clock Diff. I/O low true
20 SCK+ BIDIRECT Specia Clock Diff. I/O high true
21 SERVO- BIDIRECT | Servo Clock Diff. I/O low true ***
22 SERVO+ BIDIRECT | Servo Clock Diff. I/O high true ***
23 PHASE- BIDIRECT | Phase Clock Diff. I/O low true ***
24 PHASE+ BIDIRECT | Phase Clock Diff. I/O high true ***
25 GND COMMON PMAC Common
26 +5V OUTPUT +5Vdc Supply Power supply out
The JRS422 connector provides the PMAC with the ability to communicate both in RS422 and RS232.
Jumpers E107 and E108 must connect pins 2 and 3 to use this port.
* Note: Required for communications to an RS-422 host port
** Note: Required for communications to an RS-422 or RS-232 host port
*** Note: These lines are used for an advanced feature and normally should not be connected.

Machine Connections

37

PMAC Product Guide

Machine Connections Example

Amplifier Load
15V Power Supply Maotor
EEET 1
IEEED|
[=R=4]
EEET Encoder
ACC-2D or ACC2P
#2 #3
Pin# | Bn# | Pin# | ping | SYMBOL
) 54 29 40 LM
f 55 B 41 42 HMFLn
L &1 52 T 3% +LIMn
) E%) 5% AGHD
S 2 1 z +5Y
z 4 3 4 GHD
17 1% 5 & CHCh
5 19 20 7 % CHCh!
21 oo) 10 CHER
23 24 1 12 CHEn/
25 o6 13 14 CHAR
o 7% 15 16 CHAn!
s 44 29 0 DACH
45 46 1) DA/
47 4% 33 34 AEMANDIRR
49 50 35 % FALILTR
| 52 5% 53 5% AGHD
5% AGND
£9 B+ EVIOPT+/
&0 A5y
. /,,-"'
\-‘l"‘ _./.-l

PMAC installed in a desktop PC

Acc-8D
Note: For this configuration, jumpers E85, E87, E88, E89 and E90 are | eft at the default settings.

38 Machine Connections

PMAC Product Guide

ACC-8P/ACC-8D Breakout Board

gl u gl

PMAC ACC-8D
TERMINAL BLOCK BOARD

E
3
2
L alin
* W=D~ = D~ =D=M =D~ =0~ L =D~ h L=
?.@@@@@.m.mﬁ@&@@m@@@@@m@@@@m@@@@@mmm
TB1
CCoo0D0 oS0 o0oDoooDoDDooooooDoCEooDSo0coo
Ot bab,bhBLAWOUOOUUONMBMRBRE=-S = a2 &R
BARMOMOOAMONDOAMONDOAMODDOAMNMODODNDARND eense op
R—AlE IRy T TT] | YTy |
sadpeNe T _ _
— _ JG| measess J5) measesss A0 weead |0 hedes
_ e . JIEsseens Ay
_ mmm__.mo_um{mo _ I AANSERSSSNERRPARNRSRPANSU PSRN | PhiAC Japeeses A seene
QPTICM 1 _ | AN RSEPESAUS USRS IN APPSR *e89® [VH
_ SeEedaeebabenEba bRt neenerel
D_ _ LA L L AL R Ll Ll L LR Ly Ll Ll] ot & TP .MU_
bt Ly

TBT in. (200.00)

VIR g A B VIR

39

Machine Connections

PMAC Product Guide

mbo unction in mbo unction
bol Funct Pin # bol Funct
+5V OUTPUT o o 58 AGND INPUT
gr +5V OUTPUT ks c»§ 59 A+15V/OPT+V INPUT
28 GND COMMON < 60 A-15V INPUT
GND COMMON 57 FEFCO/ OUTPUT
CHA INPUT 13 CHA INPUT
Q CHA/ INPUT Q 15 CHA/ INPUT
20 CHB INPUT 319 9 CHB INPUT
=5 CHB/ INPUT =d 11 CHB/ INPUT
2w CHC INPUT LS 5 CHC INPUT
QS CHC/ INPUT S of 7 CHC/ INPUT
w +5V OUTPUT w 1 +5V OUTPUT
GND COMMON 3 GND COMMON
- DAC OUTPUT o 29 DAC OUTPUT
T DAC/ OUTPUT z = 31 DAC/ OUTPUT
EL o AENA/DIR OUTPUT EQ = 33 AENA/DIR OUTPUT
. N~
24 FAULT INPUT zn 35 FAULT INPUT
AGND INPUT 58 AGND INPUT
9 +LIM INPUT o 37 +LIM INPUT
% o -LIM INPUT &=, | 39 -LIM INPUT
T HMFL INPUT T4l HMFL INPUT
a AGND INPUT 58 AGND INPUT
CHA INPUT 14 CHA INPUT
Q CHA/ INPUT a 16 CHA/ INPUT
2, CHB INPUT 29 10 CHB INPUT
=g CHB/ INPUT = 12 CHB/ INPUT
%’g < CHC INPUT %2 < 6 CHC INPUT
SEN CHC/ INPUT o < 8 CHC/ INPUT
w +5V OUTPUT w 1 +5V OUTPUT
GND COMMON 3 GND COMMON
< DAC OUTPUT ° 30 DAC OUTPUT
2 DAC/ OUTPUT 2 32 DAC/ OUTPUT
5 AENA/DIR OUTPUT Sl 34 AENA/DIR OUTPUT
£ FAULT INPUT £ 36 FAULT INPUT
AGND INPUT 58 AGND INPUT
) +LIM INPUT] 38 +LIM INPUT
§9|_¢ -LIM INPUT %‘J_@ 40 -LIM INPUT
o gf‘ HMFL INPUT T 3“‘ 42 HMFL INPUT
AGND INPUT 58 AGND INPUT

Machine Connections

PMAC Product Guide

J8 (JEQU): Position-Compare Connector
) 9|10000ON
J8 JEQU (10-Pin Connector) 10|00 000|2
Front View
Pin # Symbol Function Description Notes
1 EQUL/ OUTPUT Enc. 1 Comp-Eq Low istrue
2 EQU2/ OUTPUT Enc. 2 Comp-Eq Low istrue
3 EQU3/ OUTPUT Enc. 3 Comp-Eq Low istrue
4 EQUA4/ OUTPUT Enc. 4 Comp-Eq Low istrue
5 AENAL/ OUTPUT Amp Enable 1 Low istrue
6 AENA2/ OUTPUT Amp Enable 2 Low istrue
7 AENA3/ OUTPUT Amp Enable 3 Low istrue
8 AENA4/ OUTPUT Amp Enable 4 Low istrue
9 A+V SUPPLY Positive Supply +5V to +24V
10 AGND COMMON Analog Ground

This connector provides the position-compare outputs and the amplifier enable outputs for the four servo
interface channels. The board is shipped by default with achip in U54 of type ULN2803A or equivalent
open-collector driver IC. It may be replaced with UDN2891A or equivalent open-emitter driver (E101 and
E102 must be changed), or a 74ACT563 or equivalent 5V CMOS driver.

TB1 (JPWR): Power Supply

TB1 (4-Pin Terminal Block) 1 2 3 4
Wyires
__FEdge of ‘
Board
Top View
Pin# | Symbol Function Description Notes
1 GND COMMON Reference Voltage
2 +5V INPUT Positive Supply Voltage Suppliesal PMAC digital
circuits
3 +12V INPUT Positive Supply Voltage Ref to digital GND
4 -12V INPUT Negative Supply Voltage Ref to digital GND

should not be used.

Thisterminal block can be used to provide the input for the power supply for the circuits on the PMAC
board when it is not in a bus configuration. When the PMAC-Lite isin a bus configuration, these supplies
come through the bus connector from the bus power supply automatically. In this case, thisterminal block

Note:

Use an external power supply that will keep the digital and analog circuits separate
and that will provide better electrical noise isolation to PMAC. To keep the optical
isolation between the digital and analog circuits on PMAC, provide analog power
(+/-12V to +/-15V & AGND) through the IMACH connector instead of the bus

connector or thisterminal block.

Machine Connections

41

PMAC Product Guide

42

Machine Connections

PMAC Product Guide

PROGRAMMING PMAC

PMAC is fundamentally a command-driven device. PMAC does things by issuing it ASCII command
text strings and generally PMAC provides information to the host in ASCII text strings. These text strings
are typed and sent from aterminal window of a program communicating with PMAC, either by the ISA
bus or the RS-232/422 serial port. The EZ-PMAC Setup Software, for example, provides such terminal
window.

When PMAC receives an alphanumeric text character over one of its ports, it does nothing but place the
character in its command queue. It requires a control character (ASCII value 1 to 31) to cause it to take
some actual action. The most common control character used is the carriage return (<CR>; ASCII value
13) which tells PMAC to interpret the preceding set of aphanumeric characters as a command and to take
the appropriate action.

Note:

Use the EZ-PMAC Setup Software as a software tool for configuring and
programming PMAC. All the example programs provided in this manual can be
found in the samples folder of the EZ-PMAC Setup Software installation directory.

Moving a Motor: Jog Commands and Motion Programs

The main goal of the PMAC motion controller isto control motion (i.e., to let a particular physical motor
to move). In PMAC once the motors are properly setup, motion can be accomplished in two ways. Jog
commands allow moving the motor continuously, to position it to a certain distance or to moveit in
incremental intervals. Jog commands are issued from the terminal window in the form of online
commands:

Examples:

#1J+ ; Moves Motor #1 continuously in the positive direction
#1J/ ; Stops Mdtor #1

#1J- ; Moves Motor #1 continuously in the negative direction
#1J/ ; Stops Mdtor #1

If aparticular motion sequence is desired, and also if that sequence is tight to some logic, a motion
program is a better approach for moving a motor than Jog online commands:

Example:
OPEN PROG 1 CLEAR ; Opens “PROGL” buffer for editing
LI NEAR ; Linear node notion
I NC ; Incremental node
TA100 ; Acceleration tinme is 100 nmsec
TSO ; No S-curve conponent
F40 ; Feedrate is 40 length_units / second
I F (ML1=1) ; If Input 1 is ON
X3 ; Move axis X 3 length units of distance
ELSE
Y-3 ; Move axis Y 3 length_units of distance in the
; opposite direction
ENDI F
CLOSE

A motion program is placed in a buffer for later execution. Thus, motion program commands are referred
to as buffer commands because they can only be executed inside a motion program.

Programming PMAC 43

PMAC Product Guide

Note:

A motor that is currently running a motion program cannot be jogged with online
commands. To jog the motor you must stop the motion program first with the A or
Q online command.

Axes and Coordinate Systems

A coordinate system in PMAC is a grouping of one or more motors for the purpose of synchronizing
movements. A coordinate system (even with only one motor) can run a motion program; a motor cannot.
PMAC can have up to eight coordinate systems, addressed as &1 to &8, in avery flexible fashion (e.g.
eight coordinate systems of one motor each, one coordinate system of eight motors, four coordinate
systems of two motors each, etc.)

An axisis an element of a coordinate system. It issimilar to a motor, but not the samething. Anaxisis
referred to by letter. There can be up to eight axesin a coordinate system, selected from X, Y, Z, A, B, C,
U, V, and W. The simplest axis definition statement is something like#1- >X. Thissimply assigns
motor #1 to the X-axis of the currently addressed coordinate system. When an X axis move is executed in
this coordinate system, motor #1 will make the move.

The axis definition statement also defines the scaling of the axis’ user units. For instance, #1- >10000X
also matches motor #1 to the X axis, but this statement sets 10,000 encoder counts to one X-axis user unit
(e.g. inches or centimeters).

Permitted AxisNames: X,Y,Z,U,V,W,A,B,C

X, Y, Z: Traditionally Main Linear Axes
e Matrix Axis Definition

e Matrix Axis Transformation

e Circular Interpolation

e Cutter Radius Compensation

A, B, C: Traditionally Rotary Axes

(A rotates about X, B about Y, C about Z)

e Position Rollover (1x27)

U, V, W: Traditionally Secondary Linear Axes
e Matrix Axis Definition

Online Commands

Many of the commands given to PMAC are on-line commands; that is, they are executed immediately by
PMAC to cause some action, change some variable, or report some information back to the host.

Some commands, such as P1=1, are executed immediately if there is no open program buffer, but are
stored in the buffer if oneisopen. Other commands, such as X1000 Y1000, cannot be on-line
commands; there must be an open buffer. These commands will be rejected by PMAC (reporting an
ERROO5 if 16 isset to 1 or 3) if thereis no buffer open. Still other commands, such as J+, are on-line
commands only and cannot be entered into a program buffer (unlessin the form of CVD*' J+").

There are three basic classes of on-line commands: motor-specific commands, which affect only the
motor that is currently addressed by the host; coordinate-system-specific commands, which affect only
the coordinate system that is currently addressed by the host; and global commands, which affect the card
regardless of any addressing modes.

44 Programming PMAC

PMAC Product Guide

A motor is addressed by a#n command, where n isthe number of the motor with arange of 1to 8,
inclusive. This motor isthe one addressed until another #n isreceived by the card. For instance, the
command line#1J+#2J- tells Motor 1 to jog in the positive direction and Motor 2 to jog in the negative
direction. There are only afew types of motor-specific commands. These include the jogging commands,
ahoming command, an open loop command, and requests for motor position, velocity, following error,
and status.

A coordinate system is addressed by a & command, where n is the number of the coordinate system with
arange of 1to 8, inclusive. This coordinate system is the one addressed until another & command is
received by the card. For instance, the command line &1 B6 R&2B8R tells Coordinate System 1 to run
Motion Program 6 and Coordinate System 2 to run Maotion Program 8. There are a variety of types of
coordinate-system-specific commands. Axis definition statements act on the addressed coordinate
system, because motors are matched to an axis in a particular coordinate system. Sinceit is a coordinate
system that runs a maotion control program, all program control commands act on the addressed
coordinate system. Q-Variable assignment and query commands are also coordinate system commands
because the Q-Variables themsel ves belong to a coordinate system.

Some on-line commands do not depend on which motor or coordinate system is addressed. For instance,
the command P1=1 setsthe value of P1 to 1 regardless of what is addressed. Among these global on-line
commands are the buffer management commands. PMAC has multiple buffers, one of which can be open
at atime. When abuffer is open, commands can be entered into the buffer for later execution. Control
character commands (those with ASCII values O - 31D) are always global commands. Those that do not
require a data response act on all cards on a serial daisy-chain. These charactersinclude carriage return
<CR>, backspace <BS>, and severa special-purpose characters. This alows, for instance, commands to
be given to severd locations on the card in asingle line, and have them take effect simultaneously at the
<CR> at the end of the line (&1 R&2R<CR> causes both Coordinate Systems 1 and 2 to run).

Buffered (Program) Commands

Astheir name implies, buffered commands are not acted on immediately, but held for later execution.
PMAC has many program buffers -- 256 regular motion program buffers, and 32 PLC program buffers.
Before commands can be entered into a buffer, that buffer must be opened (e.g. O°PEN PROG 3, OPEN
PLC 7).

Each program command is added onto the end of the list of commands in the open buffer; to replace the
existing buffer, use the CLEAR command immediately after opening to erase the existing contents before
entering the new ones. After finishing entering the program statements, use the CLOSE command to
close the opened buffer.

Note:

Include the DELETE GATHER command before opening any buffer. Thiswill assure that memory used
for previously gathering dataiis released and available for motion and PLC programs use.

Computational Features

[-Variables

I-Variables (initialization, or setup variables) determines the personality of the card for a given
application. They are at fixed locationsin memory and have predefined meanings. Most are integer
values and their range varies depending on the particular variable. There are 1024 |-variables, from 10 to
11023, and they are organized as follows:

10 -- 179: General card setup
180 -- 199: Ceared Resol ver setup
1100 -- 1184: Mdtor #1 setup

Programming PMAC 45

PMAC Product Guide

1185 -- 1199: Coordinate System 1 setup
1200 -- 1284: Motor #2 setup

1285 -- 1299: Coordinate System 2 setup
1800 -- 1884: Mdtor #8 setup

1885 -- 1899: Coordinate System 8 setup
1900 -- 1979: Encoder 1 - 16 setup

1980 -- 11023: Reserved for future use

Values assigned to an I-Variable may be either a constant or an expression. The commands to do thisare
on-line (immediate) if no buffer is open when sent, or buffered program commands is a buffer is open.

Examples:
1120 = 45
1120 = (1120+P25*3)

For I-Variables with limited range, an attempt to assign an out-of-range value does not cause an error.
The value is automatically rolled over to within the range by modulo arithmetic (truncation). For
example, 13 hasarange of 0to 3 (4 possible values). The command | 3=5 actually would assign avalue
of 5modulo 4 = 1 to the variable.

On PMACs with battery-backed RAM, most of the |-V ariable values can be stored in a 2K x 8 EEPROM
IC with the SAVE command. These values are safe here even in the event of a battery-backed RAM
failure, so the basic setup of the board isnot lost. After anew valueis given to one of these |-V ariables,
the SAVE command must be issued in order for this value to survive a power-down or reset. The |-
Variables that are not saved to EEPROM are held in battery-backed RAM. These variables do not require
a SAVE command to be held through a power-down or reset and the previous value is not retained
anywhere. These variables are: 119-144, 1x13, 1x14.

On PMACs with flash memory backup (those with Option 4A, 5A, or 5B), al of the |-Variable values can
be stored in the flash memory with the SAVE command. If thereisan EEPROM IC on the board, it is not
used. After anew valueisgiven to any |-variable, the SAVE command must be issued in order for this
value to survive a power-down or reset.

Default valuesfor all I-Variables are contained in the manufacturer-supplied firmware. They can be used
individualy withthe | { const ant } =* command, or in arange withthel { const ant }. .

{ const ant } =* command. Upon board re-initialization by the $$$* * * command or by areset with
E51 in the non-default setting, all default settings are copied from the firmware into active memory. The
last saved values are not lost; they are just not used.

P-Variables

P-Variables are general-purpose user variables. They are 48-bit floating-point variables at fixed locations
in PMAC’s memory, but with no pre-defined use. There are 1024 P-Variables, from PO to P1023. A
given P-Variable means the same thing from any context within the card; al coordinate systems have
accessto all P-Variables (contrast Q-Variables which are coupled to a given coordinate system, below).
This alows for useful information passing between different coordinate systems. P-Variables can be used
in programs for any purpose desired: positions, distances, velocities, times, modes, angles, intermediate
caculations, etc.

If acommand consisting simply of aconstant valueis sent to PMAC, PMAC assignsthat value to
variable PO. For example, if the command 342<CR> is sent to PMAC, it will interpret it as
P0=342<CR>. This capability isintended to facilitate simple operator terminal interfaces. It does mean,
however, that it is not agood ideato use PO for other purposes, because it is easy to change this
accidentally.

46 Programming PMAC

PMAC Product Guide

Q-Variables

Q-Variables, like P-Variables, are general -purpose user variables: 48-hit floating-point variables at fixed
locations in memory, with no pre-defined use. However, the meaning of a given Q-Variable (and hence
the value contained in it) is dependent on which coordinate system is utilizing it. This allows several
coordinate systemsto use the same program (for instance, containing the line X(Q1+25) Y (Q2), but to do
have different values in their own Q-Variables (which in this case, means different destination points).

Severa Q-Variables have special uses. The ATAN2 (two-argument arctangent) function uses QO asits
second argument (the "cosing" argument) automatically. The READ command places the values it reads
following letters A through Z in Q101 to Q126, respectively, and a mask word denoting which variables
have been read in Q100. The S (spindle) statement in a motion program places the value following it into
Q127.

Based on that and since atotal of 1024 Q-Variables are shared between potentially eight coordinate
systems (128 variables each), the practical range of the Q-Variables to be safely used in motion programs
istherefore Q1 to Q99.

The set of Q-Variables working within a command depends on the type of command. When accessing a
Q-Variable from an on-line (immediate) command from the host, it is the Q-Variable for the currently
host-addressed coordinate system (with the &1 command). When accessing a Q-Variable from a motion
program statement, it is the Q-Variable belonging to the coordinate system running the program. If a
different coordinate system runs the same motion program, it will use different Q-Variables.

When accessing a Q-Variable from a PLC program statement, it is the Q-Variable for the coordinate
system that has been addressed by that PL C program with the ADDRESS command. Each PLC program
can address a particular coordinate system independent of other PLC programs and independent of the
host addressing. 1f no ADDRESS command is used in the PLC program, the program uses the Q-
Variables for Coordinate System 1.

M-Variables

To permit easy user access to PMAC' smemory and I/O space, M-Variables are provided. Generally, a
definition only needs to be made once with an on-line command. On PMACs with battery backup, the
definition is held automatically. On PMACs with flash backup, the SAVE command must be used to
retain the definition through a power-down or reset.

Define an M-Variable by assigning it to alocation and defining the size and format of the valuein this
location. An M-Variable can be a bit, anibble (4 bits), abyte (8 bits), 1-1/2 bytes (12 bits), a double-byte
(16 bits), 2-1/2 bytes (20 bits), a 24-bit word, a 48-hbit fixed-point double word, a 48-bit floating-point
double word, or special formats for dual-ported RAM and for the thumbwheel multiplexer port.

There are 1024 M-V ariables (M0 to M1023), and as with other variable types, the number of the M-
Variable may be specified with either a constant or an expression: M576 or M(P1+20) when read from;
the number must be specified by a constant when written to.

The definition of an M-Variable is done using the defines-arrow (- >) composed of the minus sign and
greater-than symbols. An M-Variable may take one of the following types, as specified by the address
prefix in the definition:

. 1to 24 hits fixed-point in X-memory

1 to 24 bits fixed-point in Y -memory

. 48 bits fixed-point across both X- and Y-memory

48 hits floating-point across both X- and Y -memory

No address definition; uses part of the definition word as general-purpose variable

[]
O < X

Programming PMAC 47

PMAC Product Guide

If an X or Y type of M-Variable is defined, also define the starting bit to use, the number of bits, and the
format (decoding method).

Typical M-Variable definition statements are:

ML- >Y: $FFC2, 8, 1

MLO2- >Y: 49155, 8, 16, S
MLO3- >X: $C003, 0, 24, S
ML61- >D: $002B

ML91- >L: $0822

The M-Variable definitions are stored as 24-bit codes at PMAC addresses Y:$BCO00 (for M0) to Y :$BFFF
(for M1023). For all but the thumbwheel multiplexer port M-V ariables, the low 16 bits of this code
contains the address of the register pointed to by the M-Variable (the high eight bits tell what part of the
address is used and how it isinterpreted).

X Y
$0000
Format Address
0 | 0] o | 0 | 0 I 0
Specified by SEFFE
assignment PMAC's memory

If another M-V ariable pointsto this part of the definition, it can be used to change the subject register.
The main use of this techniqueisto create arrays of P- and Q-Variables or arraysin dual-ported RAM or
in user buffers (see on-line command DEFI NE UBUFFER).

Many M-V ariables have a more limited range than PMAC’ s full computational range. If avalue outside
of the range of an M-Variable is placed to that M-Variable, PMAC automatically rolls over the value to
within that range and does not report any errors. For example, with asingle bit M-Variable, any odd
number written to the variable ends up as 1, any even number endsup as 0. If anon-integer valueis
placed in an integer M-V ariable, PMAC automatically rounds to the nearest integer.

Once defined, an M-V ariable may be used in programs just as any other variable -- through expressions.
When the expression is evaluated, PMAC reads the defined memory location, calculates a value based on
the defined size and format, and utilizesit in the expression.

Care should be exercised in using M-Variablesin expressions. If an M-Variable is something that can be
changed by a servo routine (such as instantaneous commanded position), which operates at a higher
priority the background expression evaluation, there is no guarantee that the value will not changein the
middle of the evaluation. For instance, if in the expression (M16- M17)* (M16+M17) the M-V ariables
are instantaneous servo variables, the user cannot be sure that M16 or M17 will have the same value both
placesin the expression, or that the values for M16 and M 17 will come from the same servo cycle. The
first problem can be overcome by setting P1=M 16 and P2=M 17 right above this, but thereis no genera
solution to the second problem.

Array Capabilities
It ispossibleto use a set of P-Variables asan array. To read or assign values from the array, simply
replace the constant specifying the variable number with an expression in parentheses.

Example:
P1=10 ; Array index variable
P3=P(P1) ; Same as P3=P10

48 Programming PMAC

PMAC Product Guide

To write to the array, M-V ariables must be used. An M-V ariable defined to the corresponding P-Variable
address will allow changing any P-Variable and therefore the contents of the array.

Example: Vaues 31 to 40 will be assigned to variables P1 through P10

MB4- >L: $1001 ; Address | ocation of P1
MB5- >Y: $BC22, 0, 16 ; Definition word of M4
OPEN PLC 15 CLEAR
P100=31
VWH LE (P100!>40) ; From 31 to 40
M34=P100 ; Value is witten to the array
P100=P100+1 ; Next val ue
MB5=M35+1 ; Next Array position (next P-variable)
ENDWHI LE
DI SABLEPLC15 ; This PLC runs only once
CLOSE
ENA PLC15 ; Enable the PLC. Make sure |5 is either 2 or 3
P1..10 ; List the values of P1 to P10

The same concept applies for Q-Variables and M-V ariables arrays although the address range for them is
different.

Operators

PMAC operators work like those in any computer language: they combine values to produce new values.
PMAC uses the four standard arithmetic operators: +, -, *, and /. The standard algebraic precedence rules
are used: multiply and divide are executed before add and subtract, operations of equal precedence are
executed |eft to right, and operations inside parentheses are executed first.

PMAC also has the % modulo operator which produces the resulting remainder when the value in front of
the operator is divided by the value after the operator. Values may be integer or floating point. This
operator is useful particularly for dealing with counters and timers that roll over. When the modulo
operation is done by apositive value X, the results can range from 0 to X (not including X itself). When
the modulo operation is done by a negative value -X, the results can range from -X to X (not including X
itself). This negative modulo operation is useful when aregister can roll over in either direction.

PMAC hasthree logical operators that do bit-by-bit operations: & (bit-by-bit AND), | (bit-by-bit OR), and
A (bit-by- bit EXCLUSIVE OR). If floating-point numbers are used, the operation works on the
fractional aswell as the integer bits. & has the same precedence as* and /; | and ~ have the same
precedence as + and -. Use of parentheses can override these default precedence.

Functions
These perform mathematical operations on constants or expressions to yield new values. The general

format is:
{function nanme} ({expression})

The available functions are SI N, COS, TAN, ASI N, ACOS, ATAN, ATAN2, SQRT, LN, EXP, ABS, and
I NT.

Whether the units for the trigonometric functions are degrees or radians is controlled by the global |-
Variable 115.

Programming PMAC 49

PMAC Product Guide

SI'N Thisisthe standard trigonometric sine function.

003 Thisis the standard trigonometric cosine function.

TAN Thisis the standard trigonometric tangent function.

ASI N |Thisisthe inverse sine (arc-sine) function with its range reduced to +/-90 degrees.

ACOS |Thisistheinverse cosine (arc-cosine) function with its range reduced to 0 -- 180 degrees.

ATAN |Thisisthe standard inverse tangent (arc-tangent) function.

Thisis an expanded arctangent function, which returns the angle whose sine is the expression in
parentheses and whose cosine is the value of QO for that coordinate system.

If doing the calculation in a PLC program, make sure that the proper coordinate system has been addressed
ATANZ |inthat PLC program. (Actualy, itisonly theratio of the magnitudes of the two values and their signs,
that matter in this function). It is distinguished from the standard ATAN function by the use of two
arguments. The advantage of this function isthat it has a full 360-degree range, rather than the 180-degree
range of the single-argument ATAN function.

LN Thisisthe natural logarithm function (log base €).

Thisis the exponentiation function (€°).
EXP |Note: Toimplement they* function, use &' instead. A sample PMAC expression would be
EXP(P2* LN(P1)) to implement the function P1™.

SQRT |Thisisthe square root function.

ABS Thisis the absolute value function.

| NT Thisisatruncation function which returns the greatest integer less than or equal to the argument
(INT(2.5)=2, INT(-2.5)=-3).

Functions and operators can be used either in motion programs, PLCs or as online commands. For
example, the following commands can be typed in aterminal window:

P1=SIN (45) P1 ; Reports the sine value of a 45° angle

| 130=I 130/ 2 ; Lower the proportional gain of Mdtor #1 by half

| 125=1 125] $20000 ; Disable the end-of-travel limts of Mtor #1
Comparators

A comparator evaluates the relationship between two values (constants or expressions). It isused to
determine the truth of a condition in amotion or PLC program. The valid comparators for PMAC are:

(equal to)

(not equal to)

(greater than)

(not greater than; |less than or equal to)

(1 ess than)

< (not less than; greater than or equal to)

~ (approxi mately equal to -- within one)

I~ (not approximately equal to -- at |east one apart)

= ATV T
\Y

Note that <= and >= are not valid PMAC comparators. The comparators! > and! <, respectively, should
be used in their place.

50 Programming PMAC

PMAC Product Guide

[-Variables Setup

Before attempting to move any motor, it is essential to set up the corresponding |-V ariables that will
determine, for example, how fast the motor will accelerate, how fast it will move, and how well the
motion will be performed based on its tuning parameters.

Note:

The EZ-PMAC Setup Software has dedicated screens for the configuration of each
I-Variable. The Catalog function of the EZ-PMAC Setup Software has the
description of each |-Variable.

The section below is a summary of the I-Variables involved in each feature. For more information, refer
to the complete 1-V ariables description chapter. Some |-V ariables might be expressed as, for example,
IX00. In the case of amotor |-Variable, x stands for the motor number in the range of 1 through 8. In the
case of a coordinate system I-Variable, x stands for the coordinate system number, also in the range of 1
through 8.

Note:

Completely reset PMAC before start the |-V ariables setup process. The $$$* * *
online command resets all PMAC I-Variables to factory defaults. This global reset
command also deletes any motion program or PLC program present in memory
before reset.

Motor Definition I-Variables

IX00 - Motor x Activate: For controlling an actual physical motor, this PMAC motor |-Variable should
be set to one. If thereis no physical motor associated with this PMAC motor X, then this variable should
be set to zero which is the case when using the encoder input or DAC output of this motor for a different
purpose than controlling an actual physical motor.

Motor Safety I-Variables
Ix11 - Motor x Fatal Following Error Limit: This variable setup the maximum number of counts of
allowed following error before the motor is shutdown.

Warning:
Setting 1x11 to zero can lead to a dangerous motor runaway condition. For
example, if the encoder feedback information islost, PMAC will shutdown the
motor when the following error exceeds Ix11 and so will prevent the motor to
runaway in an uncontrollable fashion.

Ix13 - Motor x + Softwar e Position Limit: This variable determines the maximum allowed range of
motion in the positive direction. Enabling this function is useful when no actual end-of-travel limit
switches are used.

Ix14 - Motor x - Softwar e Position Limit: This variable determines the maximum alowed range of
motion in the negative direction. Enabling this function is useful when no actual end-of-travel limit
switches are used.

Ix15 - Motor x Abort/Lim Deceleration Rate: This parameter sets the deceleration rate used when a
programmed motion is aborted either by the A abort command or when a maximum position limit is
reached.

Ix16 - Motor x Maximum Velocity: This parameter setup the maximum allowed velocity for a motor
performing alinear move commanded from a maotion program. This maximum value is not observed if
variable 113 is greater than zero.

Programming PMAC 51

PMAC Product Guide

IX17 - Motor x Maximum Acceler ation: This parameter sets the maximum allowed accel eration for a
motor performing alinear move issued from a motion program. This maximum value is not observed if
variable 113 is greater than zero.

Note:

Safety parameters 1x16 and Ix17 are not observed if 113 is greater than zero. 113
greater than zero is necessary, for example, if amotion program is performing a
circular interpolation move.

Ix19 - Motor x Maximum Jog/Home Acceleration: This parameter sets the maximum allowed
acceleration rate for amotor performing jog or homing move.

S-Curve and Linear Acceleration Variables

The acceleration portion of a programmed move, either programmed by ajog or a motion program
command, is controlled by two time parametersin units of millisecond. In the case of jog or homing
commands these two parameters are |-Variables Ix20 and 1x21. 1x20 determines the overall acceleration
time which isthe total time required for any change in velocity. Ix21 determines the portion of the overall
acceleration ramp that is performed in S-curve mode:

o000
in %5 E
1nith “:\."
A R |
& ' .
20000 i f \
\ \
[F \
200) !
"l b
! .
0000 y '\
b My
& ¥ - i
= WO
il] 006 0.4 0.15 0 05 02 05 0} 045 1]
Tifma ()
| Iif_Z]
- 1:20 A ‘ w20 »

In all cases, if two times the S-curve acceleration parameter is greater than the linear acceleration
parameter then the overall acceleration time will be two times the S-curve acceleration time:

If (2 x Ix21) > 1x20 then 1x20 = (2 x Ix21)
The acceleration of either linear or circular interpolated moves programmed from a motion programis

determined by a set of different parameters. However, these parameters have the same meaning as those
described above:

Movetype S-Curve Acceleration Parameter | Linear Acceleration Parameter
Jog or Home commands Ix21 Ix20
Linear or circular interpolation TA or Ix87 TSor Ix88

Rate vs Time: Programming the Maximum Acceleration Parameters

The safety |-Variables Ix17 and 1x19 determine the maximum allowed acceleration for the motor x.
These variables are programmed in the resulting rate of encoder counts per millisecond square. However,
the acceleration of a programmed move, either from jog commands or motion programs, is set in
milliseconds as described above. The following relationship holds for the conversion between those
parameters:

Velocity

Acceleration Rate=
Linear AccelerationTime-' S Curve Acceleration Time

52 Programming PMAC

PMAC Product Guide

Examples:
Jog Commands Linearly Interpolated Moves
Ix22 Ix16
X9 = ——— IX17 = ——
Ix20 - Ix21 Ix87 - Ix88

Benefits of Using S-Curve Acceleration Profiles

In an electric motor the acceleration directly translates into torque and electrical current. When no S-
Curve component is programmed, the acceleration, torque and current are suddenly applied to the motor
all at once as soon as it starts moving.

With a programmed S-curve profile, on the other hand, the acceleration is linearly introduced resulting in
a smoother transition in torque and current. However, the acceleration rate in a pure S-curve acceleration
profile istwo times that necessary for a pure linear acceleration profile (see equation above). This
requires in some cases a longer acceleration time when using S-curve accel eration.

S-curve component no S-curve component

Velocity vs Time

Acceleration vs Time

. A,
Force/Torque vs Time -
Current vs Time it 5

Motor Movement I-Variables

Ix20 Motor x Jog/Home Acceleration Time: This variable determines how long the acceleration portion
of the jog moves will take, regardless if a S-curve componentsis also programmed or not (see diagram
above).

Ix21 Motor x Jog/Home S-Curve Time: This variable determines the portion of the acceleration ramp
that will be performed in S-curve made. If Ix20 is set to zero, then the accel eration ramp will take 2* Ix21
and will be executed in pure S-curve mode.

Ix22 Motor x Jog Speed: This variable sets the jog velocity. If the motor X is already moving, a new jog
command must be issued for the Ix22 parameter to have effect.

IXx23 Motor x Homing Speed & Direction: Thisvariable is often set with the same value as Ix22.
However, what isimportant in this caseis its sign which determines in which direction PMAC will take
when searching for the home sensor.

Ix25 Motor x Flag Address: This variable determines how the flags related to motor x will be used.
These flags include the end-of-travel limits, the amplifier enable and fault lines and the home flag.

Programming PMAC 53

PMAC Product Guide

Note:

The EZ-PMAC Setup Software has a dedicated screen for the configuration of the
Ix25 I-Variable. The same screen allows monitoring the end-of-travel limits and
other related flags.

Ix26 Motor x Home Offset: This variable determines an offset in 1/16 of a count that PMAC will move
after the home procedure is completed. It isimportant to let PMAC move away from the home sensor
which could be important for a better reliable home search routine.

Servo Control I-Variables
The servo control variables are setup in the motor tuning process. Usually, thisis accomplished using a
software tool like the PMAC Executive Software or the EZ-PMAC Setup Software.

Note:

The EZ-PMAC Setup Software has a dedicate screen for the configuration of the
tuning variables. However, the PMAC Executive program auto-tuning utility is
strongly recommended for its simplicity and reliability.

IXx30 Motor x Proportional Gain: Thisisthe most important variable for the tuning setup process. It
determines how strong the corrections on the servo loop will be made based on a given following error
value. The rule of thumb for the setup of this variable isto increase it until the motor starts to buzz and
the backup for about 20% of its value.

Ix31 Motor x Derivative Gain: This variable acts effectively as an electronic damper. The higher 1x31
is, the heavier the damping effect is. On atypical system with a current-loop amplifier and PMAC’s
default servo update time (~440 msec), an 1x31 value of 2000 to 3000 will provide acritically damped

step response.
Ix32 Motor x Velocity Feed Forward Gain: Typically, thisvariable is used to minimize the tracking

errors when the motor is moving with a constant velocity. If the motor is driving a current-loop (torque)
amplifier, usually 1x32 will be equal to (or slightly greater than) I1x31 to minimize tracking error.

Ix33 Motor x Integral Gain: Typicaly, thisvariableis used to minimize the steady state following error
when the motor is settling on the target position. Usually, the following error in this caseis dueto gravity
and external forces.

Ix35 Motor x Acceleration Feed Forward Gain: This parameter isintended to reduce tracking error due
toinertia lag.

Ix68 Motor x Friction Feedforward: This parameter is intended primarily to help overcome errors due
to mechanical friction.

Coordinate System I-Variables

Ix87 C.S. x Default Acceleration Time: This parameter determines the default accel eration time of a
motion program running on Coordinate System x which is otherwise set by the TA parameter inside the
motion program.

Ix88 C.S. x Default S-Curve Time: This parameter determines the default S-curve acceleration time of a
motion program running on Coordinate System x which is otherwise set by the TS parameter inside the
motion program.

Ix89 C.S. x Default Feedrate: This parameter determines the default federate (velocity) of a motion
program running on Coordinate System x which is otherwise set by the F parameter inside the motion
program.

54 Programming PMAC

PMAC Product Guide

IX90 C.S. x Feedrate Time Units: This parameter determines the units of time used for either the Ix89 |-
variable or the F motion program parameter in compare to milliseconds. The default value of 1000
defines the federate in units per second.

Encoder/Flag Setup I-Variables

1900, 1905,.. Encoder 0 Decode Control: This variable determines how an increase in the encoder
feedback counter will be interpreted when translated into position. An increase in the encoder counter can
be interpreted as an increase or a decrease in the position counter, thus determining the proper direction of
motion. Typical values are either 3 or 7 which respectively determine a clock-wise or counter-clockwise
direction of decoding.

1902, 1907,.. Encoder O Capture Control: This variable determines the trigger condition that resultsin
the completion of the home search command. For example, the trigger condition could be a combination
of the home sensor being activated and the encoder C channel rising high.

1903, 1908,.. Encoder O Flag Select: This variable determines which flag will be used for the home
trigger condition, selected from the home flag, the end-of-travel limits or the amplifier fault flag.

Note:

The EZ-PMAC Setup Software has a dedicate screen for the configuration of the
homing I-Variables.

Encoder Conversion Table

The PMAC Encoder Conversion table is a method to adapt the different kind of feedback information into
astandard format that PMAC can use for its servo calculations. For example, the information provided by
aregular quadrature encoder might be different than that of a parallel feedback sensor. However, the
feedback information provided by these two different sensors would have the same format after the
encoder conversion table processesit.

For most PMAC users with quadrature encoders, this process can be virtually transparent with no need to
worry about the details. To set the encoder conversion table for using regular quadrature encoders for
motors 1-4, enter these commands on the terminal window:

WY: $720, $00C000
WY: $721, $000C004
WY: $722, $00C008
WY: $723, $00C00C
WY: $724, $000000

Jogging Moves

Jog Acceleration
Jog/home acceleration time is specified by 1x20 for motor X, and the S-curve time by Ix21. If Ix20 isless
than two times Ix21, the acceleration time used will be twice Ix21. The acceleration limit for jog/home

movesis set by 1x19 (in counts/msecz). If Ix20 and 1x21 are so small that 1x19 would be exceeded, 1x19
controls the acceleration time (without changing the profile shape). To specify the acceleration by rate
instead of time, simply set the acceleration time parameters small enough that the limiting accel eration
rate parameter is always used.

To specify the acceleration by rate, do not set both accel eration time parameters 1x20 and Ix21 to zero.
Thiswill cause a division-by-zero error in the move calculations that could cause erratic movement. The
minimum accel eration time setting should be 1x20=1 and 1x21=0.

Programming PMAC 55

PMAC Product Guide

Jog Speed
Jogging speed is specified by 1x22, which is a magnitude of the velocity, in counts per millisecond.
Direction is specified by the jog command itself.

Jog Commands
The commands to jog a motor are on-line (immediate) commands that are motor-specific; they act on the
currently addressed motor.

Note:

A jog command to a motor will be rejected if the motor isin acoordinate system
that is currently executing a motion program, even if the motion program is not
commanding that motor to move. PMAC will report ERROOL if I6issetto 1 or 3.

Indefinite Jog Commands

J+ commands an indefinite positive jog for the addressed motor; J- commands an indefinite negative
jog; J/ commands an end to the jog, leaving the motor in position control after the deceleration. Itis
possible for the J/ command to |eave the commanded position at a fractional count which can cause
dithering between the adjacent integer count values. If thisisa problem, the J! command can be used to
force the commanded position to the nearest integer count value.

Jogging to a Specified Position

Jog commands to a specified position, or of a specified distance, can be given. J= commands ajog to the
last pre-jog position; J={ const ant } commands ajog to the (unscaled) position specified in the
command; J=={ const ant } commands ajog to the (unscaled) position specified in the command and
makes that position the pre-jog position; JA{ const ant } commands ajog of the specified distance from
the actual position at the time of the command (J”0 can be useful to take up remaining following error);
J: {const ant} commandsajog of the specified distance from the commanded position at the time of
the command.

Jog Moves Specified by a Variable

Jogging moves to a position or of adistance specified by avariable are possible. Each motor hasa
specific register (L:$082B for motor 1, L:$08EB for motor 2, etc.) that holds the position or distance to
move on the next variable jog command. Thisregister contains a floating-point value scaled in encoder
counts. It should be accessed with an L-format M-Variable. The J=* command causes PMAC to use
this value as a destination position. The J** command causes PMAC to use the value as a distance from
the actual position at the time of the command. The J: * command causes PMAC to usethevaueasa
distance from the commanded position at the time of the command.

Each time one of these commands is given, the accel eration and velocity parameters at that time control
the response to the command. To change speed or acceleration parameters of an active jog move, change
the appropriate parameters, then issue another jog command.

Jog-Until-Trigger

The jog-until-trigger function permits ajog move to be interrupted by atrigger and terminated by a move
relative to the position at the time of the trigger. It is similar to a homing search move, except that the
motor zero position is not altered, and there is a specific destination in the absence of atrigger.

The jog-until-trigger function for amotor is specified by adding a”{ const ant } specifier to the end of
aregular definite jog command for the motor, where this{ const ant } isthe distance to be traveled
relative to the trigger position before stopping, in encoder counts. It cannot be used with the indefinite
jog commandsJ+ and J- .

56 Programming PMAC

PMAC Product Guide

This makes the jog command for ajog-until trigger something like J=100007100 , J=*~-50 or

J: 5000070. Thevalue beforethe” isthe destination position or distance (depending on the type of jog
command) to be traveled in the absence of atrigger. If thisfirst valueis represented by a* symboal,
PMAC looksin a pre-defined register for the position or distance. The second value is the distance to be
traveled relative to the position at the time of the trigger. Thisvalueis aways expressed as a distance,
regardless of the type of jog command. Both values are expressed in encoder counts.

Thetrigger condition for the motor is set up just as for homing search moves:

e Ix03 bit 17 specifies whether input flags are used to create the trigger, or the warning following error
limit status bit is the trigger (torque-limited triggering): O=flags, 1=error status.

* If input flags are to create the trigger, 1x25 specifies the flag register.

e If input flags are to create the trigger, Encoder/Flag |-Variables 2 and 3 for this set of flags specify
which edges of which signals will cause the trigger.

e Ix03 hit 16 specifies whether the hardware-captured counter value is used as the trigger position --
suitable for incremental encoder signals, real or simulated -- or the software-read position is used
instead -- suitable for other types of feedback (O=hardware, 1=software). The software-read position
must be used if the following error statusis used for the trigger.

PMAC will usethe jog parameters Ix19-1x22 in force at the time of the command for the pre-trigger move
and the values of these parametersin force at the time of the trigger for the post-trigger move.

The captured value of the sensor position at the trigger is stored in a dedicated register if later accessis
needed. Theunitsarein counts; for incremental encoders, they are relative to the power-up/reset
position.

PMAC sets the motor home-search-in-progress status bit (bit 10 of the first motor status word returned on
a? command) true (1) at the beginning of ajog-until-trigger move. The bit is set false (0) either when the
trigger isfound, or at the end of the move.

In addition, PMAC sets the motor trigger move status bit (bit 7 of the second motor status word returned
on a? command) true at the beginning of a jog-until-trigger move, and keepsiit true at least until the end
of the move. If atrigger isfound during the move, this bit is set false at the end of the post-trigger move;
however, if the pre-trigger move finishes without finding atrigger, the bit is left true at the end of the
move. Therefore, thisbit can be used at the end of the moveto tell whether the trigger was found
successfully or not. The motor desired-velocity-zero status bit can be used to determine the end of the
move.

Homing Search Moves

Homing Acceleration
The acceleration for homing search moves is controlled by the same parameters -- 1x19, 1x20, and 1x21 --
as for jogging moves. These are described in the above section.

Homing Speed

Homing speed and direction are specified by 1x23. If Ix23 is greater than zero, the homing search move
will be positive. If it islessthan zero the move will be negative. The magnitude of 1x23 controls the
speed of the move (in counts/msec).

Programming PMAC 57

PMAC Product Guide

Home Trigger Condition

PMAC' s homing search moves utilize the hardware position capture feature built in to the DSPGATE IC.
Because software action is not required to do the actua capture, it isincredibly fast and accurate (delay
lessthan 100 nsec). This meansthat the capture is fully accurate regardless of motor speed, so thereisno
need to slow down the homing move to get an accurate capture.

Homing Search Move Trajectory

Vel
A Trigger Home Complete=1
Occurs Home Search in Progress=0
Home Complete=0 \'
Home Search ;
In Progress=1 //

Net distance from

|

|

|

:]

| Ix23 trigger position

; = Ix26

|

|

1 Time,

> [x21 = P x21 > |x21 ‘\
M |x20—¥

Desired Velocity Zero=1
In Position=1
(when FE in range)

Note: Rate of acceleration J L
limited by Ix19 - can override Ix21 Ix21 Ix21 ¢

Ix20 and Ix21 —x20 IX20— ™

Specify Flag Set

In the basic setup of the motor, 1x25 specifies which set of flags (associated with one of the encoder
counters) is used for that motor. It isimportant that the flag number match the position encoder number
for the motor (e.g. if using ENC1 as the position-loop feedback, use Flagsl -- HMFL1, +/-LIM1,
FAULT1 -- for thw flags, and CHC1 as the encoder index channel) in order to make use of PMAC's
accurate hardware position capture feature.

Software Capture Option

If not using quadrature encoder feedback for the position loop, but still need to do a homing search move,
set bit 16 of the position-loop feedback address parameter 1x03 to 1 to tell PMAC that it cannot use the
hardware capture feature, so it must use a software capture technique. For example, if the address for
Ix03 is $0724, 1x03 should be set to $10724 for the software capture of home position.

When software capture is used, thereis a potential delay between the actual trigger and PMAC’ s position
capture of several milliseconds. This can lead to inaccuracies in the captured position; the speed of the
motor at the time of the trigger must be kept low enough to achieve an accurate enough capture. A two-
step procedure with afast, inaccurate capture followed by a slow, accurate capture, is common ly used in
these types of systems.

Trigger Signals and Edges

Once the set of flags for the motor with Ix25 has been specified, use Encoder/Flag 1-Variable 2 (1902,
1907, etc.) to tell PMAC whether to use aflag, the index channel, or both, as the capture trigger, and
which edge of the flag and/or the index channel to use.

58 Programming PMAC

PMAC Product Guide

Next use Encoder/Flag I-Variable 3 (1903, 1908, etc.) to specify which of the four flags (HMFLn, +LIMn,
-LIMn, FAULTRN) isto be used for the capture. If using alimit or afault flag for home capture, disable
the normal function of that input by setting high bits of 1x25, at least for the duration of the homing search
move (see example below).

Torque-Mode Triggering

Normally, the trigger condition for homing search moves, jog-until-trigger moves, and motion program
move-until-trigger movesis an input flag signal transition. Sometimesit is desired that a trigger occur
when an obstruction such as a hard stop is encountered. To support this type of functionality, PMAC
permitstriggering on awarning following error condition instead of an input flag. Thisis sometimes
called torque-mode triggering because it effectively triggers on atorque level (except for velocity-mode
amplifiers) because output torque command is proportional to following error. It isalso called atorque-
limited mode because it provides an easy way to create moves that are limited in torque, and that stop
when the torque limit is reached.

To enabl e this torque-mode triggering, set bit 17 of the position-loop feedback address I-Variable Ix03 to
1. Bit 16 of Ix03 should also be set to 1 to tell PMAC to use the software-read position on a capture
instead of the hardware-latched position, because thereis no input signal to latch the position in this
mode. Bits 0-15 contain the actual address of the feedback. For example, the default value of 1103 is
$0720, specifying the address of the first entry in the encoder conversion table, and specifying signal-
based triggering. If 1103 is changed to $30720, the same register is used for feedback, but now torque-
mode triggering is specified.

In this mode, the trigger for a homing search move or a move-until-trigger is atrue state of the warning
following error status bit for the motor. The warning following error magnitude for the motor is set by
Ix12, with units of 1/16 of acount. When PMAC detects thistransition, it will read the present feedback
position as the trigger position, and then move relative to this position. 1n a homing search move, the
relative distance is specified by 1x26, in units of 1/16 count. In ajog-until-trigger, the distanceis
specified by the second value in the jog command -- the value after the* arrow -- in units of counts. In a
motion program move-until-trigger, the distance is specified by a second value in the axis command -- the
value after the™ arrow -- in user axis units.

When using these types of moves, set the Ix69 command output to alower value representing the torque
or force limit to ensure that thislimit is not exceeded at any time during the move, before or after the
trigger.

Note:

If the warning following error status bit is true at the start of the move, the trigger
will occur amost immediately.

Merits of Dual Trigger

It is common practice to use a combination of a homing switch and the index channel as the home trigger
condition. Theindex channel of an encoder, while precise and repeatable, is not unique in most
applications because the motor can travel more than one revolution. Typically, the homing switch while
unique is not extremely precise or repeatable. By using alogical combination of the two, uniqueness can
be reached from the switch and precision and repeatability from the index channel. In this scheme, the
homing switch is effectively used to select which index channel pulse is used as the home trigger.

Although the homing switch does not need to be placed extremely accurately in this type of application, it
isimportant that its triggering edge remain safely between the same two index channel pulses. In
addition, the homing switch pulse must be wide enough to always contain at least one index channel
pulse.

Programming PMAC 59

PMAC Product Guide

Action on Trigger

In the homing search move, as soon as the PMAC firmware recognizes that the hardware trigger has
occurred, it takes several actions. It reads the position at the time of capture, usualy the hardware capture
register and uses it and the Ix26 home offset parameter to compute the new motor zero position. Assoon
asthisis done, reported positions are referenced to this new zero position (plus or minus any axis offset in
the axis definition statement -- if the axis definitionsis#1- >10000X+3000, the home position will be
reported as 3000 counts).

If software overtravel limits are used (1x13, Ix14 not equal to zero), they are re-enabled at this time after
having been automatically disabled during the search for the trigger. The tragjectory to this new zero
position is then calculated, including deceleration and reversal if necessary. Note that if a software limit
istoo close to zero, the motor may not be able to stop and reverse before it hits the limit. The motor will
stop under position control with its commanded position equal to the home position. If thereisa
following error, the actual position will be different by the amount of the following error.

Home Command
The homing search move can be executed either through an on-line command (which can be given from a
PL C program using the COMVAND" " syntax) or a motion program statement.

On-Line Command

A homing search move can be initiated with the on-line motor-specific command HOVE (short form HV).
Thisis simply acommand to start the homing search; PMAC provides no automatic indication that the
move is completed, unless setup to recognize the in-position (IPOS) interrupt.

Monitoring for Finish

If monitoring the motor from the host or from a PLC program to seeiif it has finished the homing move,
look at the home complete and desired velocity zero motor status word, accessed either with the ?
command, or with M-Variables. The home complete bit is set to zero on power-up/reset; it is also set to
zero at the beginning of a homing search move, even if a previous homing search move was completed
successfully. Itissetto 1 assoon asthetrigger isfound in a homing search move, before the motor has
come to a stop.

The home search in progress bit simply is the inverse of the home complete bit during the move: itis1
until the trigger isfound, then O immediately after. Therefore the monitoring should look also for the
desired velocity zero status bit to become one, which will indicate the end of the move.

Monitoring for Errors

A robust monitoring algorithm will aso look for the possibility that the homing search move could end in
an error condition. Often thisisjust part of the general error monitoring that is done at all times, looking
for overtravel limits, fatal following errors, and amplifier faults. If an error does occur during the homing
move, it isimportant to distinguish between one that occurs before the trigger has been found, and one
that occurs after. If the error occurs after, PMAC knows where the home position is, and the homing
search does not need to be repeated. Once the error cause has been fixed, the motor can be moved to the
home position with a command such as J=0.

Buffered Program Command

The homing search move can be commanded also from within a motion program with the HOVEN
command, where n isthe motor number. Note that this command specifies a motor unlike other motion
program commands that specify an axis move. In amotion program, PMAC's automatic program
sequencing routines monitor for the end of the move. When the move is successfully completed, program
execution continues with the next command.

60 Programming PMAC

PMAC Product Guide

Multiple homing moves can be started together by specifying alist or range of motor numbers with the
command (e.g. HOVEL, 3 or HOVE2. . 6). Further program execution will wait for all of these motorsto
finish their homing moves. Separate homing commands, even on the same line (e.g. HOVE1 HOVE2)
will be executed in sequence, with the first finishing before the second starts. It is not possible to execute
partially overlapping homing moves from a single motion program.

Note carefully the difference in syntax between the on-line command and the buffered command. The
on-line command is simply HOVE or HMand it acts on the currently addressed motor, so the motor
number must be specified in front of the command (e.g. #1HM. In the buffered command, the motor
number is part of the command, following immediately after HOVE or HMletters (e.g. HVL).

Homing from a PLC Program

PMAC PLC programs can command homing search moves by giving on-line commands with the
COVVAND' " statement (e.g. COMVAND' #1HM'). These commands simply start the homing search
move; code must be written to monitor for finishing if that is desired. The motor number must be
specified in the specific command string, or with the ADDRESS#n statement; without this statement,
motor addressing is not modal within PLC programs.

Motion vs. PLC Program Homing
The following table summarizes the differences between homing using Motion programs and PMAC PLC
programs.

Motion Programs PL C Programs

Program execution point stays on the line containing The PLC does not monitor for the start and end of the

the Home command until the homing moveisfinished. | homing move automatically.

Home command can be combined with programmed Axis motion can only be performed through Jog

axis moves. commands. .

The coordinate system must be ready to run amotion The coordinate system does not need to be ready to run

program. amotion program.

Can only home motors defined in the coordinate Can home any motor not defined in a coordinate

system running the program. system running a program.

Motors can be homed simultaneously, one after Motors can be homed in any order. Thisincludes

another, or any combination of the two. starting one motor in the middle of another motor’'s
home move.

The motion program must be started by an on-line The PLC can be started by an on-line command, aPLC

command, a PLC program, or another motion program, another motion program, or automatically at

program. power-up or reset.

Zero-Move Homing

To declare the current position the home position without commanding any movement, use the HOVEZ
(on-line) or HOVEZnN (motion program) command. These are similar to the HOVE command, except that
they immediately take the current commanded position as the home position. The Ix26 offset is not used
with the HOVEZ command.

Note:

If afollowing error is received when the HOVEZ command is given, the reported
actual position after the HOVEZ command will not be exactly zero; it will be equal
to the negative of the following error.

Programming PMAC 61

PMAC Product Guide

Homing Into a Limit Switch

It is possible to use alimit switch as ahome switch. However, first disable the limit function of the limit
switch if to finish the move normally. Otherwise, the limit function will abort the homing search move.
Even so, the home position has been set; a J=0 command can then be used to move the motor to the home
position.

Note:

The polarity of the limit switchesis the opposite of what is expected. The-LIMn
input should be connected to the limit switch at the positive end of travel; the
+LIMn input should be connected to the limit switch at the negative end of travel.

To disable the limit function of the switch, set bit 17 of variable 1x25 for the motor to 1. For example, if
1125 is normally $CO000 (the default), specifying the use of +/-LIM1 for motor 1, setting 1125 to $2C000
disables the limit function.

It isagood ideato use the home offset parameter 1x26 to bring the home position out of the limit switch,
so the limits can be re-enabled immediately after the homing search move, without being in the limit.

The following examples show quick routines to do this type of homing. One uses a motion program and
the other a PLC program. The same function can also be done with on-line commands.

jrExkkxkkxkx Motion Program Set-up Variables (10 be saved) *** x % x# % xkk k%

CLCSE

| 123=-10 ; Honme speed 10 cts/nmsec negative

| 125=$C000 ; Use Flagsl for Motor 1 (limts enabl ed)

| 126=32000 ; Home of fset of +2000 counts (enough to take it out
; of the limt)

| 902=3 ; Capture on rising flag and rising index

| 903=2 ; Use +LIML as flag (negative end swi tch)

kkkkkkhkkkkkk Motlon Program to Execute Routlne kkhkkkkkkhkhkkkkkkkhkhkkkkkk*k
OPEN PROG 101 CLEAR

| 125=$2C000 : Disable +/-LIMas lints

HOVEL ; Home #1 into limt and offset out of it
| 125=$C000 : Re-enable +/-LIMas limts

CLGCSE ; End of program

skkkkkkhkkkkkk F)LC w_up Varlables(to be w\/w) kkkkhkkhkhkkkhkhkkhkhkhkkkkkhkhkhkhkkkk*x
CLOSE

| 123=-10 ; Home speed 10 cts/nmsec negative

| 125=$C000 ; Use Flagsl for Motor 1 (limts enabl ed)

| 126=32000 ; Home of fset of +2000 counts (enough to take it out
of the limt)

1 902=3 ; Capture on rising flag and rising index

| 903=2 ; Use +LIML as flag (negative end switch)

ML33->X: $003D, 13, 1 ; Desired Velocity Zero bit

ML45->Y: $0814, 10, 1 ; Home conpl ete bit

62 Programming PMAC

PMAC Product Guide

rhkkkkkhkkhkkkkk PLC prograrn to executeroutine*********************
OPEN PLC 10 CLEAR

| 125=$2C000 ; Disable +/-LIMas limts

CVD' #1HM' ; Home #1 into limt and offset out of it
VWH LE (ML45=1) ; Waits for Home Search to start

ENDWHI LE

VWH LE (ML33=0) ; Waits for Home notion to conplete
ENDVWHI LE

| 125=$C000 ;. Re-enable +/-LIMas limts

DI S PLC10 : Disables PLC once Hone is found

CLCSE : End of PLC

Multi-Step Homing Procedures

Sometimes a homing procedure is required that cannot be executed with a single PMAC homing move.
In this case, use two (or possibly more) homing search moves, changing the move parameters in between.
Although this can be done with a sequence of on-line commands, it is easier to create a small motion
program to execute the sequence.

Which Direction to Home?

The most common of these situationsis the case in which it is not known on which side of the home
trigger at power-up. In this case, move into one of the limit switches to make sure the positionis at one
end of travel (this can be done by homing into the limit, much asin the above example). Thendo a
homing move the other direction into the real hometrigger. A sample Mation Program routine that does
thisis:

CLOSE OPEN PROG 102 CLEAR

| 223=10. ; Home speed 10 cts/nmsec positive direction

| 225=$2C004. ; Disable +/-LIM2 as limts

1226=0...... ; No hore of f set

1907=2...... ; Capture on rising edge of a flag
1908=1...... ; Use -LIM2 as flag (positive end limt!)
HOMVE2. ; Home into limt

| 223=-10. ... ; Home speed 10 cts/nsec negative direction
| 225=$C004. . ; Re-enable +/-LIM2 as limts

[907=11..... ; Capture on flag | ow and i ndex channel high
1908=0...... ; Use HWL2 (home flag) as trigger flag
HOVE2. ; Do actual honing nove

CLCSE

A sample PLC Program routine that does thisis:

CLCSE

M233->X: $0079, 13,1 ; Desired Velocity Zero bit

M245->Y: $08D4, 10, 1 ; Home conplete bit

OPEN PLC 11 CLEAR

| 223=10. ; Home speed 10 cts/nmsec positive direction
| 225=$2C004. ; Disable +/-LIM2 as linmts

1226=0...... ; No hore of f set

1907=2...... ; Capture on rising edge of a flag
1908=1...... ; Use -LIM2 as flag (positive end limt!)
CVMD'#2HM' . . . ; Home into limt

VWH LE (M245=1) ; Waits for Home Search to start

ENDVWHI LE

VWH LE (M233=0) ; Waits for Home notion to conplete

ENDVWHI LE

| 223=-10. ... ; Honme speed 10 cts/nmsec negative direction

Programming PMAC

63

PMAC Product Guide

| 225=$C004. . ; Re-enable +/-LIM2 as limts

1907=11..... ; Capture on flag | ow and i ndex channel high
1908=0...... ; Use HWL2 (horme flag) as trigger flag

C\VD' #2HM' . . ; Do actual homi ng nove

VWH LE (M245=1) ; Waits for Home Search to start

ENDWHI LE

VWH LE (M233=0) ; Waits for Home notion to conplete

ENDWHI LE

DS PLC11. .. ; Disables PLC once Home is found

CLCSE. ; End of PLC

Already Into Home?

A similar situation occurs when it is known on power-up whether or not the position is already into the
home trigger. Here, the easiest solution isto write a program that evaluates this condition; if it isin the
trigger, it moves out before doing the real homing.

jrEERxRxkxkxkxxx Motion Program Set-up Variables (1o be saved) *********

CLCSE
MB20- >X: $C008, 20, 1 ; Variable for HWL3 i nput
| 325=$C008 ; Use Flags3 for Mdtor 3

kkkkkkkhkkkkkkk*k MOtIOﬂ Program to Execute Routine*********************
OPEN PROG 103 CLEAR

| F (M320=1) ; Already in trigger?
| 323=10 ; Home speed 10 cts/nmsec positive direction
| 326=1600 ; Home of fset +100 counts (to nmake sure clear)
1912=11 ; Capture on falling flag and rising index
1913=0 ; Use HWL3 as flag
HOVE3 ; "Honme" out of switch

ENDI F

| 323=-10 ; Home speed 10 cts/nsec negative direction

| 326=0 ; No hore of f set

1912=3 ; Capture on rising flag and rising index

1913=0 ; Use HWL3 as flag

HOVE3 ; Do actual honing nove

CLCSE ; End of program

;*************** PLC %[_up Val'lab|eS(tO be Saved) kkhkkkkkkkkkkkkkkhkkkhkkkkx

CLOSE

MB20- >X: $C008, 20, 1 ; Variable for HWL3 i nput

| 325=$C008 ; Use Flags3 for Mtor 3

M333->X: $00B5, 13, 1 ; Desired Velocity Zero bit

MB45- >Y: $0994, 10, 1 ; Home conplete bit

MB50- >D: $009E ; Present Desired Velocity

shkkkkkkhkkhkkkkkkkkhkhx PLC Prograrn to Execute Routine*********************
OPEN PLC 12 CLEAR

| F (M320=1) ; Already in trigger?
| 323=10 ; Home speed 10 cts/nsec positive direction
| 326=1600 ; Home of fset +100 counts (to make sure clear)
1912=11 ; Capture on falling flag and rising index
1913=0 ; Use HWL3 as flag
CVD' #3HM' ; "Home" out of switch
VWH LE (M345=1) ; Waits for Home Search to start
ENDWHI LE
VWH LE (M333=0) ;Waits for Hone notion to conplete
ENDWHI LE

ENDI F

64 Programming PMAC

PMAC Product Guide

| 323=-10 ; Home speed 10 cts/nsec negative direction
| 326=0 ; No hore of f set

1912=3 ; Capture on rising flag and rising index
1913=0 ; Use HWL3 as flag

CVD' #3HM' ; Do actual hom ng nove

WH LE (M345=1) ; Waits for Home Search to start

ENDWHI LE

VWH LE (M333=0) ; Waits for Home notion to conplete
ENDWHI LE

DS PLC12 ; Disables PLC once Home is found

CLCSE ; End of program

Command and Send Statements

Using the COMVAND or CVD statement, online commands can be issued from a PLC or Motion program
having the same result asiif they were issued from a host computer or aterminal window. Certain online
commands might not be valid when issued from a running program. For example, aJOG command to a
motor part of a coordinate system running a motion program will beinvalid. Have 16 not set to 2 in early
development so it will be known when PMAC has rejected such acommand. Setting 16 to 2 in the actua
application can prevent program hang up from afull response queue or from disturbing the normal host
communications protocol.

Messages to a host computer or terminal window could be issued using the SEND command.

If there is no host on the port to which the message is sent or the host is not ready to read the message, the
message isleft in the queue. If severa messages back up in the queue this way, the program issuing the
messages will halt execution until the messages are read. Thisis acommon mistake when the SEND
command is used outside of an Edge-Triggered condition in a PLC program. On the seria port, itis
possible to send messages to a non-existent host by disabling the port handshaking with 11=1.

If aprogram, particularly a PLC program sends messages immediately on power-up/reset, it can confuse a
host-computer program (such as the PMAC Executive Program) that istrying to find PMAC by querying
it and looking for a particular response.

It ispossible, particularly in PLC programs, to order the sending of messages or command statements
faster than the port can handle them. Usually, thiswill happen if the same SEND or CVD command is
executed every scan through the PLC. For thisreason, it is good practice to have at |east one of the
conditions that causes the SEND or CMD command to execute to be set false immediately to prevent
execution of this SEND or CVD command on subsequent scans of the PLC.

Example:
ML87->Y: $0817, 17, 1 ; &1 In-position bit (AND of notors)
OPEN PLC3 CLEAR
I F (ML1=1) ; input is ON
| F (P11=0) ; input was not ON last tine
P11=1 ; set latch
COVIVAND' &1 A" ; ABORT all notion
VWH LE (ML87=0) ; wait for notion to stop.
ENDW
COVWAND"' &1B10R" ; start program 10
ENDI F
ELSE
P11=0 ; reset latch
ENDI F
CLOSE

Programming PMAC 65

PMAC Product Guide

PMAC Position Registers

The PMAC Executive position window or the online P command reports the value of the actual position
register plus the position bias register plus the compensation correction register and if bit 16 of Ix05is 1
(handwheel offset mode), minus the master position register:

ML75->X: $002A, 16, 1 ; Bit 16 of 1105
ML62- >D: $002B ; #1 Actual position (1/[1x08*32] cts)
ML64- >D; $0813 ; #1 Position bias (1/[1x08*32] cts)

ML67- >D: $002D #1 Present master ((handwheel) pos (1/[Ix07*32] cts
of master or (1/[1x08*32] cts of slaved notor)

#1 Conpensation correction

ML69- >D: $0046
(M162 + M164 + M169 — M175* M167)
1108* 32

P100 will report the same value as the online command P or the position window in the PMAC Executive
program.

P100=

The addresses given are for Motor 1. For the registers for another motor x, add (x-1)*$3C -- (x-1)*60 --
to the appropriate motor #1 address.)

ML61- >D: $0028 ; #1 Commanded position (1/[1x08*32] cts)

The motor commanded position registers contain the value in counts where the motor is commanded to
move. It is set through JOG online commands or axis move commands (X10) inside motion programs.

To read thisregister in counts: P161 = ML61 / (1108*32)
ML62- >D: $002B ; #1 Actual position (1/[1x08*32] cts)

The actual position register contains the information read from the feedback sensor after it has been
properly converted through the encoder conversion table and extended from a 24-bit register to a 48-bit
register.

To read thisregister in counts: P162 = ML62 / (1108*32)
ML63- >D: $080B ; #1 Target (end) position (1/[1x08*32] cts)

This register contains the most recent programmed position and it is called the target position register. If
113>0, PMAC isin segmentation mode and the value of M 163 corresponds to the last interpolated point
calculated.

To read this register in counts: P163 = ML63 / (1108*32)
ML64- >D: $0813 ; #1 Position bias (1/[1x08*32] cts)

This register contains the offset specified in the axis definition command #1- >X + <of f set >

The online command { axi s} ={ const ant } or the motion program command PSET adds the specified
offset to the existing M 164 offset: ML64 = ML64 + <new_of f set >.

To read this register in counts: P164 = ML64 / (1108*32)
ML65- >L: $081F ; & X-axis target position (engineering units)

M 165 contains the programmed axis position through a motion program, X10 for example, in engineering
units. It also gets updated by the online command { axi s} ={ const ant } or the motion program
command PSET.

ML66- >X: $0033, 0, 24, S ; #1 Actual velocity (1/[1x09*32] cts/cyc)
M166 is the actual velocity register. For display purposes, use the motor filtered actual velocity, M174
To read this register in ctsYmsec: P166 = ML66 * 8388608 / (1109 * 32 * 110 * (1160+1))

66 Programming PMAC

PMAC Product Guide

ML67- >D: $002D ; #1 Present master ((handwheel) pos
i (L/[1x07*32] cts of master or (1/[1x08*32]
cts of slaved notor)

M167 isrelated to the master/dave relationship set through 1x05 and 1x06. It contains the present number of
counts the master. To read this register in counts:

P167 = ML67 / (1108*32)

or

P167 = ML67 / (1107*32)

ML69- >D: $0046 ; #1 Conpensation correction

Calculated leadscrew compensation correction according to actual position (M162) and the leadscrew
compensation table set through the def i ne conp command.

To read thisregister in counts: P169 = ML69 / (1108*32)
ML72->L: $082B ; #1 Variable jog position/distance (counts)

Contains the distance for the J=* command.

Example: ML72=2000 J=* ;Jog to position 2000 encoder counts
ML73->Y: $0815, 0, 24, S ; #1 Encoder hone capture offset (counts)

Contains the home offset from the reset/power-on position. Thisisimportant for the capture/compare
features.

Example:
If (ML17=1)
P103=ML03- ML73 ; Captured position mnus offset
endi f
ML74- >Y: $082A, 24 ; #1 filtered actual velocity (1/[1x09*32]

; cts/servo cycle)

These registers contain the actual velocities averaged over the previous 80 real-time interrupt
periods (80*[18+1] servo cycles); good for display purposes.

To read this register in ctsYmsec: P174 = ML74 * 8388608 / (1109 * 32 * 110 * (1160+1))
ML75- >D: $0840 ; #1 following error (1/[1x08*32] cts)

Following error is the difference between motor desired and measured position at any instant. When the
motor is open-loop (killed or enabled), following error does not exist and PMAC reports a value of 0.

M161 - M162 + M164 + M169 — M175* M167
1108* 32

P176 =

To read thisregister in counts: P176 = ML75 / (1108*32)

Programming PMAC 67

PMAC Product Guide

68

Programming PMAC

PMAC Product Guide

MOTION PROGRAMS

PMAC can hold up to 256 motion programs at one time. Any coordinate system can run any of these
programs at any time, even if another coordinate system is already executing the same program. PMAC
can run as many motion programs simultaneously as there are coordinate systems defined on the card (up
to eight). A motion program can call any other motion program as a subprogram, with or without
arguments.

PMAC’s motion program language is perhaps best described as a cross between a high-level computer
language like BASIC or Pascal, and G-Code (RS-274) machine tool language. In fact, it can accept
straight G-Code programs directly (provided it has been set up properly). It hasthe calculational and
logical constructs of a computer language and move specification constructs similar to machine tool
languages. Numerical values in the program can be specified as constants or expressions.

Motion or PLC programs are entered in any text file to be downloaded afterward to PMAC. PEWIN
provides a built-in text editor for this purpose but any other text editor can be used conveniently. Once the
code has been written, it can be downloaded to PMAC using PEWIN.

All PMAC commands can be issued from any terminal window communicating with PMAC. Online
commands allow, for example, to jog motors, change variables, report variables values, start and stop
programs, query for status information and even write short programs and PLCs. In fact, the downloading
processis just a sequence of valid PMAC commands sent line by line from a particular text file.

Coordinate Systems

A coordinate system in PMAC is a grouping of one or more motors for the purpose of synchronizing
movements. A coordinate system (even with only one motor) can run a motion program; a motor cannot.
PMAC can have up to eight coordinate systems, addressed as & 1 to &8, in avery flexible fashion (e.g.
eight coordinate systems of one motor each, one coordinate system of eight motors, four coordinate
systems of two motors each, etc.).

In general, to move certain motors in a coordinated fashion, put them in the same coordinate system. To
move motors independently of each other, put them in separate coordinate systems. Different coordinate
systems can run separate programs at different times (including overlapping times) or even run the same
program at different (or overlapping) times.

A coordinate system must be established first by assigning axes to motorsin Axis Definition Statements.
A coordinate system must have at least one motor assigned to an axis within that system or it cannot run a
motion program, even non-motion parts of it. When a program is written for a coordinate system and if
simultaneous motions are wanted of multiple motors, their move commands are put on the same line and
the moves will be coordinated.

Axis Definitions

An axisis an element of a coordinate system. It issimilar to amotor, but not the same thing. An axisis
referred to by letter. There can be up to eight axesin a coordinate system, selected from X, Y, Z, A, B, C,
U, V,and W. Anaxisisdefined by assigning it to amotor with a scaling factor and an offset (X, Y, and
Z may be defined as linear combinations of three motors, asmay U, V, and W). The variables associated
with an axis are scaled floating-point values.

In the vast majority of cases, there will be a one-to-one correspondence between motors and axes. That
is, asingle motor is assigned to asingle axisin a coordinate system. However, even when thisis the case,
the matching motor and axis are not completely synonymous. The axisis scaled into engineering units
and deals only with commanded positions. Except for the PMATCH function, calculations go only from
axis commanded positions to motor commanded positions, not the other way around.

Motion Programs 69

PMAC Product Guide

More than one motor may be assigned to the same axis in a coordinate system. Thisiscommon in gantry
systems, where motors on opposite ends of the crosspiece are always trying to do the same movement.
By assigning multiple motors to the same axis, a single programmed axis move in a program causes
identical commanded moves in multiple motors. Usually, thisis done with two motors but up to eight
motors have been used in this manner with PMAC. Remember that the motors still have independent
servo loops, and that the actual motor positions will not necessarily be exactly the same.

An axisin acoordinate system can have no motors attached to it (a phantom axis), in which case
programmed moves for that axis cause no movement, although the fact that a move was programmed for
that axis can affect the moves of other axes and motors. For instance, if sinusoidal profiles are wanted on
asingle axis, the easiest way to do thisisto have a second, phantom axis and program circularly
interpolated moves.

Axis Definition Statements
A coordinate system is established by using axis definition statements. An axisis defined by matching a
motor (which is numbered) to one or more axes (which are specified by letter).

The simplest axis definition statement is something like#1- >X. Thissimply assigns motor #1 to the X
axis of the currently addressed coordinate system. When an X axis move is executed in this coordinate
system, motor #1 will make the move. The axis definition statement also defines the scaling of the axis
user units. For instance, #1- >10000X aso matches motor #1 to the X axis, but this statement sets
10,000 encoder counts to one X-axis user unit (e.g. inches or centimeters). Once the scaling has been
defined in this statement, the axis can be programmed in engineering units without ever needing to deal
with the scaling again.

Permitted AxisNames: X,Y,Z,U,V,W,A,B,C

X,Y,Z: Traditionally Main Linear Axes
e Matrix Axis Definition

e Matrix Axis Transformation

e Circular Interpolation

e Cutter Radius Compensation

A, B, C: Traditionally Rotary Axes

(A rotates about X, B about Y, C about Z)
* Position Rollover (1x27)

U, V, W: Traditionally Secondary Linear Axes
e Matrix Axis Definition

Writing a Motion Program

1. Open aprogram buffer with OPEN PROG { const ant} where{const ant} isaninteger from 1
to 32767 representing the motion program to be opened.

2. PMAC can hold up to 256 motion programs at one time. For continuous execution of programs larger
than PMAC’s memory space, a special PROGO, the rotary motion program buffers, allow for the
downloading of program lines during the execution of the program and for the overwriting of already
executed program lines.

The CLEAR command empties the currently opened program, PLC, rotary, etc. buffer.

4. Many of the statementsin PMAC motion programs are modal in nature. These include move modes,
which specify what type of trgjectory a move command will generate; this category includes
LI NEAR, RAPI D, Cl RCLE, PVT, and SPLI NE.

70 Motion Programs

PMAC Product Guide

5. Moves can be specified incrementally (distance) or absolutely (location) -- individually selectable by
axis -- with the | NC and ABS commands. Movetimes (TA, TS, and TM and/or speeds (F), are
implemented in modal commands. Modal commands can precede the move commands they are to
affect, or they can be on the same line as the first of these move commands.

6. The move commands themselves consist of a one-letter axis-specifier followed by one or two values
(constant or expression). All axes specified on the same line will move simultaneously in a
coordinated fashion on execution of the line; consecutive lines execute sequentially (with or without
stops in between, as determined by the mode). Depending on the modesin effect, the specified
values can mean, destination, distance, and/or velocity.

7. If themovetimes (TA, TS, and TM) and/or speeds (F) are not specifically declared in the motion
program the default parameters from the 1-Variables 1x87, Ix88 and 1x89 will be used instead. Do not
to rely on these parameters and to declare the move timesin the program. Thiswill keep the move
parameters with the move commands, lessening the chances of future errors and making debugging
easier.

8. Inamotion program, PMAC hasWHI LE loopsand | F. . ELSE branches that control program flow.
These constructs can be nested indefinitely. In addition, there are GOTO statements, with either
constant or variable arguments (the variable GOTO can perform the same function as a CASE
statement). GOSUB statements (constant or variable destination) allow subroutines to be executed
within aprogram. CALL statements permit other programsto be entered as subprograms. Entry to
the subprogram does not have to be at the beginning -- the statement CALL 20. 15000 causes entry
into Program 20 at line N15000. GOSUB and CALL statements can be nested only 15 deep.

9. The CLOSE statement closes the currently opened buffer. This should be used immediately after the
entry of amotion, PLC, rotary, etc. buffer. If the buffer isleft open, subsequent statements that are
intended as on-line commands (e.g. P1=0) will be entered into the buffer instead. It isgood practice
to have CLOSE at the beginning and end of any file to be downloaded to PMAC. When PMAC
receives a CLOSE command, it automatically appends a RETURN statement to the end of the open
program buffer. If any program or PLC in PMAC isimproperly structured (e.g. no ENDI F or
ENDWHI LE to match an | F or VHI LE), PMAC will report an ERR003 at the CLOSE command for
any buffer until the problem is fixed.

Example:

cl ose ; Close any buffer opened

del et e gat her ; Erase unwant ed gat hered data

undefine all ; Erase coordinate definitions in all coordinate systens
#1->2000X ; Motor #1 is defined as axes X

OPEN PROG 1 CLEAR ; Open buffer to be witten

LI NEAR ; Linear interpolation

I NC ; Incremental node

TA100 ; Acceleration tinme is 100 nmsec

TS0 ; No S-curve accel erati on conponent

F50 ; Feedrate is 50 Units per |1x90 nsec

X1 ; One unit of distance, 2000 encoder counts
CLCSE ; Close witten buffer, program one

Motion Programs 71

PMAC Product Guide

Running a Motion Program

1

Select the coordinate system where the motion program will be running. Issue the & command
followed by the coordinate system number, e.g. & 1 for the coordinate system one.

Select the program that to run with the B{ const ant } command, wherethe { const ant }
represents the number of the motion program buffer. Use the B command to change motion programs
and after any motion program buffer has been opened. If repeatedly running the same motion
program without modification, it is not necessary to use it. When PMAC finishes executing a motion
program, the program counter for the coordinate system is set to point to the beginning of that
program automatically, ready to run it again.

Once pointing to the motion program to run, issue the command to start execution of the program. To
execute the program continuously, use the R command (<CTRL- R> for al coordinate systems
simultaneously). The program will execute all the way through unless stopped by command or error
condition.

To execute just one move or asmall section of the program, use the S command (<CTRL- S> for all
coordinate systems simultaneously). The program will execute to the first move DWELL, or DELAY,
orif it first encounters a BLOCKSTART command, it will execute to the BLOCKSTOP command.

When arun or step command isissued, PMAC checks the coordinate system to make sureitisin
proper working order. If it finds anything in the coordinate system is not set up properly, it will reject
the command, sending a <BELL> command back to the host. If 16issetto 1 or 3, it will report an
error number as well telling the reason the command was rejected. PMAC will rgject arun or step
command for any of the following reasons:

* A motor in the coordinate system has both overtravel limits tripped (ERR010)

* A motor in the coordinate system is currently executing a move (ERRO11)

* A motor in the coordinate systemis not in closed-loop control (ERR012)

* A motor in the coordinate system in not activated { 1x00=0} (ERRO13)

e There are no motors assigned to the coordinate system (ERR014)

e A fixed (non-rotary) motion program buffer is open (ERR015)

* No motion program has been pointed to (ERR016)

e Aftera/ or\ stop command, amotor in the coordinate system is not at the stop point (ERRO17)

Before starting the program, issue a CTRL+A command to PMAC to ensure that all the motors will be
potentially in closed loop and that all previous motions are aborted. Also, if in doubt, the functioning
of each motor can be checked individually prior to run a program by means of Jog commands. For
example, #1J22000 will make motor 1 move 2000 encoder counts and that would confirm if the
motors are able to run motion programs or not.

All motorsin the addressed coordinate system must be ready to run a motion program. Depending on
Ix25, even if one motor defined in the coordinate system is not closing the loop, all motorsin the
coordinate system can be brought down impeding of running any motion program.

Sometimes the feedrate override for the current addressed coordinate system is set at zero and no
motion will occur as aresult. Check the feedrate override parameter by issuing a &1 %command on
the terminal window (replace 1 for the appropriate coordinate system number). If it is zero or too low,
set it to an appropriate value. The &1%31.00 command will set it to 100 %.

72

Motion Programs

PMAC Product Guide

9. For troubleshooting purposes, change the feedrate override to alower than 100% value. If the
program is run for the first time, a preceding 4.0 command can be issued to run the motion program
in slow motion. Running the program slowly will allow observing the programmed path more clearly,
it will demand less calculation time from PMAC and it will prevent damages due to potentially wrong
acceleration and/or feedrate parameters.

10. A motion program can be stopped by sending a &la or a CTRL+A command which will stop any
motion taking placein PMAC.

11. If the motion of any axis becomes uncontrollable and should be stopped, a CTRL+K command can be
issued killing all the motorsin PMAC (disabling the amplifier enable line if connected). However, the
motor will cometo a stop in an uncontrollable way and might proceed to move dueto its own inertia.

12. In addition, a motion program can be stopped by issuing a CTRL+Q command. The last programmed
moves in the buffer will be completed before the program quits execution. It can be resumed by
issuing an R command alone without first pointing to the beginning of the buffer by the B command.

Subroutines and Subprograms

It is possible to create subroutines and subprogramsin PMAC motion programs to design well-structured
modular programs with re-usable subroutines. The GOSUBXx command in a motion program causes a
jump to line label Nx of the same motion program. Program execution will jump back to the command
immediately following the GOSUB when a RETURN command is encountered. This creates a subroutine.

The CALLXx command in a motion program causes a jump to PROG x, with a jump back to the command
immediately following the CALL when a RETURN command is encountered. If x isan integer, the jump
isto the beginning of PROG x; if there is afractional component to x, the jump isto line label

N(y* 100, 000) , wherey isthefractional part of x. This structure permits the creation of specia
subprograms, either as a single subroutine, or as a collection of subroutines, that can be called from other
motion programs.

The PRELUDE command allows creating an automatic subprogram call before each move command or
other |etter-number command in a motion program.

Passing Arguments to Subroutines

These subprogram calls are made more powerful by use of the READ statement. The READ statement in
the subprogram can go back up to the calling line and pick off values (associated with other letters) to be
used as arguments in the subprogram. The value after an A would be placed in variable Q101 for the
coordinate system executing the program, the value after aB would be placed in Q102, and so on (Z
value goesin Q126). Letters N or O cannot be passed.

This structure is useful particularly for creating machine-tool style programs in which the syntax must
consist solely of letter-number combinations in the parts program. Since PMAC treatsthe G, M, T, and D
codes as specia subroutine calls, the READ statement can be used to let the subroutine access values on
the part-program line after the code.

The READ statement also provides the capability of seeing what arguments have actually been passed.
The bits of Q100 for the coordinate system are used to note whether arguments have been passed
successfully; bit Ois 1if an A argument has been passed, bit 1is1if aB argument has been passed, and
so on, with bit 25 set to 1 if aZ argument has been passed. The corresponding bit for any argument not
passed in the latest subroutine or subprogram call is set to 0.

Motion Programs 73

PMAC Product Guide

Example:
cl ose del ete gat her undefine al
#1- >2000X
open progl clear
LI NEAR | NC TA100 TSO F50 ; Mode and timng paraneters
gosub 100 H10 ; Subroutine call passing paraneter Hw th value 10
return ; End of the main program section (execution ends)
n100 ; Subroutines section. First subroutine | abeled
100
read(h) ; Read the H paraneter val ue passed
| F (QLOO & $80 > 0) ;1f the H parameter has been passed ..
X(QL08) ;Use the H paraneter value contained in QLO8
endi f
return ; End of the subroutine |abeled 100
cl ose ; End of the notion program code

How PMAC Executes a Motion Program

Basically, aPMAC program exists to pass data to the trajectory generator routines that compute the series
of commanded positions for the motors every servo cycle. The motion program must be working ahead
of the actual commanded move to keep the trajectory generators fed with data.

PMAC processes program lines either zero, one, or two moves (including DVEL Ls and DELAYS) ahead.
Calculating one move ahead is necessary in order to be able to blend moves together; calculating a second
move ahead is necessary if proper acceleration and velocity limiting is to be done, or athree-point spline
isto be calculated (SPLI NE mode).

For linear blended moves with 113 (move segmentation time) equal to zero (disabled), PMAC calculates
two moves ahead, because the velocity and acceleration limits are enabled here. In all other cases, PMAC
is calculating one move ahead.

No M oves Ahead Two Moves Ahead One Move Ahead
RAPID LINEAR with 113=0 LINEAR with 113>0
HOME SPLINE1 CIRCLE
DWELL PVT

bls (step through the program)
Ix92=1 (blending disabled)

When a RUN command is given and every time the actual execution of programmed moves progresses
into anew move, aflag is set saying it istime to do more cal culations in the motion program for that
coordinate system. At the next RTI, if thisflag is set, PMAC will start working through the motion
program processing each command encountered. This can include multiple modal statements, calculation
statements, and logical control statements. Program calculations will continue (which means no
background tasks will be executed) until one of the following conditions occurs:

1. Thenext move, a DWELL command or a PSET statement is found and cal culated
2. End of, or halt to the program (e.g. STOP) is encountered

3. Two jumps backward in the program (from ENDWHILE or GOTO) are performed
4. A WAl T statement is encountered (usually in aWHILE loop)

If calculations stop on condition 1 or 2, the calculation flag is cleared and will not be set again until actual
motion progresses into the next move (1) or anew RUN command is given (2). If calculations stop on
conditions 3 or 4, the flag remains set, so calculations will resume at the next RTI. In these cases, it isan
empty (no-motion) loop. The motion program acts similar to a PLC 0 during this period

If PMAC cannot finish calculating the trajectory for amove by the time execution of that moveis
supposed to begin, PMAC will abort the program, showing a run-time error in its status word.

74 Motion Programs

PMAC Product Guide

Linear Blended Moves

The move timeis set directly by TM or indirectly based on the distances and feedrate (F) parameters set:

TMLOO or FRAX(X,Y) _119003/32 +42 5000
X3 Y4 X3 Y4 F50 M= . =gy 100 msec

If the move time calculated aboveis less than the TA time set, the move time used will bethe TA time

instead. In this case, the programmed TA (or 2* TS if TA<2* TS) results in the minimum move time of a

linearly interpolated move.

If the TA programmed results are less than twice the TS programmed, TA<2* TS, the TA time used will

be 2* TS instead.

The acceleration time TA of a blended move cannot be longer than two times the previous TM minus the

previous TA, otherwise the value 2* (TM- ¥2TA) will be used as the current TA instead.

The safety variables 1x16 and 1x17 will override these parameters if they are found to violate the
programmed limits.

e« If TM< TA TM = TA
e If TA < 2*TS, TA = 2*TS
o If TA.w > 25(TM- %TA), TA. = 2*(TM - % TA)

Example:

N

time

- ———
12 TA ™ 12 TA

Toillustrate how PMAC blends linear moves, a series of velocity vs. time profiles will be shown. The
moves are defined with zero S-curve components. The concepts described here could be used for non-
zero S-curve linear moves.
1. Consider the following motion program code:

cl ose

del et e gat her
undefine all

&1
#1->2000x
OPEN PROG 1 CLEAR
LI NEAR ; Linear npde
I NC ; Incremental node
TA100 ;. The acceleration tine is 100 nmsec, TA
TSO ; No S-curve conponent
TVR50 ; Move tinme is 250 nsec, TM
X10 ; Move distance is 10 units, 20000 counts
TA250 ; Acceleration \ decel eration of the bl ended
; nmove is 250 nmsec , TA;
x40 ; Move distance is 40 units, 80000 counts
CLCSE

2. Thetwo move commands are plotted without blending, placing a DWELLO command in between the

two moves:

Motion Programs

75

PMAC Product Guide

Two mowes, no blending
380000

200000

2E0000

200000

150000

100000

50000

1]

-S000n

oo o1 0.2 0.3 0.4 0.4 0.6 0.7 0.8 0.4 10
Time (zec)

3. Thetwo moves are now plotted with the blending mode activated. To find out the blending point,
trace straight lines through the middle point of each acceleration lines of both velocity profiles:

Two blended moves
350000

300000 :
250000 :
200000

150000
100000

50000 {}
D i

-50000

A

oo 0.1 0.z 0.3 0.4 0.5 0. o7 iR}
Time (zec)

Notes about Linear Interpolation Moves

o A TA
1. Thetotal movetimeisgiven by: —= +TMq + TMp +—2 =50+ 250 + 250 + 125 =675 msec
2 2

2. The acceleration of the second blended move can be extended only up to a certain limit, 2*(TM- Y2TA):

PMAC looks two moves ahead of actual move execution to perform its acceleration limit and can recalculate
these two moves to keep the accel erations under the Ix17 limit. However, there are cases where more than
two moves, some much more than two, would have to be recalculated in order to keep the accelerations under
thelimit. In these cases, PMAC will limit the accelerations as much as it can, but because the earlier moves
have already been executed, they cannot be undone, and therefore the acceleration limit will be exceeded.

Tuwa blended mowes
250000

300000

250000

200000

150000

100000

50000

i]

50000

o.o 0.1 #7032 0.3 0.4 0.4 ik} 07 iR}
Time (sec)

3. When performing a blended move t?wat involves a change of direction, the end point might not be
reached.

Example:
TA100
TMR50

76 Motion Programs

PMAC Product Guide

100.10
4.250

9

X10 ; This would reach only to position = 10-
X-10

Bt amd Fioa s

Equal to : TA{end positi
4.Th

(1] o {15 (5] 0a 05 [T [y

Toneinac)

In order to reach the desired position and since the move involves a change in direction and stop,
place a DWELLO command between moves. This command will disable blending for that particular
move:
TA100
TM250
X10
DWELLO
X-10

4. Sincethevalueof TA determines the minimum time in which a programmed move can be executed,
it can limit the maximum move velocity and therefore the programmed feedrate might not be reached.
Thisisseen in triangular velocity profile moves types, especially when a sequence of short distance
MOVeS is programmed.

Example:

cl ose

del et e gat her
undefine all

&l
#1- >2000X
| 190=1000
OPEN PROG 1 CLEAR
LI NEAR ; Linear node
I NC ; Incremental node
TA100 ; Acceleration tine is 100 nsec, TA.
TSO ; No S-curve conponent
F40 ; Feedrate is 40 length_units / second
3.1190 3000
X3 ; TM = =——=75mseC
40 40
CLCSE

Since the calculated TM for the given feedrate is 75 msec and the programmed TA for this moveis 100
msec, the TM used will be 100 msec instead. This yields the following feedrate value instead of the
programmed one:
3.1190 3000 unitsof distance
F= = =30

100 100 second

Motion Programs 77

PMAC Product Guide

Vel 120000

jleeie]

Frogrammed
feadrate

]
\

Maxirmum
feedrate reached

on

Trma(wac)
To be able to reach the desired velocity, alonger move can be performed split into two sections.
The first move will be executed using a suitable TA to get the motor to move from rest. The

second move will have alower acceleration time TA in order to decrease the move time TM and
so reach the programmed feedrate.

OPEN PROG 1 CLEAR
LI NEAR
I NC
TSO
F40
TA100
X3
TA75
X3
CLCSE

10000

- 000

0z

ului]

oos 010

013

0z

Tima(zac|

0zs

5. All the previous analysis was performed assuming a zero S-curve component. A move executed with
an S-curve component will be similar in shape but with rounded sections at the beginning and end of

the acceleration lines.

0000
e g
0w / X
% / \
i \ \
%, f L
000 / | ~_
20000 / . 4 X
F / \
i o] .-": '\' Kr \
0 k4 e S
90000
o o o 035 0P fos o el 0w 0as oS
Thee (sac]
T T
T o T lam
i} - -

78

Motion Programs

PMAC Product Guide

Circular Interpolation

PMAC allowscircular interpolation on the X, Y, and Z axes in a coordinate system. Aswith linear
blended moves, TA and TS contral the acceleration to and from a stop and between moves. Circular
blended moves can be feedrate-specified (F) or time-specified (TM), just as with linear moves. Itis
possible to change back and forth between linear and circular moves without stopping. Thisis
accomplished by entering the LI NEAR command when linear interpolation is needed and the Cl RCLEL
or Cl RCLE2 command for circular interpolation.

y k-1

] i
X 0.0

1. PMAC performs arc moves by segmenting the arc and performing the best cubic fit on each segment.
I-Variable 113 determines the time for each segment. 113 must be set greater than zero to put PMAC
into this segmentation mode in order for arc movesto be done. If 113 isset to zero, circular arc
moves will be donein linear fashion.

The practical range of 113 for the circular interpolation modeis 5-10 msec. A value of 10 msecis
recommended for most applications. A lower than 10 msec 113 value will improve the accuracy of
the interpolation (calculating points of the curve more often) but will also consume more of the
PMAC' stotal computational power.

2. When PMAC is segmenting moves automatically (113 > 0) which isrequired for Circular
Interpolation, the Ix17 accelerations limits and the 1x16 velocity limits are not observed.

3. Any axesused in the circular interpolation are automatically feedrate axes for circular moves, even if
they were not so specified in an FRAX command. Other axes may or may not be feedrate axes. Any
non-feedrate axes commanded to move in the same move command will be linearly interpolated so as
to finish in the sametime. This permits easy helical interpolation.

4. The planefor the circular arc must have been defined by the NORMAL command (the default --
NORMAL K- 1 -- definesthe XY plane). Thiscommand can define only planesin XY Z-space, which
means that only the X, Y, and Z axes can be used for circular interpolation. Other axes specified in
the same move command will be interpolated linearly to finish in the same time. The most commonly
used planes are:

NORMAL K- 1 ; XY plane -- equivalent to G17
NORMAL J-1 ; ZX plane -- equivalent to G18
NORMAL | -1 ; YZ plane -- equivalent to G19

5. To put the program in circular mode, use the Cl RCLEL command for clockwise arcs (G02
equivalent) and Cl RCLE2 for counterclockwise arcs (GO3 equivalent). LI NEAR will restoreiit to
linear blended moves. Oncein circular mode, a circular move is specified with a move command
specifying the move endpoint and either the vector to the arc center or the distance (radius) to the
center. The endpoint may be specified either as a position or as a distance from the starting point,
depending on whether the axes are in absolute (ABS) or incremental (I NC) mode (individually
specifiable).

Motion Programs 79

PMAC Product Guide

8.

X{Data} Y{Data} R{Data} ; Radius of the circle is given
X{Data} Y{Data} |{Data} J{Data} ;Center coordinates of the circle are given

If the vector method of locating the arc center is used, the vector is specified by its1, J, and K
components (I specifies the component parallel to the X axis, Jtothe Y axis, and K to the Z axis).
This vector can be specified as a distance from the starting point (i.e. incrementally), or from the
XYZ origin (i.e. absolutely). The choiceis made by specifying R in an ABS or INC statement (e.g.
ABS (R) orl NC (R)). Thisaffectsl, J, and K specifierstogether. (ABS and | NC without
arguments affect all axes, but leave the vectors unchanged). The default isfor incremental vector
specification.

PMAC's convention is to take the short arc path if the R value is positive, and the long arc path if Ris
negative:

e If thevalue of R ispositive, the arc to the move endpoint is the short route (<=180 degrees).
e If thevalue of R is negative, the arc to the move endpoint is the long route (>=180 degrees).

Example 2
circle 1

20 ¥10 R=10
End point {20,10)
. t:i!.‘(:l.e 1_ i \\\ﬂ?\ / Example 3
¥20 Y10 R=10

circle 2
-\‘ / 20 Y10 R=10

Slarting point (10,0) \-ﬂ.

=xample 1
urclez
X20 Y10 R-10

When performing a circular interpolation, the individual axes describe a position vs. time profile
close to asine and cosine shape. Thisistrue also for their velocity and acceleration profiles.
Therefore, circular interpolation makes an ideal feature to describe trigonometric profiles. Further, the
period (and so frequency) of the sine or cosine waves can be set by the total move time given by
TA+TM.

Circular Interpolation cl ose
del et e gat her

undefine all

&1

#2->2000Y ;X is phantom
open progl clear

inc

inc (r)

t a300

tsO

t nL000 ; TA+tTM i s period
i 13=10

normal k-1 ;XY plane

0.0

circlel ;cl ockw se

D2 04 DB D2 10 1.2 14 16 18 20 22 24 268 ; .
x0 y0 i 10 ;conplete circle

Time (sec])

I Wr 2 € mdl P 1) | I Wirzcmdial | cl ose

&1blr

80

Motion Programs

PMAC Product Guide

Example:

| 13=10 ; Move Segnentation Tine Center (10.0)
NORMAL K- 1 ; XY pl ane '

I NC I ncrenental End Point definition

INC (R ;I ncremental Center Vector | I >
definition

CI RCLE 1 ; Clockwise circle P

X20 YO 110 JO ;Arc npve

Note:

One of the functions of the calculator built-in in the EZ-PMAC Setup Software
calculates the radius and center of acircular path given the coordinates of three
points that belong to it.

Splined Moves

PMAC can perform cubic splines (cubic in terms of the position vs. time equations) to blend together a
series of points on an axis. Splining is particularly suited to odd (non-cartesian) geometries, such as radial
tables and rotary-axis robots where there are odd axis profile shapes even for regular tip movements.

In SPLINEL mode, along move is split into equal-time segments, each of TA time. Each axisisgivena
destination position in the maotion program for each segment with a normal move command line such as
X1000Y2000. Looking at the move command before this and the move command after this, PMAC
creates a cubic position vs. time curve for each axis so that there is no sudden change of either velocity or
acceleration at the segment boundaries. The commanded position at the segment boundary may be
relaxed slightly to meet the velocity and acceleration constraints.

PMAC can work only with integer (millisecond) values for the TA segment times. If anon-integer value
is specified for the TA time, PMAC will round it to the nearest integer automatically. It will not report an
error. Thisrounding will change the speeds and times for the trgjectory.

At the beginning and end of a series of splined moves, PMAC adds a zero-distance segment of TA time
for each axis automatically and performs the spline between this segment and the adjacent one. This
results in S-curve acceleration to and from a stop.

PMAC's SPLINE2 mode is very similar to the SPLINEL mode, except that the requirement that the TA
spline segment time remain constant is removed.

PVT-Mode Moves

For more direct control over the trgjectory profile, PMAC offers Position-Velocity-Time (PVT) mode
moves. In these moves, the axis states are specified directly at the transitions between moves (unlikein
blended moves). This requires more calculation by the host, but alows tighter control of the profile
shape. For each piece of amove, the end position or distance, the end velocity, and the piece time are
specified.

PMAC isput in thismode using the PVT{ dat a} program statement where{ dat a} isa constant,
variable, or expression representing the piece time in milliseconds. This value should be an integer; if it
isnot, PMAC will round it to the nearest integer. The piece time may be changed between pieces, either
with another PVT{ dat a} statement, or with aTA{ dat a} statement. The program istaken out of this
mode with another move mode statement (e.g. LI NEAR, RAPI D, Cl RCLE, SPLI NE).

Motion Programs 81

PMAC Product Guide

A PVT mode move is specified for each axis to be moved with a statement of the form

{axi s}{data}: {dat a}, where{ axi s} isaletter specifying the axis, thefirst { dat a} isavalue
specifying the end position or the piece distance, depending on whether the axisis in absolute or
incremental mode, respectively, and the second { dat a} isavalue representing the ending velocity.

The units for position or distance are the user length or angle units for the axis, as set inthe AXI S

DEFI NI TI ON statement. The units for velocity are defined as length units divided by time units, where
the length units are the same as those for position or distance, and the time units are defined by variable
IX90 for the coordinate system (feedrate time units). The velocity specified for an axisis asigned
guantity.

From the specified parameters for the move piece and the beginning position and velocity (from the end
of the previous piece), PMAC computes the only third-order position trgjectory path to meet the
constraints. Thisresultsin linearly changing acceleration, a parabolic velocity profile, and a cubic
position profile for the piece.

Since the anon-zero end velocity for the move can be specified (directly or indirectly), it is not agood
ideato step through a program of transition-point moves and great care must be exercised in downloading
these movesin real time. With the use of the BLOCKSTART and BLOCKSTOP statements surrounding a
series of PVT moves, the last of which has a zero end velocity, it ispossibleto usea STEP command to
execute only part of a program.

The PVT mode is the most useful for creating arbitrary trajectory profiles. It provides a building block
approach to putting together parabolic velocity segmentsto create whatever overall profileis desired.
The following PVT Segment Shapes diagram shows common vel ocity segment profiles. PVT mode can
create any profile that any other move mode can.

PVT mode provides excellent contouring capability, because it takes the interpolated commanded path
exactly through the programmed points. It creates a path known as a Hermite Spline. LI NEAR and
SPLI NE modes are second and third order B-splines, respectively, which pass to the inside of
programmed points. Compared to PMAC’s SPLI NE mode, PVT produces a more accurate profile.

82 Motion Programs

PMAC Product Guide

-a-‘ Time tin msec

| Mode changear |4 ‘

| Axis lattar),\ |PVT | 300 |
1X|5]:| 50

Distance P in user | End velocity WV in
units, calculated from |g | User_units per
this page I190msec

el k vl &

W W

F—i
2-T1180

velk
v
¥t
risn
t Time
vl
W
2-V—i
P=
3-Iig)
t Time
vel *
V

Time t Time
vl vel o L val
F-F -t Pi=
v | — 2 - v 6 — T190 vz
" & - 1190
vz vz ¥t V1
= Fi= 3
P 6 1100 = (Freva)-e
y: f. - L1 & 2-1190 i
t 2t Time t 2t Time Time
Replace 1190 for the appropriate 1x90 variable accor ding to coor dinate system x.
Example:
cl ose del ete gather undefine all _— P Mave
&1 #1->2000X
100000
OPEN PROG 1 CLEAR
| NC snoon
PVT300 ;Time is 300 msec per section 60000
i <S0000
X5: 50 - p= 50 user_units I:;300 msec _ 15000 _ 5user_units
1190 msec 3 3000 20000
. . p - S0user_units 300msec _ 15000 _ .
X5: 0 P P= 1190 Tsec E: 3 3000 5user_units o
prili1]1]
CLCSE 00 02 04 0B 08 10 12 14 16
Time (5ec])
Motion Programs 83

PMAC Product Guide

Other Programming Features

Internal Timebase, the Feedrate Override
Each coordinate system has its own time base that helps control the speed of interpolated movesin that
coordinate system.

If IX93 is set at default, this parameter can be changed by different means:

e 0Hn, whereO < n <100 Online or CMD command that runs all motion commands in slow motion.
* %n, wherel00 < n< 225 Online or CMD command that runs all motion commands proportionally

faster.
* %0 Online or CMD command that freezes all motions and timing in that
coordinate system.
* %100 Online or CMD command that restores the real-time reference (1 msec = 1 msec).
e M197=110 Suggested M-Variable for time base change. Equal to 110 is 100%, equal to
0is0%.

. . . 1102
The variable 1x94 controls the rate at which the time base changes: 1x94 =
t[(P23

, Wheret isthe dew rate
time in msec.

Synchronous M-Variable Assignment

The scan of amotion program and execution of the commandsiin it are governed by the lookahead
feature. PMAC will calculate move commands ahead of time for a proper blending and will execute every
instruction in between immediately.

The fact that the program lines are executed ahead of time would make an M-V ariable assignment
asynchronous to the motion profiles unless adouble equal signisused. M1==1, for example, will
indicate to PMAC that the assignment must take place at the blending point between the previous move
encountered and the next. In LI NEAR and CI RCLE mode moves, this blending occurs V* TA/2 distance
ahead of the specified intermediate point, where V is the commanded velocity of the axis, and TA isthe
acceleration (blending) time.

Axis Transformation Matrices

PMAC provides the capahility to perform matrix transformation operations on the X, Y, and Z axes of a
coordinate system. These operations have the same mathematical functionality as the matrix forms of the
axis definition statements, but these can be changed on the fly in the middle of programs; the axis
definition statements should be fixed for a particular application. The matrix transformations permit
tranglation, rotation, scaling, mirroring, and skewing of the X, Y, and Z axes.

They can be useful for English/metric conversion, floating origins, making duplicate mirror images, and
repeating operations with angle offsets, etc. The matrices are implemented by the use of Q-Variables and
the DEFI NE TBUF, TSEL, TI NI T, ADI S, | DI S, AROT and | ROT commands.

Learning a Motion Program

It is possible to have PMAC learn lines of a motion program using the on-line LEARN command. Inthis
operation, the axes are moved to the desired position and the command is given to PMAC. PMAC then
adds a command line to the open motion program buffer that represents this position. This process can be
repeated to learn a series of points. The motors can be open loop or closed loop as they are moved
around.

84 Motion Programs

PMAC Product Guide

PLC PROGRAMS

PMAC will stop the scanning of the motion program lines when enough move commands are cal cul ated
ahead of time. Thisfeatureis called look-ahead and it is necessary to properly blend the moves together
and to observe the motion safety parameters. In the following example, PMAC calculates up to the third
move and will stop the program scanning until the first move is completed; that is, when more move
planning is required:

Example:

OPEN PROG 1 CLEAR ; Open program buffer

1 13=0 ; Two noves ahead of cal culation

LI NEAR | NC TA100 TSO F50 ; Mode commands

X1 ; First Move

X1 ; Second Move

X1 ; Third Mve

ML=1 ; This line will be executed only after the
; first nove is conpleted

CLCSE ; Close witten buffer, program one

In contrast, enabled PL Cs are continuously executed from beginning to end regardless of what any other
PL C or motion program is doing. PLCs are called asynchronous because are designed for actions that are
asynchronous to the motion.

In addition, they are called PLC programs because they perform many of the same functions as hardware
programmable logic controllers. PLC programs are numbered O through 31.

PLC programs 1-31 are executed in background. Each PLC program executes one scan (to the end or to
an ENDWHI LE statement) uninterrupted by any other background task (although it can be interrupted by
higher priority tasks). In between each PLC program, PMAC will do its general housekeeping and
respond to a host command, if any.

At power-on\reset PLCC programs run after the first PLC program runs. These are the suggested uses of
al the available PLC buffers:

e PLCO: PLC program O is aspecia fast program that operates at the end of the servo interrupt cycle
with afrequency specified by variable 18 (every 18+1 servo cycles). This program is meant for afew
time-critical tasks and it should be kept small, because its rapid repetition can steal time from other
tasks. A PLC O that istoo large can cause unpredictable behavior and can even trip PMAC's
watchdog timer by starving background tasks of time to execute.

* PLC1: Thisisthefirst codethat PMAC will run on power-up, assuming that 15 was saved with a
value of 2 or 3. This makes PLCL1 the appropriate PLC to initialize parameters, perform commutated
motors phase search and run motion programs. PLC1 can also disable other PLCs before they start
running and can disable itself at the end of its execution.

e PLC2: Since PLClissuggested as an initialization PLC (and can run potentially only once on power-
up), PLC2 isthefirst PLC in the remaining sequence from 2 to 31. This makes PLC2 the ideal place
to copy digital input information from INO expansion boards like the ACC-34 into its image variables.
Thisway, PLCs 3 to 30 can use the input information, writing the necessary output changes to the
outputs image variables.

e PLC3toPLC30: PLC programs are useful particularly for monitoring analog and digital inputs,
setting outputs, sending messages, monitoring motion parameters, issuing commands as if from a
host, changing gains, and starting and stopping moves. By their complete accessto PMAC variables
and 1/0 and their asynchronous nature, they become powerful adjuncts to the motion control
programs.

PLC Programs 85

PMAC Product Guide

PLC31: Thisisthe last executed PLC in the sequence from 1 to 31. PLC31 is recommended for
copying the output image variable (changed in lower number PLCs executed previoudly) into the
actual outputs of an I\O expansion board (e.g., ACC-34A).

Entering a PLC Program

PL Cs are programmed in the same way as motion programs are in a text editor window for later
downloading to PMAC.

Before starting to write the PLC, make sure that memory has not been tied up in data gathering or
program trace buffers by issuing DELETE GATHER and DELETE TRACE commands.

Open the buffer for entry with the OPEN PLC n statement, where n is the buffer number. Next, if
thereis anything currently in the buffer that should not be kept, it should be emptied with the CLEAR
statement (PL C buffers may not be edited on the PMAC itself; they must be cleared and re-entered).
If the buffer is not cleared, new statements will be added onto the end of the buffer.

When finished, close the buffer with the CLOSE command. Opening a PLC program buffer
automatically disables that program. After it isclosed, it remains disabled, but it can be re-enabled
again with the ENABLE PLC n command, where n is the buffer number (0--31). In addition, 15 must
be set properly for a PLC program to operate.

At the closing, PMAC checks to make sure all IF branches and WHILE loops have been terminated
properly. If not, it reports an error and the buffer isinoperable. Correct the PLC program in the host
and re-enter it (clearing the erroneous block in the process). This process is repeated for al of the
PLC buffers to be used.

Because all PLC programsin PMAC’s memory are enabled at power-on/reset, save15as0in
PMAC’s memory when developing PLC programs. Thiswill allow PMAC to be reset and not have
PLCs running (an enabled PLC runsonly if 15 is set properly) and recover more easily fromaPLC
programming error.

Structure example:

CLCSE

DELETE GATHER

DELETE TRACE

OPEN PLC n CLEAR
{PLC st at enrent s}

CLCSE

ENABLE PLC n

To erase an uncompiled PLC program, open the buffer, clear the contents, and then close the buffer
again. This can be done with three commands on one line:

OPEN PLC 5 CLEAR CLOSE

PLC Program Structure

The important thing to remember in writing a PLC program is that each PLC program is effectively in an
infinite loop; it will execute over and over again until told to stop. (These are called PLC because of the
similarity in how they operate to hardware Programmable Logic Controllers -- the repeated scanning
through a sequence of operations and potential operations.)

86

PLC Programs

PMAC Product Guide

Calculation Statements

Much of the action taken by a PLC is done through variable value assignment statements:
{vari abl e} ={ expressi on}. Thevariablescan bel, P, Q, or M types and the action thus taken can
affect many things inside and outside the card. Perhaps the simplest PLC program consists of one line:

P1=P1+1
Every time the PLC executes, usually hundreds of times per second, P1 will increment by one.

Of course, these statements can get alot moreinvolved. The statement:
P2=ML62/ (1 108*32* 10000) * COS (M262/ (|1 208* 32* 100))

can be converting radial (M162) and angular (M262) positions into horizontal position data, scaling at the
sametime. Because it updates this frequently, whoever needs access to thisinformation (e.g. host
computer, operator, motion program) can be assured of having current data.

Conditional Statements

Most action in a PLC program is conditional, dependent on the state of PMAC variables, such as inputs,
outputs, positions, counters, etc. Action can be level-triggered or edge-triggered; both can be done, but
the techniques are different.

Level-Triggered Conditions
A branch controlled by alevel- triggered condition is easier to implement. Taking the incrementing
variable example and making the counting dependent on an input assigned to variable M 11, we have:
| F (ML1=1)

P1=P1+1
ENDI F

Aslong astheinput istrue, P1 will increment several hundred times per second. When the input goes
false, P1 will stop incrementing.

Edge-Triggered Conditions
To increment P1 once for each time M 11 goes true (triggering on the rising edge of M11 sometimes
called aone-shot or latched). A compound condition is needed to trigger the action, then as part of the
action, set one of the conditions false, so the action will not occur on the next PLC scan. The easiest way
to do thisis through the use of a shadow variable which will follow the input variable value. Actionis
taken only when the shadow variable does not match the input variable. The code could become:
| F (ML1=1)
| F (P11=0)
P1=P1+1
P11=1
ENDI F
ELSE
P11=0
ENDI F

Make sure that P11 can follow M11 both up and down. Set P11 to O in alevel-triggered mode.

PLC Programs 87

PMAC Product Guide

WHILE Loops

Normally a PLC program executes all the way from beginning to end within asingle scan. The exception
to thisrule occursif the program encounters atrue WHI LE condition. In this case, the program will
execute down to the ENDWHI LE statement and exit this PLC. After cycling through all of the other
PLCs, it will re-enter this PLC at the WHI LE condition statement, not at the beginning. This process will
repeat as long as the condition istrue. When the WHI LE condition goes false, the PLC program will skip
past the ENDWHI LE statement and proceed to execute the rest of the PLC program.

To increment the counter aslong as the input is true and prevent execution of therest of the PLC
program, program:
VWH LE (ML1=1)

P1=P1+1
ENDWHI LE
This structure makes it easier to hold up PLC operation in one section of the program, so other branches
in the same program do not have to have extra conditions so they do not execute when this condition is
true. Contrast thisto using an IF condition (see above).

COMMAND and SEND statements

One of the most common uses of PLCs isto start motion programs and Jog motors by means of command
statements.

Some COVIVAND action statements should be followed by aWHI LE condition to ensure they have taken
effect before proceeding with the rest of the PLC program. Thisistrueif a second COVMAND action
statement that requires the first COVMAND action statement to finish will follow. (Remember, COMVAND
action statements are processed only during the communications section of the background cycle)) To
stop any motion in a coordinate system and start motion program 10, the following PLC can be used:

ML87->Y: $0817, 17, 1 ; & In-position bit (AND of notors)
OPEN PLC3 CLEAR
I F (ML1=1) ; input is ON
| F (P11=0) ; input was not ON last tinme
P11=1 ; set latch
COWAND" &1 A" ; ABORT all notion
VWH LE (ML87=0) ; wait for notion to stop.
ENDW
COMVAND" &1B10R" ; start program 10
ENDI F
ELSE
P11=0 ; reset latch
ENDI F
CLOSE

Any SEND, COMVAND, or DI SPLAY action statement should be done only on an edge-triggered
condition, because the PL C can cycle faster than these operations can process their information and the
communications channels can get overwhelmed if these statements get executed on consecutive scans
through the PLC.

IF (ML1=1) ; input is ON
| F (P11=0) ; input was not ON last tine
COVVAND' #1J+" ; JOG not or
P11=1 ; set latch
ENDI F
ELSE
P11=0 ; reset latch
ENDI F

88 PLC Programs

PMAC Product Guide

Timers

Timing commands like DWELL or DELAY are reserved only for motion programs and cannot be used for
timing purposes on PLCs. Instead, PMAC has four 24-bit timers that you can write to and count down
once per servo cycle. Thesetimers are at registers X:$0700, Y :$0700, X:$0701, and Y:$0701. Usualy a
signed M-Variable is assigned to the timer; avaue iswritten to it representing the desired time in servo
cycles (multiply milliseconds by 8,388,608/110); then the PLC waits until the M-Variableislessthan 0.

Example:

MBO- >X: $0700, 0, 24, S ; Timer register 1 (8388608/110 msec)
MB1->Y: $0700, 0, 24, S ; Timer register 2 (8388608/110 msec)
MB2- >X: $0701, 0, 24, S ; Timer register 3 (8388608/110 nsec)
MB3->Y: $0701, 0, 24, S ; Timer register 4 (8388608/110 nsec)
OPEN PLC3 CLEAR

ML=0 ; Reset Qutputl before start
MB0=1000*8388608/ I 10 ; Set tinmer to 1000 nsec, 1 second
VWH LE (MB0>0) ; Loop until counts to zero

ENDWHI LE

ML=1 ; Set Qutput 1 after tinme el apsed
DS PLC3 ; disables PLC3 execution (needed in this exanple)
CLOSE

If more timers are needed, use memory address X:0. This 24-bit register counts up once per servo cycle.
Store a starting value for this, and then at each scan, subtract the starting value from the current value and
compare the difference to the amount of time to wait.

Example:

M- >X: $0, 24 ; Servo counter register

MB5- >X: $07FO0, 24 ; Free 24-bit register

MB6- >X: $07F1, 24 ; Free 24-bit register

OPEN PLC 3 CLEAR

ML=0 ; Reset Qutputl before start

MB5=MD ; Initialize tinmer

MB6=0

VWHI LE(MB6<1000) ; Time el apsed | ess than specified tine?
MB6=MD- MB5
MB6=MB6*1 10/ 8388608 ; Time elapsed so far in mlliseconds

ENDVWHI LE

ML=1 ; Set Qutput 1 after tinme el apsed

DI SABLEPLC3 ; disables PLC3 execution (needed in this exanple)

CLCSE

Even if the servo cycle counter rollovers (start from zero again after the counter is saturated), by
subtracting into another 24-bit register, rollover is handled gracefully.

Rollover example:

MO = 1000

M85 = 16777000

M86 = 1216

Bit [23]22|21]|20[19|18|17 1615|1413 |12 |11|10|9 |8 |7 |6 |5|4|3[2|1]|0
MO |0 |JO]o|oOofOJo|oO]JOJO|oO]O|JO]JoO|O|1]|1]|1|1]1][0|1]0][0]0O
Mes |1 | 1|1 |11 |11 1111|1111 f1]0ojOo|l1]0|1|0]O0]0O
Mgs [0 |Jo|ojojojo]o|Jo]Jo]Jo|loJo|o|1|o]o|1]|1|0]0]O|O]O]O

<«—— Carry-out bit

PLC Programs 89

PMAC Product Guide

90

PLC Programs

PMAC Product Guide

TROUBLESHOOTING

PMAC isahighly reliable device and has several safety mechanisms to prevent continuous damage and
malfunctions. When PMAC shuts-down or an erratic behavior is observed, the following reset procedure
should be tried.

Resetting PMAC to Factory Defaults

1. If PMAC is communicating with the host computer, skip steps 2-7 on thislist.

2. Turn off PMAC or the host computer where PMAC isinstalled.

3. Remove all cables connected to PMAC leaving connected only the serial port and power cables, if
present.

4. Check that all jumpers are at the default configuration or changed properly to accommodate the
particular setup for the machine. Make sure that jumper E50 is properly installed; otherwise any
SAVE command issued to PMAC will not have any effect.

5. Placethejumper E51in PMAC (1) or jumper E3 on PMAC2. Thisis ahardware re-initialization
jumper.

6. After power-up, try establishing communications again with a reliable software package like the
PEWIN program provided by Delta Tau.

7. On power-up and with the re-initialization jumper installed, some PMACs with the flash memory
option will bein amode called bootstrap. This meansthat it will accept a binary file downloaded to
changeitsinternal firmware. If thisisthe case, follow the instructions on the PEWIN screen to
disable the downloading process (usually by pressing CTRL+R).

8. Try communications with PEWIN and type the following commands when the terminal is
successfully opened (follow the communications troubleshooting section below in case
communications are still not established):

$PPr** ; G obal reset

PO. . 1023=0 ; Reset P-Vari abl es val ues

Q. .1023=0 ; Reset Q Vari abl es val ues

MD. . 1023->* M. . 1023=0 ; Reset M Variabl es definitions and val ues
UNDEFI NE ALL ; Undefi ne coordi nate systens

SAVE ; Save this initial, clean configuration

9. If there-initialization jumper was installed, remove it at thistime. Restore PMAC in the computer
and power it up.

10. Try communications again and configure PMAC for the application. Make sure that a backup fileis
saved in the host computer with all the parameters and programs that PMAC needs to run the
application. Furthermore, since the host computer can also fail and be replaced, save the configuration
file both in the host computer and in afloppy disk stored in a safe place. Thisfile must be
downloaded and a SAVE command must be issued to PMAC.

The Watchdog Timer (Red LED)

The PMAC motion control board has an on-board watchdog timer (sometimes called a dead-man timer or
aget-lost timer) circuit whose job it is to detect anumber of conditions that could result in dangerous
malfunctions and shut down the card to prevent a malfunction. The philosophy behind the use of this
circuit isthat it is safer to have the system not operate at all than to have it operate improperly.

Because the watchdog timer wants to fail and many components of the board, both hardware and
software, must be working properly to keep it from failing, it may not be obvious immediately what the
cause of awatchdog timer failureis.

Troubleshooting 91

PMAC Product Guide

The hardware circuit for the watchdog timer requires that two basic conditions be met to keep it from
tripping. First, it must see a DC voltage greater than 4.75V. If the supply voltage is below this value, the
circuit’ srelay will trip. This prevents corruption of registers due to insufficient voltage. The second
necessary condition isthat the timer must see a square wave input (provided by the PMAC software) of a
frequency greater than 25 Hz. If the card, for whatever reason due either to hardware or software
problems, cannot set and clear this bit repeatedly at this frequency or higher, the circuit's relay will trip.

Every RTI, PMAC reads the 12-bit watchdog timer register (Y register $1F) and decrements the value by
8 -- thistoggles bit 3. If the resulting value is not less than zero, it copies the result into aregister that
forces the bit 3 value onto the watchdog timer. Repeated, this process provides a square-wave input to the
watchdog timer.

In the background, PMAC executes one scan through an individual PLC program, then checks to seeif
there are any complete commands, responding if there are, then executes the housekeeping functions.
This cycleisrepeatedly endlesdly.

Most of the housekeeping functions are safety checks such as following error limits and overtravel limits.
When it is done with these checks, PMAC sets the 12-bit watchdog timer register back to its maximum
value. Aslong asthisoccursregularly at least every 512 RTI cycles, the watchdog timer will not trip.

The purpose of thistwo-part control of the timer isto make sure all aspects of the PMAC software are
being executed, both in foreground (interrupt-driven) and background. If anything keeps either type of
routine from executing, the watchdog will fail quickly.

The only recovery for this failure assuming the 5V power supply is satisfactory, isto hardware reset
PMAC.

Establishing Communications

Either the Executive or Setup program can be used to establish initial communications with the card.
Both programs have menus that tell the PC where to expect to find the PMAC and how to communicate
with it at that location. If itistold to look for PMAC on the bus, it must also be told PMAC' s base
address on the bus (this was set up with jumperson PMAC). If itistold to look for PMAC on a COM
port, tell it the baud rate (this was set up with jumpers or switches on the PMAC).

Once the program knows where and how to communicate with PMAC, it will attempt to find PMAC at
that address by sending a query command and waiting for the response. If it gets the expected type of
response, it will report that it has found PMAC and can proceed.

If it does not get the expected type of response after several attempts, it will report that it has not found
PMAC. Check thefollowing:

General
1. Isthegreen LED (power indicator) on PMAC's CPU board ON, asit should be? If it isnot, find out
why PMAC isnot getting a +5V voltage supply.

2. Isthered LED (watchdog timer indicator) on PMAC's CPU board OFF, asit should be? If it is ON,
make sure PMAC is getting very closeto 5V supply -- at lessthan 4.75V, the watchdog timer will
trip, shutting down the card. The voltage can be probed at pins 1 and 3 of the IMACH connector. If
the voltage is satisfactory, inspect PMAC to see that all inter-board connections and all socketed ICs
are well seated. If the card will not run with the red LED off, contact the factory.

92 Troubleshooting

PMAC Product Guide

Bus Communications
1. Dothebusaddress jumpers (E91-E92, E66-E71) set an address that matches the bus address that the
Executive program is trying to communicate with?

2. Isthere something else on the bus at the same address? Try changing the bus address to see if
communications can be established at a new address. Address 768 (300 hex) is usually open.

Serial Communications
1. Isthe proper port on the PC being used? Make sureif the Executive program is addressing the
COM1 port, that the COM 1 connector has been cabled out.

2. Doesthe baud rate specified in the Executive program match the baud rate setting of the E44-E47
jumpers on PMAC?

3. With abreakout box or oscilloscope, make sure there is action on the transmit lines from the PC
while typing into the Executive program. If not, there is a problem on the PC end.

4. Probe the return communication line while giving PMAC a command that requires a response (e.g.
<CONTROL- F>). If thereis no action, change jumpers E9-E16 on PMAC to exchange the send and
receive lines. If thereis action but the host program does not receive characters, RS-232 may be
receiving circuitry that does not respond at all to PMAC s RS-422 levels. If there is another model
of PC, try using it as atest (most models accept RS-422 levels quite well). If the computer will not
accept the signals, alevel-conversion device, such as Delta Tau's Accessory-26 may be needed.

Motor Parameters

1. No movement at all. Check the following:
Are both limits held low to AGND and sourcing current out of the pins?
Isthere proper supply to A+15V, A-15V, and AGND?
Isthe proportional gain (I1x30) greater than zero?
Can any output at the DAC pin be measured when an O command has been given?
e Isthe following error limit being tripped? Increase the fatal following error limit (Ix11) by setting
it to amore appropriate value and try to move again.
2. Movement, but sluggish. Check the following:
a. Isproportional gain (I1x30) too low? Try increasing it (aslong as stahility is kept).
b. Isthebig step limit (Ix67) too low? Try increasing it to 8,000,000 -- near the maximum -- to
eliminate any effect.
c. Istheoutput limit (1x69) too low? Try increasing it to 32,767 (the maximum) to make sure
PMAC can output adequate voltage.
d. Cananintegrator help? Try increasing integral gain (1x33) to 10,000 or more, and the integration
limit (1x63) to 8,000,000.
3. Runaway condition. Check the following:
a Isthere feedback? Check that position changes can be read in both directions.
b. Doesthe feedback polarity match output polarity? Recheck the polarity match as explained
above.
4. Brief movement, then stop. Check the following:
a. Isthefollowing error limit being tripped? Increase the fatal following error limit (Ix11) by setting
it to amore appropriate value, and try to move again.

coow

If holding position well, but cannot move the motor, the hardware limits are not being held low. Check
which limits 1125 is addressed to (usually +/-LIM1), then make sure those points are held low (to
AGND), and sourcing current (unscrew the wire from the terminal block and put your ammeter in series
with this circuit if you need to confirm this). Refer to the Installing and Configuring PMAC section for
details on checking the limit inputs.

Troubleshooting 93

PMAC Product Guide

If the motor dies after giving it ajog command, the fatal following error limit has been exceeded. If this
has happened, it is either because a move has been requested that is more than the system can physically
do (if so, reduce 1122), or because it is badly tuned (if thisis the case, increase proportional gain 1130).
To restore closed-loop control, issuethe J/ command.

Motion Programs

If the program does not run at all, there are several possibilities:

1. Cantheprogram belisted? Interminal mode, type LI ST PROG1 (or whichever program), and see
if itisthere. If not, try to download it to the card again.

2. Isthe program buffer closed? Type A just in case the program is running; type CLOSE to close any
open buffer; type B1 (or the program number) to point to the top of the program; and type R to try
to run it again.

3. Can each motor in the coordinate system be jogged in both directions? If not, review that motor’s
setup.

4. Have any motors been assigned to the coordinate system that is not set up yet? Every motor in the
coordinate system must have its limits held low, even if there is no real motor attached.

Try the following steps for any other motion program problem:

1. Type &1%100 in the termina window.
2. Check that one of the motors to be used in the motion program can be jogged.
3. Typethefollowing commandsin atext editor to be downloaded to PMAC:

cl ose ; Close any buffer opened

del et e gat her ; Erase unwant ed gat hered data

undefine all ; Erase coordinate definitions in al

coordi nate systens

#1->2000X ; Replace #1 for the nbtor you want to
use and

2000 by the appropriate
scal e factor for the
; nunber of counts per user

units
OPEN PROG 1 CLEAR ; Prepare buffer to be witten
LI NEAR ; Linear interpolation
I NC ; Incremental node
TA500 ; Acceleration tinme is 500 nsec
TS0 ; No S-curve accel erati on conponent
TM2000 ; Total nove tinme is 500 + 2000=2500 nsec
X1 ; One unit of distance, 2000 encoder counts
CLCSE ; Close witten buffer, program one

4. Torunit, press CTRL+A and then type B1R in the terminal window.
5. Repeat steps 2 through 4 for all the motors to be run in the actual motion program.

A good method to test motion programs is to run them at lower than one hundred percent override rate.
Any value for n from 1 to 100 in the % online command will run the motion programs slower, increasing
the chances of success of execution. For example, in the terminal window type: & 1 %75 B1R.

If aprogram runs successfully at lower feedrate override values there could be two reasons why it fails at
100%: either there isinsufficient cal culation time for the programmed moves or the accel eration and\or
velocity parameters involved are unsuitable for the machine in consideration. Look for further detailsin
the entitled PMAC Tasks section.

94 Troubleshooting

PMAC Product Guide

PLC Programs

PL Cs and PLCCs are one of the most common sources for communication or watchdog timer failures.

Any SEND, COVMAND, or DI SPLAY action statement should be done only on an edge-triggered condition
because the PLC can cycle faster than these operations can process their information, and the
communications channels can get overwhelmed if these statements get executed on consecutive scans
through the PLC.

IF (ML1=1) ; input is ON
| F (P11=0) ; input was not ON last tine
COVVAND' #1J+" ; JOG not or
P11=1 ; set latch
ENDI F
ELSE
P11=0 ; reset latch
ENDI F

PL CO or PLCCO should be used only for afew tasks (usually a single task) that must be done at a higher
frequency than the other PLC tasks. The PLC 0 will execute every real-time interrupt as long as the tasks
from the previous RTI have been completed. PLC 0 is potentially the most dangerous task on PMAC as
far as disturbing the scheduling of tasksis concerned. If it istoo long, it will starve the background tasks
for time. Thefirst thing to notice is that communications and background PL C tasks will become
sluggish. In the worst case, the watchdog timer will trip, shutting down the card, because the
housekeeping task in background did not have the time to keep it updated.

Because all PLC programsin PMAC’s memory are enabled at power-on/reset, save 15 as0in PMAC's
memory when developing PLC programs. Thiswill allow PMAC to be reset and no PLCs running (an
enabled PLC runsonly if 15 is set properly) and recover more easily from a PLC programming error.

As an example, type these commands in the terminal window. After that, open a watch window and
monitor for P1 to be counting up:

OPEN PLC1 CLEAR ; Prepare buffer to be witten
P1=P1+1 ; P1 continuously increnenting
CLOSE ; Close witten buffer, PLC1

| 5=2

Press <CTRL +D> and type ENA PLC1.

Troubleshooting 95

PMAC Product Guide

96

Troubleshooting

PMAC Product Guide

I-VARIABLES

On PMAC, I-Variables (Initialization, or Set-up, Variables) determine the personality of the
controller for agiven application. They are at fixed locations in memory and have pre-defined
meanings. Most are integer values and their range varies depending on the particular variable.
There are 1024 |-Variables, from 10 to 11023, and they are organized as follows:

10--175: General card setup (global)
176 -- 199: Dual-speed resolver setup
1100 -- 1186: Motor #1 setup
1187 -- 1199: Coordinate System 1 setup
1200 -- 1286: Motor #2 setup
1287 -- 1299: Coordinate System 2 setup

1800 -- 1886: Motor #8 setup

1887 -- 1899: Coordinate System 8 setup

1900 -- 1979: Encoder 1 - 16 setup (in groups of 5)
1980 -- 11023: Reserved for future use

In this section, some |-V ariables might be expressed as 1x00. In the case of a motor I-Variable, x stands
for the motor number in the range of 1 through 8. In the case of a Coordinate System I-Variable, x stands
for the coordinate system number, aso in the range of 1 through 8.

Note:

The PMAC motion controller isrich in features and expansion capabilities.
Because this manual illustrates the implementation of PMAC in atypical
application, some of the PMAC advanced |-V ariables are not described. Further
information of all the PMAC I-Variables can be obtained from the PMAC
Software Reference manual .

Global I-Variables

|1 Serial Port Mode

Range: 0.3
Default: 0
Units: none

This parameter controls two aspects of how PMAC usesits serial port. The first aspect is whether PMAC
uses the CS (CTS) handshake line to decide if it can send a character out the serial port. The second
aspect iswhether PMAC will require software card addressing, permitting multiple cards to be
daisychained on asingle serial line.

There are four possible values of 11, covering all the possible combinations:

Setting Meaning
0 CS handshake used; no software card address required
1 CS handshake not used; no software card address required
2 CS handshake used; software card address required
3 CS handshake not used; software card address required

When CS handshaking isused (I1is0 or 2), PMAC waits for CS to go true before it will send a character.
Thisisthe normal setting for real serial communicationsto a host; it alows the host to hold off PMAC
messages until it is ready.

I-Variables 97

PMAC Product Guide

When CS handshaking isnot used (11 is 1 or 3), PMAC disregards the state of the CS input and
always sends the character immediately. This mode permits PMAC to output messages, values,
and acknowledgments over the serial port even when there is nothing connected which can be
vauable in stand-alone and PL C-based applications where there are SEND and CVD statementsin
the program. If these strings cannot be sent out the serial port, they can back up, stopping
program execution.

When software addressing is not used (11is0 or 1), PMAC assumesthat it is the only card on the
serial line, so it always acts on received commands, sending responses back over the line as

appropriate.

When software addressing isused (11 is 2 or 3), PMAC assumes that there are other cards on the
ling, so it requiresthat it be addressed (with the @{ card} command) before it responds to
commands. The {card} number in the command must match the card number set up in hardware
on the card with jumpers or DIP switches.

I5 PLC Programs On/Off

Range: 0..3
Default: 0
Units: none

This parameter controls which PLC programs may be enabled. There are two types of PLC programs. the
foreground program (PLC 0) which operates at the end of servo interrupt calculations with a repetition
rate determined by 18 (PLC 0 should be used only for time-critical tasks and should be short); and the
background programs (PLC 1 to PLC 31) which cycle repeatedly in background astime allows. 15
controls these as follows:

Setting Meaning
0 Foreground PL C off; background PL C off
1 Foreground PL C on; background PLC off
2 Foreground PL C off; background PLC on
3 Foreground PL C on; background PLC on

Note that an individual PLC program must be enabled to run -- a proper value of 15 merely permitsit to
berun. Any PLC program that exists at power-up or reset is automatically enabled (even if the saved
value of 15 does not permit it to run immediately); also, the ENABLE PLC n command enables the
specified programs. A PLC program is disabled either by the Dl SABLE PLC n command, or by the
OPEN PLC n command. A CLOSE command does not re-enable the PLC program automatically -- it
must be done explicitly.

I6 Error Reporting Mode

Range: 0..3
Default: 3
Units: none

This parameter reports how PMAC reports errors in command lines. When 16 is set to 0 or 2, PMAC
reports any error only with a<BELL> character. When 16 is0, the <BELL> character is given for invalid
commands issued both from the host and from PMAC programs (using CVD"' { command} "). When 16
is 2, the <BELL> character is given only for invalid commands from the host; there is no response to
invalid commands issued from PMAC programs. (In no mode is there a response to valid commands
issued from PMAC programs.

98 I-Variables

PMAC Product Guide

When 16 isset to 1 or 3, an error number message can be reported along with the <BELL> character. The
message comes in the form of ERRnnn<CR>, where nnn represents the three-digit error number. If 13is
setto 1l or 3, thereisa<LF> character in front of the message.

When 16 is set to 1, the form of the error messageis<BELL>{ err or nessage}. Thissetting isthe
best for interfacing with host-computer driver routines. When 16 is set to 3, the form of the error message
is<BELL><CR>{ error nessage}. Thissettingisappropriate for use with the PMAC Executive
Program in terminal mode.

Currently, the following error messages can be reported:

Error Problem Solution

ERR0OO1 Command not allowed during program (Should halt program execution before issuing

execution command)
ERRO02 | Password error (Should enter the proper password)
ERROO3 Data error or unrecognized command (Should correct syntax of command)

Illegal character: bad value (>127 ASCII) or (Should correct the character and/or check for
ERRO04 i ; , : .

seria parity/framing error noise on the serial cable)
ERRO05 Command not allowed unless buffer is open (Should open a buffer first)

. (Should alow more room for buffer --

ERR0O06 No room in buffer for command DELETE or CLEAR other buffers)
ERROQ7 Buffer already in use (Should CLGSE currently open buffer first)
ERROO8 MACRO Link Error Register X:$0798 holds the error value
ERR009 :DrFo)gram structural error (eg. ENDI F without (Should correct structure of program)
ERRO10 gost;h over-travel limits set for amotor in the (Should correct or disable limits)
ERRO11 Previous move not completed (Should Abor t it or allow it to complete)
ERR012 A motor in the coordinate system is open-loop | (Should close the loop on the motor)

A motor in the coordinate system is not (Should set 1X00 to 1 or remove motor from
ERRO13 .

activated C.S)
ERR014 No motorsin the coordinate system (Should define at least one motor in C.S)

- . Should use B command first, or clear out

ERRO15 (:

Not pointing to valid program buffer scrambled buffers)

Running improperly structured program (e.g.
ERRO16 missing ENDWHI LE) (Should correct structure of program)
ERRO17 Motor(s) in C.S. not at halted position to (Should move motor(s) back to halted position

restart after / or\ command with J=)

I7 In-Position Number of Cycles

Range: 0..255
Default: 0
Units: Background computation cycles (minus one)

This parameter permits the user to define the number of consecutive scans that PMAC motors must

satisfy all in-position conditions before the motor in-position bit is set true. This ensures that the motor is

truly settled in the end position before executing the next operation, on or off PMAC. The number of
consecutive scans required isequal to 17 + 1.

PMAC scans for the in-position condition of each active motor during the housekeeping part of every

background cycle which occurs between each scan of each enabled uncompiled background PLC (PLC 1-

31). All motorsin acoordinate system must have true in-position bits for the coordinate-system in-
position bit to be set true.

I-Variables

PMAC Product Guide

I8 Real Time Interrupt Period

Range: 0..255
Default: 2
Units: Servo Interrupt Cycles

This parameter controls how often certain time-critical tasks, such as PLC 0 and checking for motion
program move planning, are performed. A vaue of 2 means that they are performed after every third
servo interrupt, 3 means every fourth interrupt, etc. Usually, this can be |eft at the default value. In some
advanced applications that push PMAC'’ s speed capabilities, tradeoffs between performance of these tasks
and the calculation time they take may have to be evaluated before setting this parameter.

Note:

A large PLC 0 with asmall value of 18 can cause severe problems because PMAC
will attempt to execute the PLC program every 18 cycle. Thiscan starve
background tasks, including communications, background PLCs, and even
updating of the watchdog timer, for time, leading to erratic performance or
possibly even shutdown.

In multiple-card PMAC applications where it is very important that motion programs on the two cards
start as closely together as possible, 18 should be set to 0. In this case, no PLC 0 should be running when
the cards are awaiting a RUN command. At other times 18 may be set greater than 0 and PLC O re-
enabled.

9 Full/Abbreviated Program Listing Form

Range: 0..3
Default: 2
Units: none
Setting | Meaning
0 Short form, decimal address I-Variable return
1 Long form, decimal address I-Variable return
2 Short form, hex address |-V ariable return
3 Long form, hex address I-Variable return

When this parameter is 0 or 2, programs are sent back in abbreviated form for maximum compactness,
and when |-variable values or M-V ariable definitions are requested, only the values or definitions are
returned, not the full statements. When this parameter is 1 or 3, programs are sent back in full form for
maximum readability. Also, I-Variable values and M-Variable definitions are returned as full command
statements, which is useful for archiving and later downloading.

When this parameter isO or 1, I-variable values that specify PMAC addresses are returned in decimal
form. When it is2 or 3, these values are returned in hexadecimal form (with the $ prefix). Any |-
Variable values can be sent to PMAC either in hex or decimal, regardless of the |9 setting. This does not
affect how I-Variable assignment statements inside PMAC motion and PLC programs are reported when
the program islisted.

Example:

With 19=0:

| 125 ; Request address |-variable val ue
49152 ; PMAC reports just value, in decinal
MLO1- > ; Request M Variable definition

X: $C001, 24, S ; PMAC reports just definition

LI ST PROG 1 ; Request listing of program

LIN ; PMAC reports program short form
X10

100 I-Variables

PMAC Product Guide

DWE1000

RET

With 19=1.

| 125 ; Request address |-variable val ue

| 125=49152 ; PMAC reports whol e statenent, in decinal
MLO1- > ; Request M Variable definition

MLO1- >X: $C001, 24, S ; PMAC reports whol e statenent

LI ST PROG 1 ; Request listing of program

LI NEAR ; PMAC reports programlong form

X10

DVELL1000

RETURN

With 19=2:

1125 ; Request address I|-variable val ue

$C000 ; PMAC reports just value, in hexadeci nmal
With 19=3:

| 125 ; Request address |-variable val ue

| 125=$C000 ; PMAC reports whol e statement, in hexadeci nmal
113 Programmed Move Segmentation Time

Range: 0.. 8,388,607

Default: 0

Units: msec

When greater than zero, this parameter puts PMAC into a mode (segmentation mode) where all LINEAR
and Cl RCLE moves are done as a continuous cubic spline in which the move segments are of the time
length specified by the parameter in this variable (thisis not the same thing as SPLI NE mode moves).
This mode is required for applications using Cl RCLE mode moves.

Segmentation mode (113 greater than 0) is required to support any of the following PMAC features:

e Circular interpolation

e Cutter radius compensation
e/ Program stop command

* \ Program hold command

* Rotary buffer blend on-the-fly

If none of these featuresis required, keep 113 at 0.

Typical values of 113 for segmentation mode are 5 to 10 msec. The smaller the value, the tighter the fit to
the true curve, but the more computation is required for the moves and the lessis available for
background tasks. If 113 is set too low, PMAC will not be able to do all of its move calculationsin the
time allotted and it will stop the motion program with arun-time error.

Note:

When 113=0, moves are done without this ongoing spline technique and Cl RCLE
mode moves are done as L1 NEAR mode moves.

I-Variables 101

PMAC Product Guide

115 Degree/Radian Control for User Trig Functions

Range: 0.1
Default: 0 (degrees)
Units: none

This parameter controls whether the angle values for trigonometric functions in user programs (motion
and PLC) and on-line commands are expressed in degrees (115=0) or radians (115=1).

I50 Rapid Move Mode Control

Range: 0.1
Default: 1
Units: none

This parameter determines which variables are used for speed of RAPI D mode moves. When 150 is set to
0, the jog parameter for each motor (1x22) isused. When 150 is set to 1, the maximum velocity parameter
for each motor (Ix16) is used instead. Regardless of the setting of 150, the jog acceleration parameters
Ix19-1x21 control the acceleration.

152 \ Program Hold Slew Rate

Range: 0.. 8,388,607
Default: 37,137
Units: 110 units / segmentation period

This parameter controls the slew rate to astop on a\ program hold command and the slew rate back up to
speed on a subsequent R command, for al coordinate systems, provided PMAC isin a segmented move
(LI NEAR or Cl RCLE mode with 113>0). If PMAC is not in a segmented move (113=0, or other move
mode), the\ command acts just like an Hfeed hold command, with [x95 controlling the slew rate.

The units of 152 are the units of 110 (1/8,388,608 msec) per segmentation period (113 msec). To calculate
how long it takesto stop on a\ command and to restart on the next R command, use the formula

T (msec) =110* 113/152
To calculate the value of 152 for a given start/stop time, use the formula
152=110* 113/ T (msec)

Example:
To execute afull stop in one second with the default servo update time (110 = 3,713,707) and a move
segmentation time of 10 msec, 152 should set to 3,713,707 * 10/ 1000 = 37,137.

I53 Program Step Mode Control

Range: 0.1
Default: 0
Units: none

This parameter controls the action of a STEP (S) command in any coordinate system on PMAC. At the
default 153 value of zero, a STEP command causes program execution through the next move, DELAY, or
DWELL command in the program, even if this takes multiple program lines.

When I53 isset to 1, a STEP command causes program execution of only a single program line, even if
thereis no move or DVELL command on that line. If thereis more than one DWELL or DELAY command
on aprogram line, asingle STEP command will execute only one of the DWELL or DELAY commands.

Regardless of the setting of 153, if program execution on a Step command encounters a BLOCKSTART
statement in the program, execution will continue until a BLOCKSTOP statement is encountered.

102 I-Variables

PMAC Product Guide

Motor Definition I-Variables

IXO0O Motor x Activate

Range: 0..1
Default: 1100=1; 1200 .. 1800=0
Units; none

This parameter determines whether the motor is de-activated (=0) or activated (=1). If activated, position,
servo, and trgjectory calculations are done for the motor. An activated motor may be enabled -- either in
open or closed loop -- or "disabled” (killed), depending on commands or events.

If IX00 is 0, not even the position calculations for that motor are done, so a P command would not reflect
position changes. Any PMAC motor not used should be de-activated, so PMAC does not waste time
doing calculations for that motor. If fewer motors are activated, the faster the servo update time will be.

IXO1 Motor x PMAC-Commutation Enable

Range: 0.1
Default: 0
Units: none

This parameter determines whether PMAC will perform commutation calculations for the motor and
provide two analog outputs (1x01=1), or not perform commutation and provide only one anal og output
(Ix01=0). If amulti-phase motor is used, but is commutated in the amplifier, I1x01 should be set to 0.

Ix02 Motor x Command Output (DAC) Address

Range: Extended legal PMAC X and Y addresses

Default:
M otor I-Variable Hex Decimal DAC
Motor 1 1102 $C003 49155 (=DACY)
Motor 2 1202 $C002 49154 (=DAC2)
Motor 3 1302 $CO0B 49163 (=DAC3)
Motor 4 1402 $CO0A 49162 (=DAC4)

Units: Extended legal PMAC X and Y addresses

This parameter tells the PMAC where (what address) to put the output command for motor x. The
address may be specified as either a decimal or hexadecimal value. Usually, the output is directed
towards a DAC register.

Non-PMAC-Commutated Motors: If PMAC isnot performing the commutation for motor x, 1x02
should point directly to the DAC register in the DSP-GATE. Typically DACx isused for motor x, but
thisis not required. The addresses of DACL1 — DAC4 are given in the default table above.

Extended Addressing: The destination address of the output command occupies bits 0 to 15 of Ix02
(range $0000 to $FFFF, or 0 to 65535). With bit 16 equal to zero -- the normal case -- the output is
signed: a negative output for a negative value, and a positive output for apositive value. Setting bit 16 to
1 provides a couple of interesting output options, as explained below. In the extended version, itis
obviously easier to specify this parameter in hexadecimal form.

Note:

With 19 at 2 or 3, the value of this variable will be reported back to the host in
hexadecimal form.

I-Variables 103

PMAC Product Guide

M agnitude and Direction Output: However, if bit 16 of 1x02 -- value 65536 -- equals 1, and 1x01=0
(no PMAC commutation), then the output is the absolute value (magnitude) of what is calculated, and the
sign (direction) bit is output on the AENAN/DIRnN line of the set of flags pointed to by Ix25 (polarity is
determined by jumper E17). Inthis case, bit 16 of Ix25 should be set also to 1 to disable the amplifier-
enable function for that line.

This magnitude-and-direction mode is suited for driving servo amplifiers that expect this type of input
and for driving voltage-to-frequency (V/F) converters, such asPMAC's ACC-8D Option 2 board for
running stepper motor drivers. For example, if using PMAC and an ACC-8D Option 2 to run afour-axis
stepper systems, set up the variables in the following way:

1102=$1C003 [125=$1C000
1202=$1C002 1225=$1C004
1302=$1C00B 1325=$1C008
1402=$1CO0A 1425=$1C00C

Direct Micro Step Output: If bit 16 of 1x02 -- value 65536 -- equals 1, and Ix01=1 (PMAC
commutation), then the output is set up for direct micro stepping phase control using PMAC's
commutation algorithms. Just asin the closed-loop commutation case (see above), bits 0-15 should point
to the low address of an adjacent pair of DACs.

X-Register Output: If bit 19 of 1x02 is set to 1, the command outputs are written to the X-registers of
the specified address instead of the Y -registers. If bit 19 is at the default of 0, the command outputs are
written to the normal Y -registers. Writing to X-registers has two main uses. First, some MACRO nodes
arein X-registers. Second, for cascaded loops, the output of one loop can become the input to another
loop, and master or feedback inputs are expected in X-registers.

IX03 Motor x Position Loop Feedback Address

Range: Extended legal PMAC X addresses
Default:
Variable Hex Decimal Encoder

1103 $0720 (1824) (=converted ENC1)
1203 $0721 (1825) (=converted ENC2)
1303 $0722 (1826) (=converted ENC3)
1403 $0723 (1827) (=converted ENC4)

Units: Extended legal PMAC X addresses

This parameter tells the PMAC whereto look for its feedback to close the position loop for motor x.
Usually it pointsto an entry in the Encoder Conversion Table where the values from the encoder counter
registers have been processed at the beginning of each servo cycle (possibly to include sub-count data).
Thistable starts at address $0720 (1824 decimal). It is shipped from the factory configured as shown in
the default table above.

For amotor with dual feedback (motor and load), use Ix03 to point to the encoder on the load and Ix04 to
point to the encoder on the motor.

If the position loop feedback device is the same device asis used for commutation (with PMAC doing the
commutation), then it must also be specified for commutation with 1x83. However, 1x83 should specify
the address of the encoder counter itself, not the converted data of the table.

104 I-Variables

PMAC Product Guide

Hardware Home Position Capture: The source address of the position information occupies bits 0 to
15 of Ix03 (range $0000 to $FFFF, or 0 to 65535). With bit 16 equal to zero -- the normal case -- position
capture on homing is done with the hardware capture register associated with the flag inputs pointed to by
IX25. Inthiscase, it isimportant to match the encoder number, the address pointed to with 1x03, with the
flag number, the address pointed to with 1x03 (e.g. ENC1 -- CHA1 & CHB1 -- with HMFL1 and LIM1).

Softwar e Home Position Capture; If bit 16 (value 65536) is set to one, the position capture on homing
is done through software, and the position source does not have to match the input flag source. Thisis
important particularly for parallel-data position feedback, such as from alaser interferometer (whichis
incremental data and requires homing). For example, if motor #1 used parallel feedback from alaser
interferometer processed as the first (triple) entry in the conversion table, the key 1-Variables would be:

1103=$10722 1125=$C000
Thiswould permit homing on interferometer data with HMFL 1 triggering.

Note:

In the extended version, it is easier to specify this parameter in hexadecimal form.
With 19 at 2 or 3, the value of this variable will be reported back to the host in
hexadecimal form.

Captureon Following Error: If bit 17 of Ix03 is set to 1, then the trigger for position capture of this
motor is atrue state on the warning following error status bit for the motor. If bit 17 is at the default of O,
the trigger for position capture is the capture flag of the flag registers as set by 1x25. Thetrigger is used
in two types of moves: homing search moves and programmed move-until-triggers. If bit 17 isset to 1,
the triggered position must be software captured, so bit 16 must also be set to 1 to specify software
captured bit position.

IX04 Motor x Velocity Loop Feedback Address

Range: Legal PMAC X addresses
Default: Same as [x03
Units: Legal PMAC X addresses

This parameter holds the address of the position feedback device that PMAC uses for its velocity-loop
feedback information. For a motor with only a single feedback device (the usua case), this must be the
same as 1x03. For amotor with dual feedback (motor and load), use 1x04 to point to the encoder on the
motor, and 1x03 to point to the encoder on the load.

If the velocity-loop feedback device is the same device asis used for commutation (if PMAC is doing the
commutation), then both 1x04 and 1x83 (commutation feedback address) must reference the same device.
However, Ix04 typically points to the converted data -- aregister in the Encoder Conversion table -- while
IX83 must point directly to the DSPGATE encoder register.

The instructions for setting this parameter are identical to those for 1x03, except that there are no address
extension hits.

Note:

When planning which channels to use when connecting the position and velocity
encoders, remember that the channel pointed to by 1x25 is used for the Overtravel,
Amplifier Fault, and Home Flag inputs.

I-Variables 105

PMAC Product Guide

IXO5 Motor x Master (Handwheel) Position Address

Range: Legal PMAC X addresses
Default: $073F (1855) (= zero register at end of conversion table)
Units: Legal PMAC X addresses

This parameter tells the PMAC where to look for the position of the master, or handwheel encoder for
motor x. Usually thisis an entry in the Encoder Conversion Table that holds processed information from
an encoder channel. The instructions for setting this parameter are identical to those for 1x03, except the
extended bits mean different things. The default value permits handwheel input from the JPAN connector
(jumpered into the ENC2 counter with E22 and E23).

Following Modes: The source address of the position information occupies bits 0 to 15 of 1x05 (range
$0000 to $FFFF, or 0 to 65535). With bit 16 equal to zero -- the normal case -- position following is done
with the actual position reported for the motor reflecting the change due to the following. With bit 16 --
value 65536 -- equal to one, the actual position reported for the motor does not reflect the change dueto
the following (offset mode). This mode can be useful for part offsets, and for superimposing programmed
and following moves. For example, to have motor #1 following encoder 2 in offset mode, 1105 should be
set to $10721.

In the extended version, it is obviously easier to specify this parameter in hexadecimal form. With 19 at 2
or 3, the value of this variable will be reported back to the host in hexadecimal form.

Note:

It isimportant not to have the same source be both the master and the feedback for
an individual motor. If thisisthe case, with 1x06=1 to enable following, the motor
will run away (it is like a puppy chasing itstail -- it cannot catch up to its desired
position because its desired position keeps moving ahead of it). This case can
easily occur for motor 2 with the default values of 1203 and 1205 specifying the
same address.

To ensure that following cannot occur by accident, change IX05 so it points to a register that cannot
change. Thisway, even if the following function gets turned on, for instance by the motor selector inputs
on the JPAN connector, no following can occur. The best registers to use for this purpose are the unused
ones at the end of the conversion table. With the default table setup, choose any register between $072A
and $073F (1834 to 1855 decimal). If extending the table, choose a register between the end of the table
and $073F.

IX06 Motor x Master (Handwheel) Following Enable

Range: 0.1
Default: 0
Units: none

This parameter disables or enables motor X’ s position following function. A value of 0 means disabled; a
value of 1 means enabled. Following mode is specified by high bits of 1x05.

This parameter can be changed on-line through hardware inputs on the JPAN connector. The FPDn/
motor/coordinate-system select lines (low-true BCD-coded) can turn 1x06 on and off. On power-up or
reset, if 12 was saved as zero, Ix06 for the selected motor is set to one and 1x06 for al other motorsis set
to zero regardless of the values that were saved. When the select switch is changed, 1x06 for the de-
selected motor is set to zero and 1x06 for the selected motor isset to 1.

106 I-Variables

PMAC Product Guide

IXO7 Motor x Master (Handwheel) Scale Factor

Range: 8,388,608 .. 8,388,607
Default: 96
Units: none

This parameter controls with what scaling the master (handwheel) encoder gets extended into the full-
length register. In combination with 1x08, it also controls the following ratio of motor x (delta-motor-x =
[1x07/1x08] * delta-handwheel-x) for position following (electronic gearing). For following, Ix07 and
Ix08 can be thought of as the number of teeth on meshing gears in a mechanical coupling.

IXQ7 can be changed on the fly to permit real-time changing of the following ratio, but 1x08 may not.
IX08 Motor x Position Scale Factor

Range: 0.. 8,388,607
Default: 96
Units: none

This parameter controls how the position encoder counter gets extended into the full-length register. For
most purposes, thisis transparent and does not need to be changed from the defaullt.

There are two reasons to change this from the default value. First, becauseit isinvolved in the gear ratio
of the position following function -- theratio is Ix07/1x08 -- this might be changed (usually raised) to get
amore precise ratio.

The second reason to change this parameter (usually lowering it) isto prevent internal saturation at very
high gains or count rates (velacity). PMAC’ sfilter will saturate when the velocity in counts/sec
multiplied by Ix08 exceeds 768M (805,306,368). This only happens in rare applications -- the count rate
must exceed 8.3 million counts per second before the default value of 1x08 gives a problem.

When changing this parameter, make sure the motor iskilled (disabled). Otherwise, a sudden jump will
occur, because the internal position registers will have changed. This means that this parameter should
not be changed in the middle of an application. If areal-time change in the position-following gear ratio
isdesired, Ix07 should be changed.

In most practical cases, 1x08 should not be set above 1000 because higher values can make the servo filter
saturate too easily. If Ix08 is changed, 1x30 should be changed inversely to keep the same servo
performance (e.g. if Ix08 is doubled, Ix30 should be halved).

Ix09 Motor x Velocity Loop Scale Factor

Range: 0 .. 8,388,607
Default: 96
Units:; none

This parameter controls how the encoder counter used to close the velacity servo loop gets extended into
the full-length register. For most purposes, thisis transparent and does not need to be changed from the
default. This parameter should not be changed in the middle of an application, because it scales many
internal values. If the same sensor is used to close both the position and velocity 1oops (1x03=1x04), I1x09
should be set equal to Ix08.

If different sensors are used, 1x09 should be set such that the ratio of 1x09 to Ix08 isinversely
proportional to the ratio of the velocity sensor resolution (at the load) to the position sensor resolution.

I-Variables 107

PMAC Product Guide

Example:

If 25000 line/inch (20,000 ctg/in) linear encoder is used for position feedback, and a 500 line/rev (2000
cts/rev) rotary encoder is used for velocity loop feedback, and there is a 5-pitch screw, the effective
resolution of the velocity encoder is 10,000 cts/in (2000x5), half of the position sensor resolution, so Ix09
should be set to twice Ix08.

If the value computed this way for 1x09 does not come to an integer, use the nearest integer value.

Motor Safety I-Variables

Ix11 Motor x Fatal (Shutdown) Following Error Limit

Range: 0 .. 8,388,607
Default: 32000 (2000 counts)
Units:; 1/16 Count

This parameter sets the magnitude of the following error for motor x at which operation will shut down.
When the magnitude of the following error exceeds Ix11, motor x is disabled (killed). If the motor's
coordinate system is executing a program at the time, the program is aborted. It is optional whether other
PMAC motors are disabled when this motor exceeds its following error limit; bits 21 and 22 of 1x25
control what happens to the other motor (the default is that all PMAC motors are disabled).

A status bit for the motor, and one for the coordinate system (if the motor isin one) are set. If this
coordinate system is hardware-sel ected on JPAN (with 12=0), or software-addressed by the host (with
12=1), the ERLD/ output on JPAN, and the EROR input to the interrupt controller (except for PMAC-
VME) aretriggered.

Setting Ix11 to zero disables the fatal following error limit for the motor. This may be desirable during
initial development work, but not in an actual application. A fatal following error limit is an important
protection against various types of faults, such asloss of feedback that cannot be detected directly and
that can cause severe damage to people and equipment.

Note:

The units of Ix11 are 1/16 of acount. Therefore, this parameter must hold avalue
16 times larger than the number of counts at which the limit will occur. For
example, if the limit is to be 1000 counts, 1x11 should be set to 16,000.

Ix12 Motor x Warning Following Error Limit

Range: 0 .. 8,388,607
Default: 16000 (1000 counts)
Units; 1/16 Counts

This parameter sets the magnitude of the following error for motor x at which awarning flag goestrue. If
thislimit is exceeded, status bits are set for the motor and the motor’ s coordinate system (if any). The
coordinate system status bit is the logical OR of the status bits of al the motorsin the coordinate system.

Setting this parameter to zero disables the warning following error limit function. If this parameter is set
greater than the fatal following error limit (1x11), the warning status bit will never go true because the
fatal limit will disable the motor first.

If bit 17 of Ix03 is set to 1, the motor can be triggered for homing search moves, jog-until-trigger moves,
and motion program move-until-trigger moves when the following error exceeds Ix12. Thisisknown as
torque-mode triggering because the trigger will occur at atorque level corresponding to the Ix12 limit.

108 I-Variables

PMAC Product Guide

At any given time, one coordinate system’ s status bit can be output to several places, which system
depends on what coordinate system is hardware-sel ected on the panel input port if 12=0, or what
coordinate system is software-addressed from the host (&n) if 12=1. The outputs that work in this way
are F1LD/ (pin 23 on connector J2), F1ER (line IR3 into the programmable interrupt controller (PIC) on
PMAC-PC, line IR6 into the PIC on PMAC-STD) and, if E28 connects pins 1 and 2, FEFCO/ (on the
JMACH connectors).

Note:

The units of Ix12 are 1/16 of a count. Therefore, this parameter must hold a value
16 times larger than the number of counts at which the limit will occur. For
example, if the limit is to be 1000 counts, 1x12 should be set to 16,000.

IXx13 Motor x Positive Software Position Limit

Range: + 247
Default: 0
Units: Encoder Counts

This parameter sets the position for motor x which if exceeded in the positive direction causes a
deceleration to a stop (controlled by 1x15) and alows no further positive position increments or positive
output commands as long as the limit is exceeded. If thisvalueis set to zero, there is no positive software
limit (to set 0 asalimit, use 1). Thislimit is de-activated automatically during homing search moves,
until the hometrigger isfound. It isactive during the post-trigger move.

Starting in firmware 1.15, bit 17 of 1x25 does not de-activate the software limits. Permanent de-activation
is done by setting the value of the software limit to zero.

Thislimit is referenced to the most recent power-up zero position or homing move zero position. The
physical position at which thislimit occursis not affected by axis offset commands (e.g. PSET, X=),
athough these commands will change the reported position value at which the limit occurs.

Ix14 Motor x Negative Software Position Limit

Range: + 247
Default: O (Disabled)
Units: Encoder Counts

This parameter sets the position for motor x which if exceeded in the negative direction causes a
deceleration to a stop (controlled by 1x15) and alows no further negative position increments or negative
output commands as long as the limit is exceeded. If thisvalueis set to zero, there is no negative
software limit (to set 0 asalimit, use-1). Thislimit is de-activated automatically during homing search
moves, until the trigger isfound. It is active during the post-trigger move.

Starting in firmware 1.15, bit 17 of 1x25 does not de-activate the software limits. Permanent de-activation
is done by setting the value of the software limit to zero.

Thislimit is referenced to the most recent power-up zero position or homing move zero position. The
physical position at which thislimit occursis not affected by axis offset commands (e.g. PSET, X=),
athough these commands will change the reported position value at which the limit occurs.

I-Variables 109

PMAC Product Guide

IX15 Motor x Deceleration Rate on Position Limit or Abort

Range: Positive floating point
Default: 0.25
Units: Counts/msec?

This parameter sets the rate of deceleration that motor x will useif it exceeds a hardware or software
limit, or has its motion aborted by command (A or <CONTROL- A>). Usually, thisvalue should be set
to avalue near the maximum physical capability of the motor. It isnot agood ideato set this value past
the capability of the motor because doing so increases the likelihood of exceeding the following error
limit, which stops the braking action and could allow the axis to coast into a hard stop.

Note:

Do not set this parameter to zero or the motor will continue indefinitely after an
abort or limit.

Example:
If the motor had 125 encoder lines (500 counts) per millimeter and it should decelerate at 4000 mmn/sec?,
set 1x15 to 4000 mm/sec? *500 cts/mm * sec2/1,000,000 msec? = 2 cts/msec?.

IXx16 Motor x Maximum Permitted Motor Program Velocity

Range: Positive floating point
Default: 32.0
Units: Counts/msec

This parameter sets alimit to the allowed velocity for LI NEAR mode programmed moves for motor X,
provided 113 equals zero (no move segmentation). If ablended move command in a motion program
reguests a higher velocity of this motor, all motors in the coordinate system are slowed down
proportionately so that motor x will not exceed this parameter, yet the path will not be changed. This
limit does not affect transition-point, circular, or splined moves. The calculation does not take into
account any feedrate override (% value other than 100).

Note:

If PMAC scircular interpolation function isused at all, then 113 must be greater
than zero and 1x16 will not be active as a velocity limit.

This parameter also sets the speed of a programmed RAPI D mode move for the motor, provided that
variable 150 isset to 1 (if 150 is set to 0, jog speed parameter I1x22 is used instead). This happens
regardless of the setting of 113.

Ix17 Motor x Maximum Permitted Motor Program Acceleration

Range: Positive floating point
Default: 0.5

2
Units: counts/msec

This parameter sets alimit to the allowed acceleration in LI NEAR-mode blended programmed moves for
motor X, provided 113 equals zero (no move segmentation). If aLl NEAR move command in amotion
program requests a higher acceleration of this motor given its TA and TS time settings, the acceleration
for al motorsin the coordinate system is stretched out proportionately so that motor x will not exceed this
parameter, yet the path will not be changed.

Because PMAC cannot ook ahead through an entire move sequence, it sometimes cannot anticipate
enough to keep acceleration within thislimit. Refer to LINEAR-mode tragjectories in the Writing a
Motion Program in this manual.

110 I-Variables

PMAC Product Guide

Warning:
Do not set both the TA and TStimesto zero, or a division-by-zero error will occur
in the move calculations, possibly causing erratic movement.

It is possible to have thislimit govern the acceleration for all LINEAR-mode moves by setting very low
TA and TStimes. The minimum acceleration time settings that should be used are TA1 with TSO.

When moves are broken into small pieces and blended together, thislimit can affect the velocity, because
it limits the calculated deceleration for each piece, even if that deceleration is never executed, because it
blends into the next piece.

Thislimit does not affect PVT, Cl RCLE, RAPI D, or SPLI NE moves. The calculation does not take into
account any feedrate override (%value other than 100).

If PMAC scircular interpolation function is used at all, then 113 must be greater than zero, and Ix17 will
not be active as an acceleration limit.

Example:
Given axis definitions of #1- >10000X, #2- >10000Y, an Ix17 for each motor of 0.25 and the
following motion program segment:

I NC F10 TA200 TSO

X20

Y20

the rate of acceleration from the program at the corner for motor #2 (X) is ((0-10)units/sec * 10000
cts/unit * sec/1000msec) / 200 msec = -0.5 ct/msec?. The acceleration of motor #2 (Y) is +0.5
cts/msec?. Since this s twice the limit, the acceleration will be slowed so that it takes 400 msec.

With the same setup parameters, and the following program segment:

I NC F10 TA200 TSO

X20 Y20

X-20 Y20

the rate of acceleration from the program at the corner for motor #1 (X) is ((-7.07-7.07)units/sec * 10000
cts/unit * sec/1000msec) / 200 msec = -0.707 cts/msec2. The acceleration of motor #2 (Y)is0.0. Since
motor #1 exceeds its limit the acceleration time will be lengthened to 200 * 0.707/0.25 = 707 msec.

Note that in the second case, the accel eration time is made longer (the corner is made larger) for what is

an identically shaped corner (909). In acontouring XY application, this parameter should not be relied
upon to produce consistently sized corners.

Ix19 Motor x Maximum Permitted Motor Jog/Home Acceleration

Range: Positive floating point
Default: 0.015625

2
Units: counts/msec

This parameter sets alimit to the commanded accel eration magnitude for jog and home moves, and for
RAPI D-mode programmed moves of motor X. If the acceleration timesin force at the time (1x20 and
Ix21) request a higher rate of acceleration, thisrate of acceleration will be used instead. The calculation
does not take into account any feedrate override (%ovalue other than 100).

Warning:

Do not set both 1x20 and 1x21 to O, or a division-by-zero error will result in the
move calculations, possibly causing erratic operations.

I-Variables 111

PMAC Product Guide

Since jogging movesare not coordinated between motors, mostprefer to specify jog acceleration by rate,
not time. To do this, smply set Ix20 and 1x21 low enough that the Ix19 limit is always used. The
minimum accel eration time settings that should be used are Ix20=1 and 1x21=0.

The default limit of 0.015625 counts/msec? is quite low and probably will limit acceleration to alower
value than is desired in most systems; most will eventually raise thislimit. Thislow default was used for
safety reasons.

Example:

With Ix20 (accel time) at 100 msec, Ix21 (S-curvetime) at 0, and 1x22 (jog speed) at 50 counts/msec, a

jog command from stop would request an acceleration of (50 cts/msec) / 100 msec, or 0.5 cts/msec?. If

Ix19 were set to 0.25, the acceleration would be done in 200 msec, not 100 msec.

With the same parametersin force, an on-the-fly reversal from positive to negative jog would request an

acceleration of (50-(-50) cts/msec) / 100 msec, or 1.0 cts/msec2. The limit would extend this acceleration
period by afactor of 4, to 400 msec.

Motor Movement I-Variables

Ix20 Motor x Jog/Home Acceleration Time

Range: 0.. 8,388,607
Default: 0 (so I1x21 controls)
Units: msec

This parameter establishes the time spent in acceleration in ajogging, homing, or programmed RAPI D -
mode move (starting, stopping, and changing speeds). However, if Ix21 (jog/home S-curve time) is
greater than half this parameter, the total time spent in acceleration will be two times Ix21. Therefore, if
Ix20 is set to 0, Ix21 alone controls the acceleration time in pure S-curve form. In addition, if the
maximum accel eration rate set by these times exceeds what is permitted for the motor (1x19), the time
will be increased so that 1x19 is not exceeded.

Warning:
Do not set both 1x20 and Ix21 to 0 simultaneously, even if relying on 1x19 to limit

the acceleration or a division-by-zero error will occur in the jog move calculations,
possibly resulting in erratic motion.

A change in this parameter will not take effect until the next move command. For instance, for a different
deceleration time in ajog move, specify the acceleration time, command the jog, change the deceleration
time, then command the jog move again (e.g. J=), or at |least the end of thejog (J/).

Ix21 Motor x Jog/Home S-Curve Time

Range: 0 .. 8,388,607
Default: 50
Units: msec

This parameter establishes the time spent in each half of the Sfor S-curve acceleration in ajogging,
homing, or RAPI D-mode move (starting, stopping, and changing speeds). If this parameter is more than
half of Ix20, the total acceleration time will be two times Ix21, and the acceleration time will be pure S-
curve (no constant acceleration portion). If the maximum acceleration rate set by 1x20 and 1x21 exceeds
what is permitted for the motor (1x19), the time will be increased so that 1x19 is not exceeded.

112 I-Variables

PMAC Product Guide

Warning:
Do not set both 1x20 and Ix21 to 0 simultaneously, even relying on 1x19 to limit

the acceleration or adivision-by-zero error will occur in the jog move calculations,
possibly resulting in erratic motion.

A change in this parameter will not take effect until the next move command. For instance, if a different
deceleration time is needed from the acceleration time in ajog move, specify the acceleration time,
command the jog, change the decel eration time, then command the jog move again (e.g. J=), or at least
the end of thejog (J/).

Ix22 Motor x Jog Speed

Range: Positive floating point
Default: 32.0
Units; Counts/ msec

This parameter establishes the commanded speed of ajog move or a programmed RAPI D-mode move (if
150=0) for motor x. Direction of the jog move is controlled by the jog command.

A changein this parameter will not take effect until the next move command. For instance, if you wanted
to change the jog speed on the fly, start the jog move, change this parameter, then issue a new jog
command.

Ix23 Motor x Homing Speed and Direction

Range: Floating point
Default: 32.0
Units: Counts/ msec

This parameter establishes the commanded speed and direction of a homing-search move for motor x.
Changing the sign reverses the direction of the homing move -- a negative value specifies ahome search
in the negative direction; a positive value specifies the positive direction.

Ix25 Motor x Limit/Home Flag/Amp Flag Address

Range: Extended legal PMAC X addresses
Default:
Variable Hex Decimal Limit and Flag Set

1125 $C000 (49152) (LIM1, HMFL1...)
1225 $C004 (49156) (LIM2, HMFL2...)
1325 $C008 (49160) (LIM3, HMFL3...)
1425 $C00C (49164) (LIM4, HMFLA4...)

Units: Extended legal PMAC X addresses

This parameter tells PMAC what set of flagsit will look to for motor x’s overtravel limit switches, home
flag, amplifier-fault flag, amplifier-enable output, and index channel. Typicaly, these are the flags
associated with an encoder input; specifically, those of the position feedback encoder for the motor. |If
dual-loop feedback is used (1x03 and Ix04 are different) 1x25 should be set to match the position-loop
encoder, not the vel ocity-loop.

Note:

To use PMAC' s Hardware Position Capture for homing search moves, the channel
number of the flags specified by 1x25 must match the channel number of the
encoder specified by 1x03 for position-loop feedback.

I-Variables 113

PMAC Product Guide

The overtravel-limit inputs specified by this parameter must be held low in order for motor x to be able to
command movement. The polarity of the amplifier-fault input is determined by a high-order bit of this
parameter (see below). The polarity of the home-flag input is determined by Encoder/Flag |-V ariables 2
and 3 for the specified encoder. The polarity of the amplifier-enable output is determined by Jumper E17.

Extended Addressing: The source address of the flag information occupies bits 0 to 15 of 1x25 (range
$0000 to $FFFF, or 0 to 65535). If thisisall that is specified -- that is, al higher bits are zero -- then al
of the flags are used, and used in the normal mode (low-true FAULT, disabling all motors). If higher bits
are set to one, some of the flags are not used, or used in an alternate manner, as documented below.

In the extended versions, it is easier to specify this parameter in hexadecimal form. With 19 at 2 or 3, the
value of thisvariable will be reported back to the host in hexadecimal form.

IXx25 - Motor x Flag Address and Modes

Moges PMAC addrless of flags

Hex($) 5 2 C 0 0 4

Binfo|1/0/1]|0]|0

=
o
=
=
o
o
o
o
o
o
o
o
o
o
o
=
o
o

=0 Use amplifier enable function
=1 Do not use amplifier enable function

[: Enable position limits
=1 Disable position limits
[
1

0 Enable amplifier fault input
1 Disable amplifier fault input

=00 Kill all PMAC motors on fault or F.E.
=01 Kill all C.S. motors on fault or F.E.
=1x Kill this motor only on fault or F.E.

{:O Low true fault input
=1 High true fault input

Amplifier Enable Use Bit: With bit 16 equal to zero -- the normal case -- the AENAN/DIRn output is
used as an amplifier-enable line: off when the motor iskilled, on when it is enabled. Voltage polarity is
determined by jumper(s) E17.

If bit 16 (value $10000, or 65536) is set to one (e.g. 1125=$1C000), this output is not used as an
amplifier-enable line. This permits use of the line as a direction bit for applications requiring magnitude-
and direction outputs, such as driving steppers through voltage-to-frequency converters. (Setting bit 16 of
IX02 to 1 enables use of this output as adirection bit.) General-purpose use of this output is also possible
by assigning an M-Variabletoiit.

Overtravel Limit Use Bit: With bit 17 equal to zero -- the normal case -- the +/-LIMn inputs must be
held low to permit commanded motion in the appropriate direction. If there are not actual (normally
closed or normally conducting) limit switches, the inputs must be hardwired to ground.

114 I-Variables

PMAC Product Guide

Note:

The direction sense of the limit inputs is the opposite of what many people
consider intuitive. That is, the +LIMn input, when taken high (opened), stops
commanded motion in the negative direction; the -LIMn input, when taken high,
stops commanded mation in the positive direction. It isimportant to confirm the
direction sense of the limit inputs in actual operation.

If bit 17 (value $20000, or 131072) is set to one (e.g. 1125=$2C000), motor x does not use these inputs as
overtravel limits. This can be done temporarily, as when using alimit asahoming flag. If the limit
function is not used at all, these inputs can be used as general-purpose inputs by assigning M-Variables to
them.

Starting in firmware 1.15, bit 17 of 1x25 does not affect the software overtravel limits. To activate the
software overtravel limits, set the value of I1x13 and/or Ix14 to anon-zero value. To de-activate, set their
valuesto zero.

Amplifier Fault UseBit: If bit 20 of 1x25 is 0, the amplifier-fault input function through the FAULTn
input is enabled. If bit 20 (value $100000, or 1,048,576) is 1 (e.g. 1125=$10C000), this function is
disabled. General-purpose use of thisinput isthen possible by assigning an M-Variable to the input.

Action-on-Fault Bits: Bits 21 (value $200000, or 2,097,152) and 22 (value $400000, or 4,194,344) of
Ix25 control what action is taken on an amplifier fault for the motor, or on exceeding the fatal following
error limit (Ix11) for the motor:

Bit 22 Bit 21 Function
Bit 22=0 Bit 21=0 Kill al PMAC motors
Bit 22=0 Bit 21=1 Kill all motorsin same coordinate system
Bit 22=1 Bit 21=0 Kill only this motor
Bit 22=1 Bit 21=1 Kill only this motor

Regardless of the setting of these bits, a program running in the coordinate system of the offending motor
will be halted on an amplifier fault or the exceeding of afatal following error limit.

Amplifier-Fault Polarity Bit: Bit 23 (value 8,388,608) of 1x25 controls the polarity of the amplifier
fault input. A zero in this bit means alow-true input (low means fault); a one means high true (high
means fault). Theinput is pulled high internally, so if no line is attached to the input, and bit 20 of Ix25is
zero (enabling the fault function), bit 23 of I1x25 must be zero to permit operation of the motor.

First Hex Digit: In the hexadecimal form, bits 20 to 23 combine to form a single hexadecimal digit. For
reference, the possible values and their meanings are:

Hex Digit Function

$0: Low-true amp fault enabled; all motorskilled on fault or excess following error (default)

$1: Amp fault disabled; all motors killed on excess following error

$2: Low-true amp fault enabled: coordinate system motors killed on fault or excess following
error

$3: Amp fault disabled; coordinate system motors killed on excess following error

$4: L ow-true amp fault enabled; only this motor killed on fault or excess following error

$5: Amp fault disabled; only this motor killed on excess following error

$6: L ow-true amp fault enabled; only this motor killed on fault or excess following error

$7: Amp fault disabled; only this motor killed on excess following error

$8: High-true amp fault enabled; al motors killed on fault or excess following error (default)

$9: Amp fault disabled; all motors killed on excess following error

$A: High-true amp fault enabled: coordinate system motors killed on fault or excess following
error

$B: Amp fault disabled; coordinate system motors killed on excess following error

I-Variables 115

PMAC Product Guide

$C: High-true amp fault enabled; only this motor killed on fault or excess following error
$D: Amp fault disabled; only this motor killed on excess following error
$E: High-true amp fault enabled; only this motor killed on fault or excess following error
$F: Amp fault disabled; only this motor killed on excess following error

Examples:

1. Motor 1 using flags 1 with amp-enable output, and low-true amp fault disabling al motors:
| 125=$00C000 or | 125=$C000

2. Motor 1 using flags 1 with direction output, and low-true amp fault disabling al motors:
| 125=$01C000

3. Motor 1 using flags 1 with amp-enable output, and low-true amp fault disabling only coordinate
system motors: | 125=$20C000

4. Motor 1 using flags 1 with direction output, and amp-fault disabled, with excess following error
disabling all Coordinate System motors: | 125=$31C000

5. Motor 1 using flags 5 with amp-enable output, and high-true amp fault disabling only this motor:
[125=$C0C010

IXx26 Motor x Home Offset
Range: -8,388,608 .. 8,388,607
Default: 0

Units: 1/16 Count

Thisistherelative position of the end of the homing cycle to the position at which the home trigger was
made. That is, the motor will command a stop at this distance from where it found the home flags and
call this commanded location as motor position zero.

This permits the motor zero position to be at a different location from the home trigger position,
particularly useful when using an overtravel limit as a home flag (offsetting out of the limit before re-
enabling the limit input as alimit). If large enough (greater than 1/2 times home speed times acceleration
time) it permits a homing move without any reversal of direction.

Note:

The units of this parameter are 1/16 of a count, so the value should be 16 times the
number of counts between the trigger position and the home zero position.

Example:
To make motor zero position as 500 counts in the negative direction from the home trigger position, set
Ix26 to -500 * 16 = -8000.

Ix27 Motor x Position Rollover Range

Range: 0.. 8,388,607
Default: 0
Units: Counts

This parameter permits position rollover on aPMAC rotary axis by telling PMAC how many encoder
counts are in one revolution of therotary axis. Thislets PMAC handle rollover properly. When Ix27 is
greater than zero, and motor x is assigned to arotary axis (A, B, or C), rollover is active. With rollover
active, for a programmed axis move in Absolute (ABS) mode, the motor will take the shortest path around
the circular range defined by 1x27 to get to the destination point.

Axismovesin Incrementa (I NC) mode are not affected by rollover. When Ix27 is set to 0, thereis no
rollover. Rollover should not be attempted for axes other than A, B, or C. Jog moves are not affected by
rollover. Reported motor position is not affected by rollover. (To obtain motor position information
rolled over to within one motor revolution, use the modulo (remainder) operator, either in PMAC or in the
host computer: e.g. P4=(M462/ (1 408*32)) % 427)

116 I-Variables

PMAC Product Guide

Example:

Motor #4 drives arotary table with 36,000 counts per revolution. It is defined to the A-axis with #4-
>100A (A isin units of degrees). 1427 is set to 36000. With motor #4 at zero counts (A-axis at zero
degrees), an A270 move in a program is executed in Absolute mode. Instead of moving the motor from O
to 27,000 counts, which it would have done with 1427=0, PMAC moves the motor from O to -9,000
counts, or -90 degrees, which is equivalent to +270 degrees on the rotary table.

Ix28 Motor x In-position Band

Range: 0 .. 8,388,607
Default: 160 (10 counts)
Units: 1/16 Count

Thisis the magnitude of the maximum following error at which motor x will be considered in position
when not performing amove. Several things happen when the motor isin-position. First, a status bit in
the motor status word is set. Second, if all other motors in the same coordinate system are also in-
position, a status bit in the coordinate system status word is set. Third, for the hardware-selected (FPDO/-
FPD3/) coordinate system -- if 12=0 -- or for the software addressed (&n) coordinate system -- if 12=1 --
outputs to the control panel port and to the interrupt controller are set.

Technically, five conditions must be met for a motor to be considered in-position:

The motor must be in closed-loop control.

The desired velocity must be zero.

The magnitude of the following error must be less than this parameter.
The move timer must not be active.

The above four conditions must all be true for (17+1) consecutive scans.

aghrowbdpE

The move timer is active during any programmed or non-programmed move including DWELLs and
DELAYsin a program —to make this bit to come true during a program, program an indefinite wait
between some moves by keeping the program trapped in aWHI LE loop that has no moves or DWELLs.
More sophisticated in-position functions (for instance, ones that require several consecutive scans within
the band) can be implemented using PLC programs. See the program exampl es section.

Note:

The units of this parameter are 1/16 of a count, so the value should be 16 times the
number of countsin the in-position band.

Example:

ML40- >Y: $0814, 0 ; Motor 1 in-position bit

WHI LE (ML40=0) WAI T . Delay indefinitely until in-position is true
ML=1 ; Set output once in-position

Ix29 Motor x Output - or First Phase - DAC Bias

Range: -32,768 .. 32,767

Default: 0

Units: DAC Bits

This parameter isthe digital equivalent of an offset potentiometer on the analog output. It can be used to
correct for differencesin zero-reference between PMAC' s analog output and the amplifier’ s analog input.
This offset is active in both closed-1oop and open-loop modes, even when the motor iskilled.

For amotor not commutated by PMAC (1x01=0), thisisthe value that is added onto the output of the
servo algorithm or the open loop output value (including the zero output when the motor iskilled) before
itissent to the DAC.

I-Variables 117

PMAC Product Guide

If the analog output is unidirectional (bit 16 of Ix02 is 1), this bias term is added before the absolute value
function is performed. It isused if thereisadirectional bias on the motor. In thistype of motor, Ix79
(offset after absolute value) is used to control output deadband or dithering.

For a PMAC-commutated motor (1x01=1), thisisthe value that is added onto the B-phase output of the
commutation algorithm. Thisisthe DAC with the lower address (higher-numbered, i.e. DAC 2 of aDAC
1 and DAC 2 pair) of the adjacent DAC pair used for commutation. 1x79 is added onto the other phase
output (higher-addressed, lower-numbered DAC) of the commutation algorithm. In addition to the
primary use of compensating for analog offsets, it can be used in certain phasing search or phasing
direction algorithms for permanent-magnet brushless motors because it drives the motor like a stepper
motor.

Ix29 can be used to create atorque offset for a motor not commutated by PMAC. For a motor
commutated by PMAC, use the "Output Offset” register Y :$0045, etc., instead (it is also suitable for a
motor not commutated by PMAC).

Servo Control I-Variables

The servo control variables in the range 1x30-1x69 have different meanings on a PMAC with the Option 6
Extended Servo Algorithm. For aPMAC with Option 6, refer to the manual for Option 6 for descriptions
of the variablesin this range.

Ix30 Motor x PID Proportional Gain

Range: -8,388,608 .. 8,388,607
Default: 2000
Units: (1x08/219) DAC bits/Encoder count

Thisterm provides a control output proportional to the position error (commanded position minus actual
position) of motor X. It acts effectively as an electronic spring. The higher Ix30 is, the stiffer the spring
is. Toolow avalue will result in sluggish performance. Too high avalue can cause a buzz from constant
over-reaction to errors.

If Ix30 is set to a negative value, this has the effect of inverting the command output polarity for motors
not commutated by PMAC, when compared to a positive value of the same magnitude. This can
eliminate the need to exchange wires to get the desired polarity. On amotor that is commutated by
PMAC, changing the sign of 1x30 has the effect of changing the commutation phase angle by 180°.
Negative values of 1x30 cannot be used with the auto tuning programs in the PMAC Executive program.

Warning:

Changing the sign of 1x30 on a motor that has been closing a stable servo loop will
cause an unstable servo loop, leading to a probable runaway condition.

Usually, this parameter is set initially using the Tuning utility in the PMAC Executive Program. It may
be changed on the fly at any time to create types of adaptive control.

Note:

The default value of 2000 for this parameter is exceedingly weak for most systems
(al but the highest resolution velocity-loop systems), causing sluggish motion
and/or following error failure. Most userswill immediately want to raise this
parameter significantly even before starting serious tuning.

If the servo update time is changed, 1x30 will have the same effect for the same numerical value.
However, smaller update times (faster update rates) should permit higher values of 1x30 (stiffer systems)
without instability problems.

118 I-Variables

PMAC Product Guide

IXx31 Motor x PID Derivative Gain

Range: - 8,388,608 .. 8,388,607
Default: 1280
Units: (1x30%1x09)/226 DAC bits/(Counts/cycle)

This term subtracts an amount from the control output proportional to the measured velocity of motor x.
It acts effectively as an electronic damper. The higher 1x31 is, the heavier the damping effect is.

If the motor is driving a properly tuned tachometer-loop (velocity) amplifier, the amplifier will provide
sufficient damping, and 1x31 should be set to zero. If the motor is driving a current-loop (torque)
amplifier, or if PMAC is commutating the motor, the amplifier will provide no damping, and 1x31 must
be greater than zero to provide damping for stability.

On atypical system with a current-loop amplifier and PMAC's default servo update time (~440 psec), an
Ix31 value of 2000 to 3000 will provide acritically damped step response.

If the servo update time is changed, 1x31 must be changed proportionately in the opposite direction to
keep the same damping effect. For instance, if the servo update timeis cut in half, from 440 usec to 220
psec, 1x31 must be doubled to keep the same effect.

Usually, this parameter is set initially using the Tuning utility in the PMAC Executive Program. 1t may
be changed on the fly at any time to create types of adaptive control.

Ix32 Motor x PID Velocity Feedforward Gain

Range: 0 .. 8,388,607
Default: 1280
26
Units: (Ix30*1x08)/2 DAC hits/(counts/cycle)

This term adds an amount to the control output proportional to the desired velocity of motor . Itis
intended to reduce tracking error due to the damping introduced by 1x31, analog tachometer feedback, or
physical damping effects.

If the motor is driving a current-loop (torque) amplifier, Ix32 will usually be equal to (or dlightly greater
than) 1x31 to minimize tracking error. If the motor is driving atachometer-loop (velacity) amplifier,
typically 1x32 will be substantially greater than Ix31 to minimize tracking error.

If the servo update time is changed, 1x32 must be changed proportionately in the opposite direction to
keep the same effect. For instance, if the servo update timeis cut in half, from 440 pisec to 220 psec, 1x32
must be doubled to keep the same effect.

Usually, this parameter is set initially using the Tuning utility in the PMAC Executive Program. 1t may
be changed on the fly at any time to create types of adaptive control.

X33 Motor x PID Integral Gain

Range: 0 .. 8,388,607
Default: 0
42
Units: (Ix30*1x08)/2 DAC bitg/(counts* cycles)

This term adds an amount to the control output proportional to the time integral of the position error for
motor X. The magnitude of thisintegrated error islimited by Ix63. With Ix63 at a value of zero, the
contribution of the integrator to the output is zero, regardless of the value of 1x33.

No further errors are added to the integrator if the output saturates (if output equals 1x69), and, if 1x34=1,
when amove is being commanded (when desired velocity is not zero). In both of these cases, the
contribution of the integrator to the output remains constant.

I-Variables 119

PMAC Product Guide

If the servo update time is changed, 1x33 must be changed proportionately in the same direction to keep
the same effect. For instance, if the servo update timeis cut in half, from 440 psec to 220 psec, 1x33
must be cut in half to keep the same effect.

Usually, this parameter is set initially using the Tuning utility in the PMAC Executive Program. It may
be changed on the fly at any time to create types of adaptive control.

Ix34 Motor x PID Integration Mode

Range: 0.1
Default: 1
Units: none

This parameter controls when the position-error integrator isturned on. If itis1, position error
integration is performed only when PMAC is not commanding a move (when desired velocity is zero). If
itisO, position error integration is performed all the time.

If Ix34is 1, itistheinput to the integrator that is turned off during a commanded move, which means the
output control effort of the integrator is kept constant during this period (but is generally not zero). This
same action takes place whenever the total control output saturates at the 1x69 value.

Usualy, this parameter is set initially using the Tuning utility in the PMAC Executive Program. When
performing the feedforward tuning part of that utility, it isimportant to set 1x34 to 1 so the dynamic
behavior of the system may be observed without integrator action. 1x34 may be changed on the fly at any
time to create types of adaptive control.

IX35 Motor x PID Acceleration Feedforward Gain

Range: 0..8,388,607
Default: 0
Units: (1x30%1x08)/226 DAC bits/(counts/cycle?)

This term adds an amount to the control output proportional to the desired acceleration for motor X. Itis
intended to reduce tracking error due to inertial lag.

If the servo update time is changed, 1x35 must be changed by the inverse square to keep the same effect.
For instance, if the servo update timeis cut in half, from 440 usec to 220 psec, 1x35 must be quadrupled
to keep the same effect.

Usually, this parameter is set initially using the Tuning utility in the PMAC Executive Program. It may
be changed on the fly at any time to create types of adaptive control.

IXx68 Motor x Friction Feedforward

Range: -32,768 .. 32,767
Default: 0
Units:; DAC hits

This parameter adds a bias term to the servo loop output of motor X that is proportional to the sign of the
commanded velocity. That is, if the commanded velocity is positive, 1x68 is added to the output. If the
commanded velocity is negative, 1x68 is subtracted from the output. |f the commanded velocity is zero,
no value is added to or subtracted from the output.

This parameter is intended primarily to help overcome errors due to mechanical friction. It can be
thought of as afriction feedforward term. Becauseit is afeedforward term that does not utilize any
feedback information, it has no direct effect on system stability. It can be used to correct the error
resulting from friction, especially on turnaround, without the time constant and potential stability
problems of integral gain.

120 I-Variables

PMAC Product Guide

If PMAC is commutating this motor, this correction is applied before the commutation algorithm, and so
will affect the magnitude of both analog outputs.

Note:

This direction-sensitive bias term is independent of the constant bias introduced by
Ix29 and/or I1x79.

Example:

Starting with amotor at rest, if Ix68 = 1600, then as soon as a commanded move in the positive direction
is started, avalue of +1600 (~0.5V) is added to the servo loop output. As soon as the commanded
velocity goes negative, avalue of -1600 is added to the output. When the commanded velocity becomes
zero again, no biasis added to the servo output as aresult of thisterm.

IXx69 Motor x Output Command (DAC) Limit

Range: 0..32,767
Default: 20,480 (~6.25V)
Units:; DAC bits

This parameter defines the magnitude of the largest output that can be sent from the control loop. If a
larger valueis calculated, it is clipped to this number. The analog outputs on PMAC are 16-bit DACs
which map a numerical range of -32,768 to +32,767 into a voltage range of -10V to +10V relative to
analog ground (AGND).

If using differentia outputs (DAC+ and DAC-), the voltage between the two outputs is twice the voltage
between an output and AGND. (To limit the voltage between DAC+ and DAC- to 10V, 1x69 should be
16,384.)

This parameter provides atorgque limit in systems with current- loop amplifiers, or avelocity limit with
tachometer-based amplifiers. Notethat if thislimit kicksin for any amount of time, the following error
will start increasing. When 1x69 is actualy limiting the output, the integrator in the PID loop will turn off
for anti-windup protection.

When using PMAC to do internal open-loop micro stepping (using its own commutation algorithms, not
external V/F converters), the servo loop iswriting to an internal register, not directly to the DACs. Inthis
case, more than a+/-32K limit isalowed. The value of 1x69 that should be used for this micro stepping

is 524,287 (219-1).
Ix80 Motor x Power-Up Mode

Range: 0..3
Default: 0
Units: none

This parameter controls the power-up mode for motor x. It controls whether the motor is enabled or
killed on power-up/reset (P/R), and if the motor is commutated by PMAC (I1x01=1) and requires a
phasing search (1x78=0; 1x81=0), it controls which type of phasing search is done. The possible values of
Ix80, and the effects they have, are:

0 Killed on PIR Two guess phasing search (on $ command only)

1 Enabled on PIR Two guess phasing search (automatically on P/R)

2 Killed on P/R Stepper motor phasing search (on $ command only)
3 Enabled on PIR Stepper motor phasing search (automatically on P/R)

With 1x80=0 or 2, acommand must be given to enable the motor. For a PMAC-commutated motor, the $
command must be given to start up the commutation algorithms, performing the phasing search if
necessary, then leaving the motor in closed-loop servo control at zero commanded velocity.

I-Variables 121

PMAC Product Guide

For non-PM A C-commutated motors, aJ/ (jog stop) or $ (motor reset) command (for the motor), an A
(abort) command (for all motors in the coordinate system), or a<CTRL- A> (abort all) command (for all
PMAC motors) must be given to put the motor in closed-loop servo control.

If 1x80is 1 or 3, the motor is enabled automatically at power-up/reset and put in closed-loop servo control
at zero commanded velocity. If aphasing search isrequired, it is done automatically during the power-
up/reset cycle.

If 1x80is0 or 1 and a phasing search is required, PMAC will use the two-guess phasing search method,
which isvery quick and requires little movement, but is not as reliable in the presence of significant
external loads such as friction and gravity.

If IX80is2 or 3 and aphasing search is required, PMAC will use the stepper-motor phasing search
method, which is takes more time and causes more movement, but is more reliable in the presence of
significant external loads.

Warning:

An unreliable phasing search method can lead to a runaway condition. Test your
phasing search method carefully to make sure it works properly under all
conceivable conditions. Make sure your 1x11 fatal following error limit is active
and as tight as possible so the motor will be killed quickly in the event of a serious
phasing search error.

If 1x80is 1 or 3, and the motor is disabled right after the power-up/reset cycle, the motor is either being
killed by an automatic PMAC safety feature (fatal following error, amplifier fault, or phasing search
error) or by akill command from a PLC program.

Coordinate System I-Variables

Ix87 Coordinate System x Default Program Acceleration Time
Range: 0 .. 8,388,607

Default: 0 (so 1x88 controls)

Units: msec

This parameter sets the default time for commanded acceleration for programmed blended L1 NEAR and
Cl RCLE mode moves in coordinate system x. It also provides the default segment time for SPLI NE
mode moves. Thefirst use of a TA statement in a program overrides this value.

Even though this parameter makes it possible not to specify acceleration time in the motion program, use
TA in the program and not rely on this parameter, unless keeping to a syntax standard that does not
support this (e.g. RS-274 G-Codes). Specifying acceleration time in the program aong with speed and
move modes makes it much easier for later debugging.

If the specified S-curve time (see 1x88, below) is greater than half the specified acceleration time, the time
used for commanded acceleration in blended moves will be twice the specified S-curve time.

The acceleration time is also the minimum time for a blended move; if the distance on a feedrate-
specified (F) moveis so short that the calculated move time is less than the accel eration time, or the time
of atime-specified (TM) move is less than the accel eration time, the move will be done in the
acceleration time instead. Thiswill slow down the move

The acceleration time will be extended automatically when any motor in the coordinate system is asked to
exceed its maximum acceleration rate (Ix17) for a programmed LINEAR-mode move with 113=0 (no
move segmentation).

122 I-Variables

PMAC Product Guide

Make sure that the specified acceleration time (1x87 or 2*1x88) is greater than zero, even if planning to
rely on the maximum acceleration rate parameters. A specified acceleration time of zero will cause a
divide-by-zero error. The minimum specified time should be Ix87=1, 1x88=0.

Ix88 Coordinate System x Default Program S-Curve Time

Range: 0 .. 8,388,607
Default: 50
Units: msec

This parameter set the default time in each half of the Sin S-curve acceleration for programmed blended
L1 NEAR and Cl RCLE mode moves in coordinate system x. It does not affect SPLI NE, PVT, or RAPI D
mode moves. Thefirst use of a TS statement in a program overrides this value.

Even though this parameter makes it possible not to specify acceleration time in the motion program, use
TA in the program and not rely on this parameter, unless keeping to a syntax standard that does not
support this (e.g. RS-274 G-Codes). Specifying acceleration time in the program along with speed and
move modes makes it much easier for later debugging.

If Ix88 is zero, the acceleration is constant throughout the 1x87 time and the velocity profileis

trapezoidal. If 1x88 isgreater than zero, the acceleration will start at zero and linearly increase through
Ix88 time, then stay constant (for time TC) until 1x87-1x88 time, and linearly decrease to zero at 1x87 time
(that isIx87=2*1x88 - TC). If Ix88isequal to Ix87/2, the entire acceleration will be spec in S-curve form
(Ix88 values greater than 1x87/2 override the Ix87 value; total acceleration time will be 2*1x88).

The acceleration time will be extended automatically when any motor in the coordinate system is asked to
exceed its maximum acceleration rate (Ix17) for a programmed LINEAR mode move with 113=0 (no
move segmentation).

Make sure the specified acceleration time (TA or 2*TS) is greater than zero, even if planning to rely on
the maximum accel eration rate parameters (Ix17). A specified acceleration time of zero will cause a
divide-by-zero error. The minimum specified time should be TA1 TSO.

Ix89 Coordinate System x Default Program Feedrate/Move Time

Range: Positive floating point
Default: 1000.0
Units: (user position units)/(feedrate time units) for feedrate

msec for move time

This parameter sets the default feedrate (commanded speed) for programmed LI NEAR and Cl RCLE
mode moves in coordinate system x. Thefirst use of an F or TMstatement in a motion program overrides
thisvalue. The velocity units are defined by the position and time units, as defined by axis definition
statements and Ix90. After power-up/reset, the coordinate system is in feedrate mode, not move time
mode.

Do not rely on this parameter but declare the feedrate in the program. Thiswill keep the move parameters
with the move commands lessening the chances of future errors and making debugging easier.

When polled, 1x89 will report the value from the most recently executed F or TMcommand in that
coordinate system.

I-Variables 123

PMAC Product Guide

IX90 Coordinate System x Feedrate Time Units

Range: Positive floating point
Default: 1000.0 (velocity time units are seconds)
Units: msec

This parameter defines the time units used in commanded vel ocities (feedrates) in motion programs
executed by coordinate system x. Velacity units are comprised of length units divided by time units. The
length units are determined in the axis definition statements for the coordinate system. 1x90 setsthe time
units. 1x90 itself has units of milliseconds, so if 1x90 is 60,000, the time units are 60,000 milliseconds, or
minutes. The default value of 1x90 is 1000 msec, specifying velocity time units of seconds.

This affects two types of motion program values. F values (feedrate) for LI NEAR- and CI RCLE-mode
moves; and the velocities in the actual move commands for PVT-mode moves.
Example:

If position units have been set as centimeters by the axis definition statements and feedrate val ues should
be specified in cm/sec, this parameter would be set to 1000.0 (time units = sec).

If position units have been set as degrees by the axis definition statements feedrate values should be
specified in deg/min, this parameter would be set to 60,000.0 (time units = minutes).

If aspindleisrotating at 4800 rpm, with alinear axis specified in inches linear speed should be specified
in inches per spindle revolution, 1x90 would be set to 12.5 (J1 min/4800 rev] * [60,000 msec/ min] = 12.5
msec/rev).

Ix91 Coordinate System x Default Working Program Number

Range: 0..32,767
Default: 0
Units: Motion Program Numbers

This parameter tells PMAC which motion program to run in this coordinate system when commanded to
run from the control-panel input (START/ or STEP/ line taken low). It performs the same function for a
hardware run command as the B command does for a software run command (R). It isintended primarily
for stand-alone PMAC applications. The first use of a B command from a host computer for this
coordinate system overrides this parameter.

IX92 Coordinate System x Move Blend Disable

Range: 0..1
Default: 0
Units; none

If this parameter is set to O, programmed blended moves (LI NEAR, SPLI NE, and CI RCLE-mode) are
blended together with no intervening stop. Upcoming moves are calculated during the current moves. |If
this parameter is set to 1, there isabrief stop in between each programmed move (it effectively adds a
DWELL O command) during which the next move is calculated. The calculation time for the next move
is determined by 111.

This parameter is acted upon only when the R or S command is given to start program execution. To
change the mode of operation while the program is running, the continuous motion request coordinate
system status bit (bit 4 of X:$0818 etc.) must be changed. The polarity of this bit is opposite that of 1x92.

IX94 Coordinate System x Time Base Slew Rate (and Limit)

Range: 0 .. 8,388,607
Default: 1644

-23
Units: 2 msec/ servo cycle

This parameter controls the rate of change of the coordinate system’stime base. It effectively worksin
two dlightly different ways depending on the source of the time base information.

124 I-Variables

PMAC Product Guide

If the source of the time base is the %command register, then 1x94 defines the rate at which the % (actual
time base) value will slew to anewly commanded vaue. If therateistoo high and the % valueis
changed while axes in the coordinate system are moving, there will be avirtual step changein velocity.
For these types of applications, 1x94 is set relatively low (often 1000 to 5000) to provide smooth changes.

The default 1x94 value of 1644 when used on a card set up with the default servo cycle time of 442 psec,
provides atransition time between %0 and %100 of one second.

If there is a hardware source (as defined by 1x93), the commanded time-base value changes every servo
cycle and the rate of change of the commanded valueislimited typically by hardware considerations (e.g.
inertia). Inthiscase, 1x94 effectively defines the maximum rate at which the % value can slew to the new
hardware-determined value and the actual rate of change is determined by the hardware. To keep
synchronous to a hardware input frequency, asin a position-lock cam, 1x94 should be set high enough so
that the limit is never activated. However, following motion can be smoothed significantly with alower
limit if total synchronicity is not required.

IX95 Coordinate System x Feed Hold Deceleration Rate

Range: 0.. 8,388,607
Default: 1644

. -23
Units: 2 msec/servo cycle

This parameter controls the rate at which the axes of the coordinate system stop if afeed hold command
(H) isgiven, and the rate at which they start up again on a succeeding run command (Ror S). A feed hold
command is equivalent to a %@ command except that it uses Ix95 for its slew rate instead of 1x94. Having
separate lew parameters for normal time-base control and for feed hold commands allows both
responsive ongoing time-base control (1x94 relatively high) and well-controlled holds (1x95 relatively
low).

The default Ix95 value of 1644, when used on a card set up with the default servo cycle time of 442 psec,
provides atransition time between %100 and %0 (feed hold) of one second.

IX96 Coordinate System x Circle Error Limit

Range: Positive floating point
Default: 0 (function disabled)
Units: User length units

In acircular arc move, a move distance that is more than twice the specified radius will cause a
computation error because a proper path cannot be found. Sometimes, due to round-off errors, a distance
dightly larger than twice the radiusis given (for a half-circle move that this will not create an error
condition.

This parameter is used to set an error limit on the amount so that the move distance is greater than twice
theradius. If the move distance is greater than 2R, but by less than this limit, the moveis donein a spiral
fashion to the endpoint, and no error condition is generated. If the distance error is greater than this limit,
arun-time error will be generated and the program will stop. If thisvariableis set to 0, the error
generation is disabled and any move distance greater than 2R is done in a spiral fashion to the endpaint.

Example:

Given the program segment
I NC CI RCLE1 F2
X7.072 Y7.072 R5

Technically, no circular arc path can be found because the distance is SQRT(7.0722+7.O722) = 10.003,
which is greater than twice the radius of 5. However, aslong as 1x96 is greater than 0.003, PMAC will
create a near-circular path to the end point.

I-Variables 125

PMAC Product Guide

Encoder/Flag Setup I-Variables

One PMAC can have up to 16 incremental encoder channels -- four per gate array |C. Each encoder and
itsrelated flags and registers are set up using (up to) five I-Variables. The encoders and their flags are
numbered 1 to 16, matching the numbers of their pinouts (e.g. CHA1, CHB1, and CHC1 belong to
encoder 1.) The encoder |-Variables are assigned to the different encoders as follows:

1900 - 1904 -- Encoder 1

1905 - 1909 -- Encoder 2

1910 - 1914 -- Encoder 3

1915 - 1919 -- Encoder 4

I.9"70 - 1974 -- Encoder 15
1975 - 1979 -- Encoder 16

An encoder is assigned to a motor for position, velocity (feedback), handwheel (master), or feedpot
(frequency control) by using the appropriate motor |-V ariables (see above).

1900, 1905, ... 1975 Encoder n Decode Control Encoder I-Variable O

Range: 0..15
Default: 7
Units:; none

This parameter controls how the input signal for Encoder n is decoded into counts. As such, this defines
the sign and magnitude of acount. The following settings may be used to decode an input signal.

Value M eaning
Pulse and direction CW

x1 quadrature decode CW
X2 quadrature decode CW
x4 quadrature decode CW
Pulse and direction CCW
x1 quadrature decode CCW
X2 quadrature decode CCW
x4 quadrature decode CCW

N~ WIN|FL|IO

In any of the quadrature decode modes, PMAC is expecting two input waveforms on CHAn and CHBNn,
each with approximately 50% duty cycle and approximately one-quarter of a cycle out of phase with each
other. "Times-one" (x1) decode provides one count per cycle; x2 provides two counts per cycle; and x4
provides four counts per cycle. The vast mgjority of users select x4 decode to get maximum resol ution.

The clockwise (CW) and counterclockwise (CCW) options simply control which direction counts up. |If
using the wrong direction sense, smply change to the other option (e.g. from 7 to 3 or vice versa).

Warning:
Changing the direction sense of the encoder decode for a motor that is servoing
properly will result in unstable positive feedback and a dangerous runaway
condition in the absence of other changes (for motors not commutated by PMAC
from the same encoder). The output polarity must be changed as well to re-
establish polarity match for stable negative feedback.

In the pulse-and-direction decode modes, PMAC is expecting the pulse train on CHAnN, and the direction
(sign) signal on CHBnN. If the signal is unidirectional, the CHBn input can be tied high (to +5V) or low
(to GND) or if set up by E18-E21, E24-E27 for single-ended (non-differential) input, left to float high.

Any spare encoder counters may be used as fast and accurate timers by setting this parameter in the 8 to
15range. Inthisrange, any input signal isignored. The following settings may be used in timer mode:

126 I-Variables

PMAC Product Guide

Setting | Meaning
8 Timer counting up at SCLK/10
9 Timer counting up at SCLK/10
10 Timer counting up at SCLK/5
11 Timer counting up at SCLK/2.5
12 Timer counting down at SCLK/10
13 Timer counting down at SCLK/10
14 Timer counting down at SCLK/5
15 Timer counting down at SCLK/2.5

These timers are particularly useful when the related capture and compare registers are utilized for precise
event marking and control, including triggered time base. The SLCK frequency is determined by the
crystak clock frequency and E34-E38.

1902, 1907, ... 1977 Encoder n Position Capture Control Encoder I-Variable 2

Range: 0..15
Default: 1
Units; none

This parameter determines which signal or combination of signals (and which polarity) triggers a position
capture of the counter for encoder n. If aflag input (home, limit, or fault) is used, 1903 (etc.) determines
which flag. Proper setup of this variable is essential for a successful home search which depends on the
position-capture function. The following settings may be used:

Setting | Meaning
0 Software Control
1 Rising edge of CHCn (third channel)
2 Rising edge of Flag n (as set by Flag Select)
3 Rising edge of [CHCn AND Flag n] -- Low true index, high true Flag
4 Software Control
5 Falling edge of CHCn (third channel)
6 Rising edge of Flag n (as set by Flag Select)
7 Rising edge of [CHCn/ AND Flag n] -- Low true index, high true Flag
8 Software Control
9 Rising edge of CHCn (third channel)
10 Falling edge of Flag n (as set by Flag Select)
11 Rising edge of [CHCn AND Flag n/] -- High true index, low true Flag
12 Software Control
13 Falling edge of CHCn (third channel)
14 Falling edge of Flag n (as set by Flag Select)
15 Rising edge of [CHCn/ AND Flag n/] -- Low trueindex, low true Flag

Note that several of these values are redundant. To do a software-controlled position capture, preset this
parameter to 0 or 8; when the parameter is then changed to 4 or 12, the capture is triggered (thisis not of
much practical use, but can be valuable for testing the capture function).

I-Variables 127

PMAC Product Guide

1902, 1907, ..., 1977

ENCODER POSITION CAPTURE CONTROL
Used for homing and registration

(1)ycHen 9(

or
(2) CHCn
50r13

2or 64
(3) FLAGn
or
(4) FLAGn 10 0or 14V
High-true CHCn [(1) & (3)] 8
High-true FLAGn
Low-true CHCn [(2)/ & (3)] !

High-true FLAGnN

High-true CHCn [(1) & (4)/]
Low-true FLAGN

Low-true CHCn [(2)/ & (4)/] 15
Low-true FLAGn

1903, 1908, ... 1978 Encoder n Flag Select Control Encoder I-Variable 3

e R B

Range: 0..3
Default: 0
Units: none

This parameter determines which of the Flag inputs will be used for position capture (if oneisused -- see
1902 etc.):

Setting Meaning
0 HMFLn (Home Flag n)
1 -LIMn (Positive Limit Signal n)

2 +LIMn (Negative Limit Signal n)
3 FAULTn (Amplifier Fault Signal n)

Typically, this parameter is set to zero because in actual use, the +/-LIMn and FAULTn flags create other
effects that usually interfere with what is trying to be accomplished by the position capture. To capture
onthe +/-LIMn or FAULTn flags, either disable their normal functions with Ix25 or use a channel n
where none of the flagsis used for the normal axis functions.

The direction sense of the limit inputs is the opposite of what many people consider intuitive. That is, the
+LIMn input, when taken high (opened), stops commanded motion in the negative direction; the -LIMn
input, when taken high, stops commanded mation in the positive direction. It isimportant to confirm the
direction sense of the limit inputs in actual operation.

128 I-Variables

PMAC Product Guide

ONLINE COMMANDS

The PMAC motion controller isrich in features and expansion capabilities. Because this manual
illustrates the implementation of PMAC in atypical application, some of the PMAC advanced online
commands are not described. Further information of all the PMAC online commands can be obtained
from the PMAC Software Reference manual.

<CONTROL-A>

Function: Abort al programs and moves.
Scope: Glabal
Syntax: ASCII Value 1D; $01

This command aborts al motion programs and stops al non-program moves on the card. It also brings
any disabled or open loop motors to an enabled zero-velocity closed-loop state. Each motor will
decelerate at arate defined by its own motor I-Variable Ix15. However, a multi-axis system may not stay
on its programmed path during this decel eration.

A <CTRL- A> stop to a program will not be recovered from gracefully because the axes will in general
not stop at a programmed point. The next programmed move will not behave properly unless a PMATCH
command is given or 114 is set to 1 (these cause PMAC to use the aborted position as the move start
position). Alternately, an on-line J= command may be issued to each motor to cause it to move to the
end point that was programmed when the abort occurred. Then the program(s) can be resumed with an R
(run) command.

To stop amotion sequence in a manner that can be recovered from easily, use the Quit (Qor <CTRL- @)
or the Hold (H or <CTRL- O>) command.

When PMAC is set up to power on with all motorskilled (Ix80 = 0), this command can be used to enable
al of the motors (provided that they are not commutated by PMAC -- in that case, each motor should be
enabled with the $ command).

For multiple cards on a single serial daisy chain, this command affects all cards on the chain, regardless of
the current software addressing.

<CONTROL-B>

Function: Report status word for all motors.
Scope: Global
Syntax: ASCII Value 2D; $02

This command causes PMAC to report the status words for all of the motors to the host in hexadecimal
ASCII form, 12 characters per motor starting with motor #1, with the characters for each motor separated
by spaces. The characters reported for each motor are the same asif the ? command had been issued for
that motor.

The detailed meanings of the individual status bits are shown under the ? command description.

For multiple cards on asingle serial daisy chain, this command affects only the card currently addressed
in software (@).

Example:

<CTRL- B>

812000804001 812000804001 812000A04001 812000B04001 050000000000 050000000000
050000000000 050000000000<CR>

Online Commands 129

PMAC Product Guide

<CONTROL-C>

Function: Report al coordinate system status words
Scope: Glabal
Syntax: ASCII Value 3D, $03

This command causes PMAC to report the status words for al of the coordinate systems to the host in
hexadecimal ASCII form, 12 characters per coordinate system starting with coordinate system 1 with the
characters for each coordinate system separated by spaces. The characters reported for each coordinate
system are the same as if the ?? command had been issued for that coordinate system.

The detailed meanings of the individua status bits are shown under the ?? command description.

For multiple cards on a single serial daisy-chain, this command affects only the card currently addressed
in software (by the @ command).

Example:

<CTRL- C

A80020020000 A80020020000 A80020020000 A80020020000 A80020000000 A80020000000
A80020000000 A80020000000<CR~>

<CONTROL-D>

Function: Disable all PLC programs
Scope: Global
Syntax: ASCII Vaue 4D; $04

This command causes all PLC programs to be disabled (i.e. stop executing). Thisisthe equivalent of
DI SABLE PLC 0..31 and DI SABLE PLCC 0. . 31. Itisuseful especially if aCVD or SEND
statement in a PLC has run amok.

For multiple cards on asingle serial daisy chain, this command affects all cards on the chain, regardless of
the current software addressing.

Example:

TRI GGER FOUND

TRI GTRI GER FOTRI GGER FOUND

TRTRI GTRI GGER FOUND (Out-of-control SEND message from PLC)
<CTRL-D>......... (Command to disable the PLCs)
............................ (No more messages; can now edit PLC)

<CONTROL-F>

Function: Report following errors for al motors.
Scope: Glabal.
Syntax: ASCII Value 6D; $06

This command causes PMAC to report the following errors of al motorsto the host. The errors are
reported in an ASCII string, each error scaled in counts, rounded to the nearest tenth of a count. A space
character is returned between the reported errors for each motor.

Refer to the on-line F command for more detail as to how the following error is calcul ated.

For multiple cards on asingle serial daisy chain, this command affects only the card currently addressed
in software (by the @ command).

Example:
<CTRL- F>
0.57.2-38.31.7 00 0 0<CrR>

130 Online Commands

PMAC Product Guide

<CONTROL-G>

Function: Report global status word
Scope: Glabal
Syntax: ASCII Value 7D; $07

This command causes PMAC to report the global status words to the host in hexadecimal ASCII form,
using 12 characters. The characters sent are the same as if the ??? command had been sent, although no

command acknowledgement character (<ACK> or <LF>, depending on I3) is sent at the end of the
response.

The detailed meanings of the individual status bits are shown under the ??? command description.

For multiple cards on a single serial daisy-chain, this command affects only the card currently addressed
in software (by the @ command).

Example:

<CTRL- &

003000400000<CR>

<CONTROL-H>

Function: Erase last character.

Scope: Global

Syntax: ASCIl Vaue 8D; $08 (<BACK SPACE>).

This character, usually entered by typing the <BACK SPACE> key when talking to PMAC in terminal
mode, causes the most recently entered character in PMAC' s command-line-receive buffer to be erased.

<CONTROL-I>

Function: Repeat last command line.
Scope: Global

Syntax: ASCII Vaue 9D; $09 (<TAB>).

This character, sometimes entered by typing the <TAB> key, causes the most recently sent alphanumeric
command line to PMAC to be re-commanded. It provides a convenient way to quicken arepetitive task,
particularly when working interactively with PMAC in terminal mode. Other control-character
commands cannot be repeated with this command.

Note:

Most versions of the PMAC Executive Program trap a<CTRL- | > or <TAB> for
their own purposes, and do not send it on to PMAC, even when in terminal mode.

Example:
This example shows how the tab key can be used to look for some event:

PC<CR>
P1: 10<CR>
<TAB>

Pl1: 10<CR>
<TAB>

P1: 10<CR>
<TAB>

P1: 11<CR>

Online Commands 131

PMAC Product Guide

<CONTROL-K>

Function: Kill al motors
Scope: Glabal
Syntax: ASCII Value 11D; $0B

This command kills al motor outputs by opening the servo loop, commanding zero output, and taking the
amplifier enable signal (AENAN) false (polarity is determined by jumper E17) for al motors on the card.
If any motion programs are running, they will be aborted automatically. (For the motor-specific K (kill)
command, if the motor isin a coordinate system that is executing a motion program, the program
execution must be stopped with either an A (abort) or Q (quit) command before PMAC will accept the K
command.)

For multiple cards on asingle serial daisy chain, this command affects all cards on the chain, regardless of
the current software addressing.

<CONTROL-M>

Function: Enter command line
Scope: Gaobal
Syntax: ASCII Value 13D; $0D (<CR>)

This character, commonly known as <CR> (carriage return), causes the a phanumeric charactersin the
PMAC's command-line-receive buffer to be interpreted and acted upon. (Control-character commands
do not require a<CR> character to execute.)

Note that for multiple PMACs daisy-chained together on a serial interface, thiswill act on al cards
simultaneously, not just the software-addressed card. For simultaneous action on multiple cards, it is best
to load up the command-line-receive buffers on all cards before issuing the <CR> character.

Example:

#1J+<CR>

P1<CR>

@&1B1R@L&1B7R<CR> (This causes card 0 on the serial daisychain to
............................ have its CS 1 execute PROG 1 and card 1 to
............................ haveits CS 1 execute PROG 7 simultaneously.)

<CONTROL-O>

Function: Feed hold on all coordinate systems
Scope: Glaobal
Syntax: ASCII Value 15D; $0F

This command causes all coordinate systemsin PMAC to undergo afeed hold. A feed hold is much like
a %9 command where the coordinate system is brought to a stop without deviating from the path it was
following, even around curves. However, with afeed hold, the coordinate system slows down at a slew
rate determined by 1x95, and can be started up again with an R (run) command. The system then speeds
up at the rate determined by 1x95, until it reaches the desired %value (from internal or external timebase).
From then on, any timebase changes occur at arate determined by 1x94.

For multiple cards on a single serial daisy chain, this command affects all cards on the chain, regardless of
the current software addressing.

On aflash memory PMAC that is in bootstrap mode (powered up with E51 ON), the <CTRL- &>
command puts PMAC into its firmware reload command. All subsequent characters sent to PMAC are
interpreted as bytes of machine code for PMAC’ s operational firmware, overwriting the existing
operational firmware in flash memory.

132 Online Commands

PMAC Product Guide

<CONTROL-P>

Function: Report positions of all motors
Scope: Glabal
Syntax: ASCII Value 16D; $10

This command causes the positions of all motorsto be reported to the host. The positions are reported as
an ASCI| string, scaled in counts, rounded to the nearest tenth of a count, with a space character in
between each motor’ s position.

The position window in the PMAC Executive program works by repeatedly sending the <CTRL- P>
command and rearranging the response into the window.

PMAC reports the value of the actual position register plus the position bias register plus the
compensation correction register, and if bit 16 of 1x05 is 1 (handwheel offset mode), minus the master
position register.

For multiple cards on asingle serial daisy chain, this command affects only the card currently addressed
in software (by the @ command).

Example:
<CTRL- P>
9999.5 10001.2 5.7 -2.1 0 0 O O<CR~>

<CONTROL-Q>

Function: Quit all executing motion programs
Scope: Glaobal
Syntax: ASCII Vaue 17D; $11

This command causes any and all motion programs running in any coordinate system to stop executing
after the moves that have been calculated are finished already. Program execution may be resumed from
this point with the R (run) or S (step) commands.

For multiple cards on a single serial daisy chain, this command affects all cards on the chain, regardless of
the current software addressing.

<CONTROL-R>

Function: Begin execution of motion programs in al coordinate systems
Scope: Glabal
Syntax: ASCII Value 18D; $12

This command is the equivalent of issuing the R (run) command to al coordinate systemsin PMAC.
Each active coordinate system (i.e. one that has at least one motor assigned to it) that is to run a program
must be pointing to a motion program already (initially thisis done with aB{ pr og nun} command).

For multiple cards on asingle serial daisy chain, this command affects all cards on the chain, regardless of
the current software addressing.

For aflash memory PMAC that isin bootstrap mode (powered up with E51 ON), the <CTRL- R>
command puts PMAC into normal operational mode, but with factory default 1-Variables, conversion
table settings, and VM E/DPRAM addresses.

Example:
&1B1&2B500<CR>
<CTRL- R>

Online Commands 133

PMAC Product Guide

<CONTROL-S>

Function: Step working motion programsin al coordinate systems
Scope: Glabal
Syntax: ASCII Value 19D; $13

This command is the equivalent of issuing an S (step) command to al of the coordinate systemsin
PMAC. Each active coordinate system (i.e. one that has at |east one motor assigned to it) that isto run a
program must be pointing to a motion program already (initialy thisis done with aB{ pr og nunt
command).

A program that is not running will execute all lines down to and including the next motion command
(move or dwell), or if it encounters a BLOCKSTART command first, al lines down to and including the
next BLOCKSTOP command.

If aprogram is already running in continuous execution mode (from an R command), an S command will
put the program in single-step mode, stopping execution after the next motion command. In this
situation, it has exactly the same effect as a Q (quit) command.

For multiple cards on a single serial daisy chain, this command affects all cards on the chain, regardless of
the current software addressing.

<CONTROL-V>

Function: Report velocity of all motors
Scope: Glabal
Syntax: ASCII Value 22D; $16

This command causes PMAC to report the velocities of al motorsto the host. The velocity unitsarein
encoder counts per servo cycle, rounded to the nearest tenth. The <F7> velocity window in the PMAC
Executive program works by repeatedly issuing the <CTRL- V> command and displaying the response on
the screen.

To scale these values into counts/msec, multiply the response by 8,388,608* (1x60+1)/110 (servo
cycles/msec).

Note:

The velocity values reported here are obtained by subtracting positions of
consecutive servo cycles. Assuch, they can be very noisy. For purposes of
display, it is probably better to use averaged velocity values held in registers
Y :$082A, Y:$08EA, etc., accessed with M-V ariables.

For multiple cards on asingle serial daisy chain, this command affects only the card currently addressed
in software (@).

<CONTROL-X>

Function: Cancel in-process communications
Scope: Glabal
Syntax: ASCII Value 24D; $18

This command causes the PMAC to stop sending any messages that it had started to send, even multi-line
messages. Thisaso causes PMAC to empty the command queue from the host, so it will erase any
partially sent commands.

134 Online Commands

PMAC Product Guide

It can be useful to send this before sending a query command for which an exact response format is
expected if not sure what PMAC has been doing before, because it makes sure nothing else comes
through before the expected response. As such, it is often the first character sent to PMAC from the host
when trying to establish initial communications.

Note:

This command empties the command queue in PMAC RAM, but it cannot erase
the one or two characters already in the response port. A robust algorithm for
clearing responses would include two-character read commands that can time-out
if necessary.

For multiple cards on asingle serial daisy chain, this command affects all cards on the chain, regardless of
the current software addressing.

<CONTROL-Y>

Function: Report last command line
Scope: Glabal
Syntax: ASCII Vaue 25D; $19

This causes PMAC to report the last command line to the host (with no trailing <CR>) and to re-enter the
line into the command queue ready to execute upon the next receipt of <CR>. When communicating
with PMAC interminal mode, the last command can be recalled and edited using the backspace and
typing in desired changes. The command will be re-executed when the host sends a<CR>.

Examples:

P123=5<CR>. . Set the first value
P124=7<CR>.... Set the second value
P123<CR>......... Query thefirst value
B PMAC responds with value
<CTRL- Y>......... Tell PMAC to report last command
P123 ..o PMAC reports last command
<BACKSPACE>4<CR> Modify to P124 and send
T PMAC tellsvalue of P124
<CONTROL-Z>

Function: Set PMAC in serial port communications mode
Scope: Glabal

Syntax: ASCII Value 26D; $1A

This command causes the PMAC' s seria port to become the active communications output port. All
PMAC responses directed to the host will be sent over the serial port. This mode will continue until a
command is received over the bus (parallel) port which will make the bus port the active communications
output port. PMAC powers up/resets with the serial port the active port.

If trying to establish communications with PMAC over the serial port, it isagood ideato send this
character before any query commands to make sure PMAC will try to respond over the serial port.

Regardless of which is the active output port, PMAC can accept commands over either port. Itisthe
user's responsibility not to garble commands by simultaneously commanding over both ports.

Examples:

Serial host sends: P1
PMAC responds to serial port: 12

Bus host sends: P1=P1+1
Serial host sends: P1

Online Commands 135

PMAC Product Guide

PMAC responds to bus port: 13

(Seria host gets no response)

Seria host sends: <CTRL- Z>P1
PMAC responds to seria port: 13

#

Function: Report currently addressed motor
Scope: Glabal

Syntax: #

This causes PMAC to return the number of the motor currently addressed by the host -- the one which
acts upon motor-specific commands from the host.

Note that a different motor may be hardware selected from the control panel port for motor-specific
control panel inputs and that different motors may be addressed from programs within PMAC for
COVMAND statements.

Examples:

Ask PMAC which motor is addressed

2 PMAC reports that motor 2 is addressed
#{constant}

Function: Address a motor

Scope: Glaobal

Syntax: #{ const ant }

where

{const ant } isaninteger from 1 to 8, representing the number of the motor to be addressed.

This command makes the motor specified by { const ant } the addressed motor (the one on which on-
line motor commands will act). The addressing is modal, so al further motor-specific commands will
affect this motor until adifferent motor is addressed. At power-up/reset, Motor 1 is addressed.

Note that a different motor may be hardware selected simultaneously from the control panel port for
motor-specific control panel inputs, and that different motors may be addressed from programs within
PMAC for COMVAND statements.

Example

#1I+ o, Command Motor 1 to jog positive

Jo Command Motor 1 to jog negative

H#2I+ o, Command Motor 2 to jog positive

N Command Motor 2 to stop jogging
#{constant}->

Function: Report the specified motor’ s coordinate system axis definition
Scope: Coordinate-system specific

Syntax : #{constant}->

where

{const ant } isaninteger from 1 to 8 representing the number of the motor whose axis definition is
regquested

136 Online Commands

PMAC Product Guide

This command causes PMAC to report the current axis definition of the specified motor in the currently
addressed coordinate system. If the motor has not been defined to an axisin the currently addressed
system, PMAC will return a0 (even if the motor has been assigned to an axisin another coordinate
system). A motor can have an axis definition in only one coordinate system at atime.

Examples:

&L i ; Address Coordinate System 1

#L-> i, ; Request Motor 1 axis definition in Coordinate System 1
10000X.....ccc..... ; PMAC responds with axis definition

&2 v ; Address Coordinate System 2

#L-> i, ; Request Motor 1 axis definition in Coordinate System 2
O ; PMAC shows no definition in this Coordinate System
UNDEFI NE ALL

#{constant}->0

Function: Clear axis definition for specified motor

Scope: Coordinate-system specific

Syntax #{constant}->0

where

{const ant } isaninteger from 1 to 8 representing the number of the motor whose axis definitionisto
be cleared.

This command clears the axis definition for the specified motor if the motor has been defined to an axisin
the currently addressed coordinate system. If the motor is defined to an axisin another coordinate
system, this command will not be effective. This allows the motor to be redefined to another axisin this
coordinate system or a different coordinate system.

Compare this command to UNDEFI NE, which erases all the axis definitions in the addressed coordinate
system, and to UNDEFI NE ALL, which erases all the axis definitionsin all coordinate systems.

Examples:
This example shows how the command can be used to move a motor from one coordinate system to
another:

< ; Address Coordinate System 1

BA-> e, ; Request definition of #4

5000A.....cccce.e.. ; PMAC responds

#4- >0 e ; Clear definition

&2 i ; Address Coordinate System 2

#4- >5000A....... ; Make new definition in Coordinate System 2
#{constant}->{axis definition}

Function: Assign an axis definition for the specified motor
Scope: Coordinate-system specific

Syntax: #{constant}->{axis definition}
where

{const ant } isaninteger from 1 to 8 representing the number of the motor whose axis definitionisto
be made.

{axi s definition} consistsof:

lto3setsof [{scal e factor}]{axi s}, separated by the + character, in which the optional
{scal e factor} isafloating-point constant representing the number of motor counts per axis unit
(engineering unit). If none are specified, PMAC assumes a value of 1.0.

Online Commands 137

PMAC Product Guide

{axi s} isaletter (X,Y, Z, A, B, C, U, V, W) representing the axis to which the motor isto be matched.
[+{of fset}] (optional) isafloating-point constant representing the difference between axis zero
position and motor zero (home) position, in motor counts. If none are specified, PMAC assumes avalue
of 0.0.

Note:
No space is allowed between the motor number and the arrow double character.

This command assigns the specified motor to a set of axes in the addressed coordinate system. It also
defines the scaling and starting offset for the axis or axes.

In the vast mgjority of cases, there is a one-to-one matching between PMAC motors and axes, so this axis
definition statement uses only one axis name for the motor.

Typically, ascale factor is used with the axis character, so that axis moves can be specified in standard
units (e.g. millimeters, inches, degrees). This number iswhat defines what the units will be for the axis.

If no scale factor is specified, auser unit for the axis is one motor count. Occasionally an offset
parameter is used to allow the axis zero position to be different from the motor home position. (Thisisthe
starting offset; it can later be changed in several ways, including the PSET, { axi s} =, ADI S,and | DI S
commands).

If the specified motor is assigned currently to an axisin a different coordinate system, PMAC will reject
this command (reporting an ERRO03 if 16=1 or 3). If the specified motor is currently assigned to an axis
in the addressed coordinate system, the old definition will be overwritten by this new one.

To undo a motor’ s axis definition, address the coordinate system in which it has been defined and use the
command #{ const ant } - >0. To clear al of the axis definitions within a coordinate system, address
the coordinate system and use the UNDEFI NE command. To clear al axis definitionsin al coordinate
systems, use UNDEFI NE ALL.

For more sophisticated systems, two or three cartesian axes may be defined as alinear combination of the
same number of motors. This allows coordinate system rotations and orthogonality corrections, among
other things. One to three axes may be specified (if only one, it amounts to the simpler definition above).
All axes specified in one definition must be from the same triplet set of cartesian axes: XYZ or UVW. If
this multi-axis definition is used, a command to move an axis will result in multiple motors moving.

Examples:

#1->X ; User units = counts

#4->2000 A.. ; 2000 counts/user unit

#8- >3333. 333Z- 666. 667 ; Non-integers OK

#3->Y i, ; Two motors may be assigned to the same axis;
#2->Y ; both motors move when aY moveis given
#1->8660X- 5000Y ;This provides a 300 rotation of X and Y ...
#2- >5000X+8660Y ;with 10000 cts/unit -- this rotation does
#3->20002- 6000 ;not involve Z, but it could have

This example correctsaY axis 1 arc minute out of square:

#5->100000X ;100000 cts/in

#6- >- 29. 1X+100000Y ;sin and cos of 1/60

138 Online Commands

PMAC Product Guide

$

Function: Reset motor
Scope: Motor specific
Syntax: $

This command causes PMAC to initialize the addressed motor, performing any required commutation
phasing and full reading of an absolute position sensor, leaving the motor in a closed-loop zero-velocity
state. (For a non-commutated motor with an incremental encoder, the J/ command may also be used.)

This command is necessary to initialize a PMAC-commutated motor after power-up/reset if 1x80 for the
motor issetto 0. If Ix80is 1, theinitiaization will be done automatically during the power-up/reset
cycle.

This command will not be accepted if the motor is executing a move.

Example:

1180 .ccovvecerenen, ; Request value of #1 power-on mode variable

[ST ; PMAC responds with O; powers on un-phased and killed
BB ; Reset card; motor isleft in killed state
Bl ; Initialize motor, phasing and reading as necessary

$$$

Function: Full card reset

Scope: Global

Syntax: $$$

This command causes PMAC to do afull card reset. The effect of $$$ is equivalent to that of cycling
power on PMAC, or taking the INIT/ line low, then high.

With jumper E51 in its default state (OFF for PMAC-PC, -Lite, -VME, ON for PMAC-STD), this
command does a standard reset of the PMAC. On PMACs without the Option CPU section (not option
4A, 5A, or 5B), I-Variable values, conversion-table settings, and DPRAM and VME bus addresses stored
in permanent memory (EAROM) by the last SAVE command are reloaded into active memory (RAM).
All information stored in battery backed RAM such as P-Variable and Q-Variable values, M-Variable
definitions, and motion and PLC programs are not changed by this command.

On PMACs with the Option CPU section (option 4A, 5A, or 5B), PMAC copies the contents of the flash
memory into active memory during anormal reset cycle, overwriting any current contents. This means
that anything changed in PMAC’ s active memory that was not saved to flash memory will belost. Even
the last saved P-Variable and Q-Variable values, M-V ariable definitions, and motion and PLC programs
are copied from flash to RAM during the reset cycle.

With jumper E51 in non-default state (ON for PMAC-PC, -Lite, -VME, OFF for PMAC-STD), this
command does areset and re-initialization of the PMAC. On PMACs without the Option CPU section
(not option 4A, 5A, or 5B), factory default I-Variable values, conversion-table settings, and DPRAM and
VMEbus addresses stored in the firmware (EPROM) are copied into active memory (RAM). (Values
stored in EAROM are not lost; they are simply not used.)

On PMACs with the Option CPU section (option 4A, 5A, or 5B), PMAC enters a special re-initialization
mode called bootstrap mode that permits the downloading of new firmware. In this bootstrap mode, there
are very few command options. To bypass the download operation in this mode, send a<CONTROL- R>
character to PMAC. This puts PMAC in the normal operational mode with the existing firmware.

Factory default values for |-Variables, conversion table settings, and bus addresses for DPRAM and VME
are copied from the firmware section of flash memory into active memory. The saved values of these
values are not used, but they are still kept in the user section of flash memory.

Online Commands 139

PMAC Product Guide

Note:

Because this command immediately causes PMAC to enter its power-up/rest cycle,
thereis no acknowledging character (<KACK> or <LF>) returned to the host.

Examples:

| 130=60000 ; Change#1 proportional gain

SAVE ; Save |-Variablesto EAROM

| 130=80000 ; Changegainagan

$$$; Reset card

1130 ; Request value of parameter

60000 ; PMAC reports current value, which is saved value
(Put E51 on)

$$$; Reset card

1 130 ; Request value of parameter

2000 ; PMAC reports current value, which is default
$$P ***

Function: Global card reset and re-initialization
Scope: Glabal

Syntax: PHP***

This command performs a full reset of the card and reinitializes the memory. All programs and other
buffersare erased. All I-variables, encoder conversion table entries, and VME and DPRAM addressing
parameters are returned to their factory defaults. (Previously saved values for these parameters are still
held in EAROM and can be brought into active memory with a subsequent $$$ command). It will also
recalculate the firmware checksum reference value and eliminate any PASSWORD that might have been
entered.

M-Variable definitions, P-Variable values, Q-Variable values, and axis definitions are not affected by this
command. They can be cleared by separate commands (e.g. MD. . 1023- >*, P0O. . 1023=0,
Q0. . 1023=0, UNDEFI NE ALL).

This command is useful particularly if the program buffers have become corrupted. It clears the buffers
and buffer pointers so the files can be re-sent to PMAC. Regular backup of parameters and programsto
the disk of ahost computer is strongly encouraged so this type of recovery ispossible. The PMAC
Executive program has Save Full PMAC Configuration and Restore Full PMAC Configuration functions
to make this process easy.

With jumper E51 in non-default state (ON for PMAC-PC, -Lite, -VME, OFF for PMAC-STD), aPMAC
with the Option CPU section (option 4A, 5A, or 5B) enters a special re-initialization mode called
bootstrap mode when this command is given. This mode permits the downloading of new firmware. In
this mode, there are very few command options. To bypass the download operation in this mode, send a
<CONTRQOL- R> character to PMAC. This puts PMAC in the normal operational mode with the existing
firmware.

Factory default values for I-Variables, conversion table settings, and bus addresses for DPRAM and VME
are copied from the firmware section of flash memory into active memory. The saved values of these
values are not used, but they are kept in the user section of flash memory.

Examples:

| 130=60000 ; Set#1 proportional gain

SAVE ; Save to non-volatile memory

$EH* * * ; Reset and re-initialize card

1130 ; Request value of 1130

2000 ; PMAC reports current value, which is default
$$3$; Normal reset of card

140 Online Commands

PMAC Product Guide

1 130 ; Request value of 1130

60000 ; PMAC reports current value, which is SAVEd value

%

Function: Report the addressed coordinate system's feedrate override value
Scope: Coordinate-system specific

Syntax: %

This command causes PMAC to report the present feedrate-override (time-base) value for the currently
addressed coordinate system. A value of 100 indicates real time; i.e. move speeds and times occur as
specified.

PMAC will report the value in response to this command, regardless of the source of the value (even if
the source is not the 9§ const ant } command).

Example:

% ; Request feedrate-override value

100 ; PMAC responds: 100 means real time

H ; Command afeed hold

% ; Request feedrate-override value

0 ; PMAC responds: 0 means all movement frozen
%{constant}

Function: Set the addressed coordinate system's feedrate override value
Scope: Coordinate-system specific

Syntax: {const ant}

where

{const ant } isanon-negative floating point value specifying the desired feedrate override (time-base)
value (100 represents real-time).

This command specifies the feedrate override value for the currently addressed coordinate system. The
rate of change to this newly specified value is determined by coordinate system |-Variable 1x94.

I-Variable x93 for this coordinate system must be set to its default value (which tells the coordinate
system to take its time-base val ue from the % -command register) in order for this command to have any
effect.

The maximum % value that PMAC can implement is equal to (223/110)* 100 or the (servo update rate in
kHZz)*100. If avalue greater than thisis specified, PMAC will saturate at this value instead.

To control the time base based on a variable value, assign an M-V ariable (suggested M197) to the
commanded time base register (X:$0806, X:$08CS6, etc.), then assign avariable value to the M-Variable.
The value assigned here should be equal to the desired % value times (110/100).

Examples:

% ; Command value of 0, stopping motion
%83. 333 ; Command 1/3 of real-time speed

%400 ; Command real-time speed

%00 ; Command too high avalue

% ; Request current value

225. 88230574 ; PMAC responds; thisis max allowed value

ML97- >X: $0806, 24 ; Assignvariableto C.S. 1 % command reg.
ML97=P1*1 10/ 100 ; Equivalent to &1% P1)

Online Commands 141

PMAC Product Guide

&{constant}

Function: Address a coordinate system
Scope: Glabal

Syntax: &{ const ant}

where

{const ant } isaninteger from 1 to 8, representing the number of the coordinate system to be
addressed.

This command makes the coordinate system specified by { const ant } the addressed coordinate system
(the one on which on-line coordinate-system commands will act). The addressing is modal, so all further
coordinate-system-specific commands will affect this coordinate system until a different coordinate
system is addressed. At power-up/reset, Coordinate System 1 is addressed.

Note:

A different coordinate system may be hardware selected simultaneously from the
control panel port for coordinate-system-specific control panel inputs and that
different coordinate systems may be addressed from programs within PMAC for
COVMAND statements.

If the control-panel inputs are disabled by 12=1, the host-addressed coordinate system also controls the
indicator lines for the in-position, warning-following-error, and fatal-following-error functions. These
indicator lines connect to both control-panel port outputs (all PMAC versions), and to the interrupt
controller (PMAC-PC, PMAC-Lite, PMAC-STD). (If 12=0, the hardware-selected coordinate system
controls these lines.)

Example:

&1B4R ; Coordinate System 1 point to Beginning of Prog 4 and Run
Q ; Coordinate System 1 Quit running program

&3B6R ; Coordinate System 3 point to Beginning of Prog 5 and Run
A ; Coordinate System 3 Abort program

&

Function: Report currently addressed coordinate system

Scope: Glabal

Syntax: &

This command causes PMAC to return the number of the coordinate system currently addressed by the
host.

Note:

A different coordinate system may be hardware selected from the control panel
port for coordinate-system-specific control panel inputs and that different
coordinate systems may be addressed from programs within PMAC for COVMAND

statements.
Examples:
& ; Ask PMAC which Coordinate System is addressed
4 ; PMAC reports that Coordinate System 4 is addressed

142 Online Commands

PMAC Product Guide

/

Function: Halt program execution at end of currently executing move
Scope: Coordinate-system specific

Syntax: /

This command causes PMAC to halt the execution of the motion program running in the currently
addressed coordinate system at the end of the currently executing move, provided PMAC isin
segmentation mode (113>0). If PMAC is not in segmentation mode (113=0), the/ command has the
same effect as the Q command, halting execution at the end of the latest cal culated move, which can be
one or two moves past the currently executing move.

Once halted at the end of the move, program execution can be resumed with the R command. In the
meantime, the individual motors may be jogged way from this point, but they must all be returned to this
point using the J= command before program execution may be resumed. An attempt to resume program
execution from adifferent point will result in an error (ERRO17 reported if 16 = 1 or 3). If resumption of
this program from this point is not desired, the A (abort) command should be issued before other
programs are run.

Examples:

&1B5R ; Command Coordinate System 1 to start PROG 5
/ ; Halt execution of program

#1J+ ; Jog Motor 1 positive

J/ ; Stop jogging

J= ; Return to prejog position

R ; Resume execution of PROG 5

/ ; Halt program execution

#2J- ; Jog Motor 2 negative

J/ ; Stop jogging

R ; Try to resume execution of PROG 5
<BELL>ERRO17 ; PMAC reports error; not at position to resume
J= ; Return to prejog position

R ; Resume execution of PROG 5

?

Function: Report motor status

Scope: Motor specific

Syntax: ?

This command causes PMAC to report the motor status bits as an ASCII hexadecimal word. PMAC
returns twelve characters, representing two status words. Each character represents four status bits. The
first character represents Bits 20-23 of the first word; the second shows Bits 16-19; and so on, to the sixth
character representing Bits 0-3. The seventh character represents Bits 20-23 of the second word; the
twelfth character represents Bits 0-3.

The value of abit is 1 when the condition is true; 0 when it isfalse. The meaning of the individual bitsis:

Online Commands 143

PMAC Product Guide

First Word Returned (X:$003D, X:$0079, etc.)
First Character Returned:

Bit 23

Bit 22

Bit 21

Bit 20

Motor Activated: Thisbit is 1 when Ix00 is 1 and the motor calculations are active; it is O
when [xX00 is 0 and motor calculations are deactivated.

Negative End Limit Set: Thisbit is 1 when motor actual position is less than the software
negative position limit (1x14), or when the hardware limit on thisend (+LIMn) has been
tripped; it is O otherwise. If the motor is deactivated (bit 23 of the first motor status word set
to zero) or killed (bit 14 of the second motor status word set to zero) this bit is not updated.

Positive End Limit Set: This bit is 1 when motor actual position is greater than the software
positive position limit (1x13), or when the hardware limit on thisend (-LIMn -- note!) has
been tripped; it is 0 otherwise. If the motor is deactivated (bit 23 of the first motor status
word set to zero) or killed (bit 14 of the second motor status word set to zero) this bit is not
updated.

Handwheel Enabled: Thishitis 1 when Ix06 is 1 and position following for thisaxisis
enabled; it is 0 when 1x06 is 0 and position following is disabled.

Second Character Returned:

Bit 19

Bit 18

Bit 17

Bit 16

Phased Motor: This bit is 1 when Ix01 is 1 and this motor is being commutated by PMAC; it
is 0 when I1x01 is 0 and this motor is not being commutated by PMAC.

Open Loop Mode: Thishit is 1 when the servo loop for the motor is open, either with outputs
enabled or disabled (killed). (Refer to Amplifier Enabled status bit to distinguish between the
two cases.) Itis0 when the servo loop is closed (under position control, always with outputs

enabled).

Running Definite-Time Move: This bit is 1 when the motor is executing any move with a
predefined end-point and end-time. This includes any motion program move dwell or delay,
any jog-to-position move, and the portion of a homing search move after the trigger has been
found. ItisO otherwise. It changesfrom 1 to O when execution of the commanded move
finishes.

Integration Mode: This bit is 1 when Ix34 is 1 and the servo loop integrator is only active
when desired velocity iszero. Itis0 when 1x34 is0 and the servo loop integrator is aways
active.

Third Character Returned:

Bit 15

Bit 14

Bit 13

Bit 12

Dwell in Progress: This bit is 1 when the motor’s coordinate system is executing a DWEL L
instruction. It is O otherwise.

Data Block Error: This bit is 1 when move execution has been aborted because the data for
the next move section was not ready in time. Thisisdue to insufficient calculation time. Itis
0 otherwise. It changes from 1 to O when another move sequenceis started. Thisisrelated to
the Run Time Error Coordinate System status bit.

Desired Velocity Zero: Thisbitis1if the motor isin closed-loop control and the
commanded velocity is zero (i.e. it istrying to hold position). It is zero either if the motor is
in closed-loop mode with non-zero commanded velocity, or if it isin open-loop mode.

Abort Deceleration: Thishit is 1 if the motor is decelerating due to an ABORT command, or
due to hitting hardware or software position (overtravel) limits. It is 0 otherwise. It changes
from 1 to 0 when the commanded decel eration to zero velocity finishes.

144

Online Commands

PMAC Product Guide

Fourth Character Returned:

Bit 11 Block Request: This bit is 1 when the motor has just entered a new move section, and is
reguesting that the upcoming section be calculated. It is 0 otherwise. Itisprimarily for
internal use.

Bit 10 Home Search in Progress: This bit is set to 1 when the motor isin amove searching for a

trigger: ahoming search move, ajog-until trigger, or a motion program move-until-trigger. It
becomes 1 as soon as the calculations for the move have started, and becomes zero again as
soon as the trigger has been found, or if the move is stopped by some other means. Thisis
not a good hit to observe to seeif the full moveis complete, because it will be 0 during the
post-trigger portion of the move. Use the Home Complete and Desired Velocity Zero bits
instead.

Bits8-9 These bits are used to store a pointer to the next data block for motor calculations. They are
primarily for internal use.

Fifth and Sixth Characters Returned:
Bits0-7 These bits are used to store a pointer to the next data block for motor calculations. They are
primarily for internal use.

Second Word Returned (Y:$0814, Y:$08D4, etc.)

Seventh Character Returned:

Bit 23 Assigned to Coordinate System: This bit is 1 when the motor has been assigned to an axisin
any coordinate system through an axis definition statement. It is 0 when the motor is not
assigned to an axisin any coordinate system.

Bits 20-22 (Coordinate System - 1) Number: These three bits together hold a value equal to the
(Coordinate System number minus one) to which the motor is assigned. Bit 22 isthe MSB,
and bit 20 isthe LSB. For instance, if the motor were assigned to an axisin Coordinate
System 6, these bits would hold avalue of 5: bit 22 =1, bit 21 =0, and bit 20 = 1.

Eighth Character Returned:
Bits16-19 (Reserved for future use)

Ninth Character Returned:
Bit 15 (Reserved for future use)

Bit 14 Amplifier Enabled: Thishit is 1 when the outputs for this motor’s amplifier are enabled,
either in open-loop or closed-loop mode (refer to Open-Loop Mode status hit to distinguish
between the two cases). It is 0 when the outputs are disabled (killed).

Bits12-13 (Reserved for future use)

Tenth Character Returned:

Bit 11 Stopped on Position Limit: Thisbitis 1 if this motor has stopped because of either a software
or a hardware position (overtravel) limit, even if the condition that caused the stop has gone
away. ItisOat al other times, even when into alimit but moving out of it.

Bit 10 Home Complete: This bit, set to 0 on power-up or reset, becomes 1 when the homing move
successfully locates the hometrigger. At this point in time, usually the motor is decelerating
to a stop or moving to an offset from the trigger determined by 1x26. If a second homing
move is done, this bit is set to 0 at the beginning of the move, and only becomes 1 again if
that homing move successfully locates the home trigger. Use the Desired Velocity Zero bit
and/or the In Position bit to monitor for the end of motor motion.

Online Commands 145

PMAC Product Guide

Bit9
Bit 8

(Reserved for future use)

Phasing Search Error: Thisbit is set to 1 if the phasing search move for a PMAC-commutated
motor has failed due to amplifier fault, overtravel limit, or lack of detected motion. Itisset to
0 if the phasing search move did not fail by any of these conditions (not an absolute guarantee
of asuccessful phasing search).

Eleventh Character Returned:

Bit7

Bit 6

Bit 5

Bit 4

Trigger Move: Thishit isset to 1 at the beginning of ajog-until-trigger or motion program
move-until-trigger. Itissetto 0 at the end of the moveif the trigger has been found, but
remains at 1 if the move ends with no trigger found. Thisbit is useful to determine whether
the move was successful in finding the trigger.

Integrated Fatal Following Error: Thisbit is 1 if this motor has been disabled dueto an
integrated following error fault, as set by Ix11 and Ix63. The fatal following error bit (bit 2)
will also be set inthiscase. Bit 6iszero at all other times, becoming 0 again when the motor
isre-enabled.

1T Amplifier Fault Error: Thisbit is 1 if this motor has been disabled by an integrated
current fault. The amplifier fault bit (bit 3) will also be set in thiscase. Bit5is0 at al other
times, becoming 0 again when the motor is re-enabled.

Backlash Direction Flag: Thishit is 1 if backlash has been activated in the negative direction.
Itis O otherwise.

Twelfth Character Returned:

Bit 3

Bit 2

Bit1

Bit 0

Examples:
#17?

Amplifier Fault Error: Thisbit is 1 if this motor has been disabled because of an amplifier
fault signal, even if the amplifier fault signal has gone away, or if this motor has been
disabled due to an I°T integrated current fault (in which case bit 5isalso set). ItisO at all
other times, becoming 0 again when the motor is re-enabled.

Fatal Following Error: Thisbit is 1 if this motor has been disabled because it exceeded its
fatal following error limit (Ix11) or because it exceeded its integrated following error limit
(Ix63; in which case hit 6 isalso set). ItisO at al other times, becoming 0 again when the
motor is re-enabled.

Warning Following Error: Thisbit is 1 if the following error for the motor exceeds its
warning following error limit (1x12). It staysat 1 if the motor iskilled due to fatal following
error. ItisO at all other times, changing from 1 to O when the motor’ s following error
reduces to under the limit or if killed, is re-enabled.

In Position: Thisbit is 1 when five conditions are satisfied: the loop is closed, the desired
velocity zero bit is 1 (which requires closed-loop control and no commanded move); the
program timer is off (not currently executing any move, DWEL L, or DELAY), the magnitude
of the following error is smaller than 1x28 and the first four conditions have been satisfied for
(I7+1) consecutive scans.

; Request status of Motor 1

812000804401 ; PMAC responds with 12 hex digits representing 48 bits

; Thefollowing bits are true (all others are false)

; Word 1 Bit 23: Motor Activated

; Bit 16: Integration Mode

; Bit 13: Desired Velocity Zero

; Word 2 Bit 23: Assigned to Coordinate System

; (Bits 20-22 all 0 -- assigned to Coordinate System 1)
; Bit 14: Amplifier Enabled

; Bit 10: Home Complete

; Bit 0: In Position

146

Online Commands

PMAC Product Guide

27

Function: Report the status words of the addressed coordinate system.
Scope: Coordinate-system specific

Syntax : ?7?

This causes PMAC to report status bits of the addressed coordinate system as an ASCII hexadecimal
word. PMAC returns twelve characters, representing two status words. Each character represents four
status bits. Thefirst character represents bits 20-23 of the first word; the second shows bits 16-19; and so
on, to the sixth character representing bits 0-3. The seventh character represents bits 20-23 of the second
word; the twelfth character representsits 0-3.

The value of abit is 1 when the condition istrue; 0 when it isfalse. The meanings of the individual bits
are:

First Word Returned (X:$0818, X:$08D8, etc.)

First Character Returned:

Bit 23 Z-Axis used in Feedrate Calculations: Thishitis 1 if thisaxisisused in the vector feedrate
calculations for F-based moves in the coordinate system. It is O if thisaxisis not used. See the
FRAX command.

Bit 22 Z-Axis Incremental Mode: Thisbitis 1 if thisaxisisin incremental mode (moves specified
by distance from the last programmed point). It is O if this axisis in absolute mode (moves
specified by end position, not distance). See the | NC and ABS commands.

Bit 21 Y-Axis used in Feedrate Calculations. See bit 23 description.
Bit 20 Y-Axis Incremental Mode: See bit 22 description.

Second Character Returned:
Bit 19 X-Axis used in Feedrate Calculations: See bit 23 description

Bit 18 X-Axis Incremental Mode: See bit 22 description.
Bit 17 W-Axis used in Feedrate Calculations. See bit 23 description.
Bit 16 W-Axis Incremental Mode: See bit 22 description.

Third Character Returned
Bit 15 V-Axis used in Feedrate Calculations: See bit 23 description.

Bit 14 V-Axis Incremental Mode: See bit 22 description.
Bit 13 U-Axis used in Feedrate Cal culations. See bit 23 description.
Bit 12 U-Axis Incremental Mode: See bit 22 description.

Fourth Character Returned:
Bit 11 C-Axis used in Feedrate Calculations. See bit 23 description.

Bit 10 C-Axis Incremental Mode: See bit 22 description.
Bit 9 B-Axis used in Feedrate Calculations: See bit 23 description.
Bit 8 B-Axis Incremental Mode: See bit 22 description.

Online Commands 147

PMAC Product Guide

Fifth Character Returned:

Bit7
Bit 6
Bit5

Bit 4

A-Axis used in Feedrate Calculations; See bit 23 description.
A-Axis Incremental Mode: See bit 22 description.

Radius Vector Incremental Mode: Thisbit is 1 if circle move radius vectors are specified
incrementally (i.e. from the move start point to the arc center). It is O if circle move radius
vectors are specified absolutely (i.e. from the XY Z origin to the arc center). Seethe | NC (R)
and ABS (R) commands.

Continuous Motion Request: This bit is 1 if the coordinate system ahs requested of it a
continuous set of moves (e.g. with an R command). It is O if thisis not the case (e.g. not
running program, 1x92=1, or running under an S command).

Sixth Character Returned:

Bit 3

Bit 2

Bit1

BitO

Move Specified by Time Mode: Thisbit is 1 if programmed movesin the coordinate system
are currently specified by time (TM or TA), and the move speed isderived. It isO if
programmed moves in the coordinate system are currently specified by feedrate (speed; F)
and the movetimeis derived.

Continuous Motion Mode: Thishit is 1 if the coordinate system is in a sequence of moves
that it is blending together without stopsin between. It is O if it isnot currently in such a
sequence, for whatever reason.

Single-Step Mode: Thisbitis 1 if the motion program currently executing in this coordinate
system has been told to Step one move or block of moves or if it has been givenaQ(Qui t)
command. It is 0 if the motion program is executing a program by a R (RUN) command, or if
it is not executing a motion program at all.

Running Program: This bit is 1 if the coordinate system is currently executing a motion
program. It is O if the coordinate system is not currently executing a motion program. Note
that it becomes 0 as soon as it has calcul ated the last move and reached the final RETURN
statement in the program, even if the motors are still executing the last move or two that have
been calculated. Compare to the motor Running Program status bit.

Second Word Returned (Y:$0817, Y:$08D7, etc.)
Seventh Character Returned:

Bit 23

Bit 22

Bit 21

Bit 20

Program Hold Stop: Thisbit is 1 when a motion program running in the currently addressed
coordinate system is stopped using the \ command from a segmented move (LI NEAR or
Cl RCLE mode with 113>0).

Run-Time Error: Thisbit is 1 when the coordinate system has stopped a motion program due
to an error encountered while executing the program (e.g. jump to non-existent label,
insufficient calculation time, etc.)

Circle Radius Error: Thishit is 1 when a motion program has been stopped because it was
asked to an arc move whose distance was more than twice the radius (by an amount greater
than 1x96).

Amplifier Fault Error: Thisbit is 1 when any motor in the coordinate system has been killed
due to receiving an amplifier fault signal. 1t is 0 at other times, changing from 1 to O when the
offending motor is re-enabled.

148

Online Commands

PMAC Product Guide

Eighth Character Returned:

Bit 19

Bit 22

Bit 21
Bit 20

Fatal Following Error: Thishitislwhena Bit23 Z-AxisUsed in Feedrate Calculations:
Thisbitis1if thisaxisis used in the vector feedrate calculations for F-based moves in the
coordinate system; it is O if thisaxisis not used. See the FRAX command.

Z-AxisIncremental Mode: Thishitis 1if thisaxisisinincremental mode -- moves specified
by distance from the last programmed point. ItisOif thisaxisisin absolute mode -- moves
specified by end position, not distance. Seethe |l NC and ABS commands.

Y -Axis Used in Feedrate Calculations: (See bit 23 description.)
Y-Axis Incremental Mode: (See bit 22 description.)

Second Character Returned:

Bit 19
Bit 18
Bit 17
Bit 16

X-Axis Used in Feedrate Calculations: (See bit 23 description.)
X-Axis Incremental Mode: (See bit 22 description.)
W-Axis Used in Feedrate Calculations: (See bit 23 description.)
W-AXxis Incremental Mode: (See bit 22 description.)

Third Character Returned:

Bit 15
Bit 14
Bit 13
Bit 12

V-Axis Used in Feedrate Calculations: (See bit 23 description.)
V-Axis Incremental Mode: (See bit 22 description.)
U-Axis Used in Feedrate Calculations: (See bit 23 description.)
U-Axis Incremental Mode: (See bit 22 description.)

Fourth Character Returned:

Bit 11
Bit 10
Bit9
Bit 8

C-Axis Used in Feedrate Calculations: (See bit 23 description.)
C-Axis Incremental Mode: (See bit 22 description.)
B-Axis Used in Feedrate Calculations: (See bit 23 description.)
B-Axis Incremental Mode: (See bit 22 description.)

Fifth Character Returned:

Bit 7
Bit 6
Bit5

Bit 4

A-Axis Used in Feedrate Calculations: (See bit 23 description.)
A-Axis Incremental Mode: (See bit 22 description.)

Radius Vector Incremental Mode: Thisbitis1if circle move radius vectors are specified
incrementally (i.e. from the move start point to the arc center). ItisQif circle move radius
vectors are specified absolutely (i.e. from the XY Z origin to the arc center). Seethel NC
(R) and ABS (R) commands.

Continuous Motion Request: This bit is 1 if the coordinate system has requested of it a
continuous set of moves (e.g. with an R command). ItisQif thisisnot the case (e.g. not
running program, 1x92=1, or running under an S command).

Sixth Character Returned:

Bit 3

Move-Specified-by-Time Mode: Thisbit is 1 if programmed moves in this coordinate system
are currently specified by time (TM or TA) and the move speed is derived. ItisQif
programmed moves in this coordinate system are currently specified by feedrate (speed; F)
and the movetime is derived.

Online Commands 149

PMAC Product Guide

Bit 2

Bit1

Bit 0

Continuous Motion Mode: Thisbit is 1 if the coordinate system is in a sequence of moves
that it is blending together without stopsin between. I1tisOif it isnot currently in such a
sequence, for whatever reason.

Single-Step Mode: Thishit is 1 if the motion program currently executing in this coordinate
system has been told to step one move or block of moves, or if it has been given a Q (Quit)
command. ItisOif the motion program is executing a program by a R (run) command or if it
IS not executing a motion program at all.

Running Program: This bit is 1 if the coordinate system is currently executing a motion
program. ItisQif the Coordinate System is not executing a motion program currently. Note
that it becomes 0 as soon as it has calculated the last move and reached the final RETURN
statement in the program, even if the motors are still executing the last move or two that have
been calculated. Compare to the motor Running Program status bit.

Second Word Returned (Y:$0817, Y:$08D7, etc.)
Seventh Character Returned:

Bit 23

Bit 22

Bit 21

Bit 20

Bit 18

Bit 17

Bit 16

Program Hold Stop: Thisbit is 1 when a motion program running in the currently addressed
Coordinate System is stopped using the\ command from a segmented move (LI NEAR or
Cl RCLE mode with 113 > 0).

Run-Time Error: Thisbit is 1 when the coordinate system has stopped a motion program due
to an error encountered while executing the program (e.g. jump to non-existent label,
insufficient calculation time, etc.).

Circle Radius Error: Thisbit is 1 when a motion program has been stopped because it was
asked to do an arc move whose distance was more than twice the radius (by an amount
greater than 1x96).

Amplifier Fault Error: Thisbit is 1 when any motor in the coordinate system has been killed
due to receiving an amplifier fault signal. ItisO at other times. Changing any motor in the
coordinate system has been killed due to exceeding its fatal following error limit (Ix11). Itis
0 at other times. The change from 1 to 0 occurs when the offending motor is re-enabled.

Warning Following Error: Thisbit is 1 when any motor in the coordinate system has
exceeded its warning following error limit (Ix12). It staysat 1 if amotor has been killed due
to fatal following error limit. ItisO at all other times. The change from 1 to O occurs when
the offending motor’ s following error is reduced to under the limit, or if killed on fatal
following error aswell, when it is re-enabled.

In Position: This bit is 1 when all motorsin the coordinate system are in position. Five
conditions must apply for al of these motors for this to be true. The loops must be closed, the
desired velocity must be zero for all motors, the coordinate system cannot be in any timed
move (even zero distance) or DWELL, all motors must have afollowing error smaller than
their respective 1x28 in-position bands, and the above conditions must have been satisfied for
(I7+1) consecutive scans.

Rotary Buffer Request: This bit is 1 when arotary buffer exists for the coordinate system and
enough program lines have been sent to it so that the buffer contains at least 117 lines ahead
of what has been calculated. Once this bit has been set to 1 it will not be set to O until there
areless than 116 program lines ahead of what has been calculated. The PR command may be
used to find the current number of program lines ahead of what has been calculated.

150

Online Commands

PMAC Product Guide

Ninth Character Returned:

Bit 15
Bit 14

Bit 13
Bit 12

Delayed Calculation Flag: (for internal use)

End of Block Stop: This bit is 1 when amotion program running in the currently addressed
Coordinate System is stopped using the/ command from a segmented move (Linear or
Circular mode with 113 > 0).

Synchronous M-V ariable One-Shot: (for internal use)
Dwell Move Buffered: (for internal use)

Tenth Character Returned:

Bit 11

Bit 10

Bit9

Bit 8

Cutter Comp Outside Corner: Thisbit is 1 when the coordinate system is executing an added
outside corner move with cutter compensation on. It is 0 otherwise.

Cutter Comp Move Stop Request: Thisbit is 1 when the coordinate system is executing
moves with cutter compensation enabled and has been asked to stop move execution. Thisis
primarily for internal use.

Cutter Comp Move Buffered: This bit is 1 when the coordinate system is executing moves
with cutter compensation enabled and the next move has been calculated and buffered. This
isprimarily for internal use.

Pre-jog Move Flag: This bit is 1 when any motor in the coordinate system is executing ajog
move to pre-jog position (J= command). ItisO otherwise.

Eleventh Character Returned:

Bit7

Bit 6

Bit5

Bit 4

Segmented Move in Progress:. This bit is 1 when the coordinate system is executing motion
program moves in segmentation mode (113>0). Itis0 otherwise. Thisis primarily for
internal use.

Segmented Move Acceleration: This bit is 1 when the coordinate system is executing motion
program moves in segmentation mode (113>0) and accelerating from a stop. 1tis0
otherwise. Thisis primarily for interna use.

Segmented Move Stop Request: This bit is 1 when the coordinate system is executing motion
program move in segmentation mode (113>0) and it is decelerating to astop. Itis0O
otherwise. Thisis primarily for interna use.

PVT/SPLI NE Move Mode: Thisbitis1 if this coordinate systemisin either PVT move
mode or SPLI NE move mode. (If bit O of thisword is 0, this means PVT mode; if bit 0is1,
thismeans SPLI NE mode.) ThisbitisOif the coordinate system isin a different move mode
(L1 NEAR, Cl RCLE, or RAPI D). Seethetable below.

Twelfth Character Returned:

Bit 3

Bit 2

Bit1

Cutter Compensation Left: Thisbit is 1 if the coordinate system has cutter compensation on,
and the compensation isto the left when looking in the direction of motion. I1tisOif
compensation isto theright, or if cutter compensation is off.

Cutter Compensation On: Thisbit is 1 if the coordinate system has cutter compensation on. It
isOif cutter compensation is off.

CCW Circle\Rapid Mode: When bit 0is1 and bit 4is0, thisbit is set to O if the coordinate
system isin CIRCLEL (clockwise arc) move mode and 1 if the coordinate systemisin
CIRCLE2 (counterclockwise arc) move mode. If both bits0 and 4 are 0, thisbit issetto 1 if
the coordinate system isin RAPI D move mode. Otherwisethishitis0. Seethe table below.

Online Commands 151

PMAC Product Guide

Bit0 Cl RCLE/SPLI NE Move Mode: Thishbitis 1 if the coordinate system isin either Cl RCLE or
SPLI NE move mode. (If bit 4 of thisword is 0, this means Cl RCLE mode; if bit 4is1, this
means SPLI NE mode.) ThisbhitisQif the coordinate systemisin a different move mode
(L1 NEAR, PVT, or RAPI D.). See the table below.

The states of bits 4, 1, and 0 in the different move modes are summarized in the following table:

Mode Bit 4 Bit 1 Bit 0
LINEAR 0 0 0
RAPID 0 1 0
SPLINE 1 0 1
CIRCLE1 0 0 1
CIRCLE2 0 1 1
PVT 1 1 0
Examples:
?? ; Request coordinate system status words

A8002A020010 ; PMAC responds; the following bits are true;
: Word 1 Bit 23: Z-axis used in feedrate calcs
; Bit 21: Y-axisused in feedrate calcs
; Bit 19: X-axisused in feedrate calcs
; Bit 5: Radius vector incremental mode
; Bit 3: Move specified by time
; Bit 1: Single-step mode
; Word 2 Bit 17: In-position
; Bit4; PVT/Spline mode

Falels

Function: Report global status words
Scope: Glabal

Syntax: ??7?

This command causes PMAC to return the global status bitsin ASCII hexadecimal form. PMAC returns
twelve characters, representing two status words. Each character represents four status bits. The first
character represents Bits 20-23 of the first word, the second shows Bits 16-19; and so on, to the sixth
character representing Bits 0-3. The seventh character represents Bits 20-23 of the second word; the
twelfth character represents Bits 0-3 of the second word.

A bit has avalue of 1 when the condition istrue; 0 when false. The meaning of the individual status bitsis:

First Word Returned (X:$0003)

First Character Returned:

Bit 23 Real-Time Interrupt Active: Thisbitis1if PMAC is currently executing areal-time interrupt
task (PLC 0 or motion program move planning). ItisOif PMAC is executing some other
task.

Note:

Communications can only happen outside of the real-time interrupt so polling this
bit will always return avalue of 0. Thishit isfor internal use.

Bit 22 Real-Time Interrupt Re-entry: Thishitis 1 if area-timeinterrupt task has taken long enough
so that it was still executing when the next real-time interrupt came (18+1 servo cycles later).
It staysat 1 until the card isreset, or until thisbit is changed manually to 0. If motion
program calculations cause this, it is not a serious problem. If PLC 0 causes this (no motion
programs running), it could be serious.

152 Online Commands

PMAC Product Guide

Bit 21

Bit 20

Servo Active: Thishitis1if PMAC iscurrently executing servo update operations. 1tisO if
PMAC is executing other operations. Note that communications can happen only outside of
the servo update; so polling this bit will alwaysreturn avalue of 0. Thisbit isfor interna
use.

Servo Error: Thisbitis 1 if PMAC could not complete its servo routines properly. Thisisa
serious error condition. ItisQ if the servo operations have been completing properly.

Second Character Returned:

Bit 19

Bit 18

Bit 17

Bit 16

Data Gathering Function On: Thisbit is 1 when the data gathering function is active; itis0
when the function is not active.

Data Gather to Start on Servo: Thisbit is 1 when the data gathering function is set up to start
on the next servo cycle. ItisO otherwise. It changesfrom 1 to O as soon as the gathering
function actually starts.

Data Gather to Start on Trigger: This bit is 1 when the data gathering function is set up to
start on the rising edge of Machine Input 2. It is 0 otherwise. It changesfrom 1 to 0 as soon
as the gathering function actually starts.

(Reserved for future use)

Third Character Returned:

Bit 15
Bit 14

Bitl13

Bit12

(Reserved for future use)

Leadscrew Compensation On: Thisbitis 1 if leadscrew compensation is currently activein
PMAC. ItisOif the compensation is not active.

Any Memory Checksum Error: Thisbit is 1 if achecksum error has been detected for either
the PMAC firmware or the user program buffer space. Bit 12 of thisword distinguishes
between the two cases.

PROM Checksum Error: Thishit is 1 if afirmware checksum error has been detected in
PMAC’'smemory. ItisO if auser program checksum error has been detected or if no
memory checksum error has been detected. Bit 13 distinguishes between these two cases.

Fourth Character Returned:

Bit 11

Bit 10

Bits 8-9

DPRAM Error: Thishitis1if PMAC has detected an error in DPRAM communications. It
is 0 otherwise.

EAROM Error: Thishitis1if PMAC detected a checksum error in reading saved data from
the EAROM (in which case it replaces this with factory defaults). It isO otherwise.

(for internal use)

Fifth Character Returned:

Bit7
Bit 6

Bit5

Bit 4

(for internal use)

TWS Variable Parity Error: Thishbitis 1 if the most recent TWS-format M-Variable read or
write operation with a device supporting parity had a parity error; it is O if the operation with
such adevice had no parity error. The bit status is indeterminate if the operation was with a
device that does not support parity.

MACRO Auxiliary Communications Error: Thisbit is 1 if the most recent MACRO auxiliary
read or write command hasfailed. It isset to 0 at the beginning of each MACRO auxiliary
read or write command.

(Reserved for future use)

Online Commands 153

PMAC Product Guide

Sixth Character Returned:
Bits2-3 (Reserved for future use)

Bit 1 All Cards Addressed: Thishitissetto 1if all cards on a serial daisy chain have been
addressed simultaneously with the @@command. It is O otherwise.
Bit0 This Card Addressed: Thishitissetto 1if thiscard is on aseria daisy chain and has been

addressed with the @ command. |t is 0 otherwise.

Second Word Returned (Y:$0003)

Seventh Character Returned:
Bit 23 (For internal use)

Bit 22 Host Communication Mode: Thisbit is 1 when PMAC is prepared to send its
communications over the host port (PC bus or STD bus). It is0when PMAC is prepared to
send its communications over the VMEbus or the serial port. It changesfrom O to 1 when it
receives an a phanumeric command over the host port. It changesfrom 1 to O when it
receives a<CTRL- Z> over the serial port.

Bits 20-21 (For Internal Use)

Eighth Character Returned:
Bit 19 Motion Buffer Open: Thisbitis1if any motion program buffer (PROG or ROT) is open for
entry. ItisOif none of these buffersis open.

Bit 18 Rotary Buffer Open: Thishbit is 1 if the rotary motion program buffers (ROT) are open for
entry. ItisOQif these are closed.

Bit 17 PL C Buffer Open: Thisbitis1if a PLC program buffer is open for entry. ItisO if none of
these buffersis open.

Bit 16 PLC Command: Thishitis1if PMAC is processing a command issued fromaPLC or
motion program through aCVD" " statement. It is0 otherwise. Itis primarily for internal
use.

Ninth Character Returned:

Bit 15 VME Communication Mode: Thisbit is 1 when PMAC is prepared to send its
communications over the VME bus mailbox port. Itis0when PMAC is prepared to send its
communications over the host port (PC bus or STD bus) or the seria port. It changes from 0
to 1 when it receives an a phanumeric command over the VME bus mailbox port. It changes
from 1 to O when it receives a<CTRL- Z> over the seria port.

Bits 12-14 (For Internal use)

Tenth Character Returned:

Bit 11 Fixed Buffer Full: Thisbit is 1 when no fixed motion (PROG) or PLC buffers are open, or
when one is open but there are less than 118 words available. It is 0 when one of these
buffersis open and there are more than 118 words available.

Bits8-10 (Interna use)

Eleventh and Twelfth Characters Returned:
Bits0-7 (Reserved for future use)

Examples:
22 e ; Ask PMAC for global status words
003000400000 ; PMAC returns the global status words

............................ ; 1st word bit 13 (Any checksum error) istrue;
............................ ; 1st word bit 12 (PROM checksum error) is true;
............................ ; 2nd word bit 23 (for internal use) istrue;
............................ ; All other bitsare false

154 Online Commands

PMAC Product Guide

\

Function: Do aprogram hold (permitting jogging while in hold mode)
Scope: Coordinate-system specific

Syntax: \

This command causes PMAC to do a program hold of the currently addressed coordinate system in a
manner that permits jogging of the motors in the coordinate system while in hold mode, provided PMAC
isin asegmented move (L1 NEAR or CI RCLE mode with 113>0). If PMAC isin segmentation mode
(113=0, or other move mode), the\ command has the same effect as the H command, bringing the motors
to astop in the same way, but not permitting any moves while in feed hold mode.

The rate of deceleration to a stop in feed hold mode, and from a stop on the subsequent R command, is
controlled by I-Variable152. Thisisaglobal I-Variable that controls the rate for al coordinate systems.

Once halted in hold mode, program execution can be resumed with the R command. In the meantime, the
individual motors may be jogged away from this point, but they must all be returned to this point using
the J= command before program execution can be resumed. An attempt to resume program execution
from adifferent point will result in an error (ERRO17 reported if 16 = 1 or 3). If resumption of this
program from this point is not desired, the A (abort) command should be issued before other programs are
run.

Examples:

&1B5R ; Command Coordinate System 1 to start PROG 5
\ ; Command feed hold of program

#1J+ ; Jog Motor 1 positive

J/ ; Stop jogging (examine part here)

J= ; Return to prejog position

R ; Resume execution of PROG 5

\ ; Halt program execution

#2J- ; Jog Motor 2 negative

J/ ; Stop jogging

R ; Try to resume execution of PROG 5
<BELL>ERRO17 ; PMAC reports error; not at position to resume
J= ; Return to prejog position

R ; Resume execution of PROG 5

A

Function: Abort al programs and movesin the currently addressed coordinate system
Scope: Coordinate-system specific

Syntax: A

This command causes all axes defined in the current coordinate system to begin immediately to decelerate
to a stop, aborting the currently running motion program (if any). It aso brings any disabled (killed) or
open loop motors (defined in the current coordinate system) to an enabled zero-velocity closed-loop state.

If moving, each motor will decelerate its commanded profile at a rate defined by its own motor I-Variable
Ix15. If thereis significant following error when the A command is issued, it may take along time for the
actual motion to stop. Although the command trajectory is brought to a stop at a definite rate, the actual
position will continue to catch up to the commanded position for alonger time.

A multi-axis system may not stay on its programmed path during this decel eration.
Note:

Abort commands are not recovered from gracefully. To resume easily, use the H,
Q,/, or\ command instead.

Online Commands 155

PMAC Product Guide

Motion program execution may resume (if a motion program was in fact aborted) by issuing either an R
or S command, but two factors must be considered. First, the starting positions for calculating the next
move will be the original end positions of the aborted move unless the PMATCH command isissued or
114=1. Second, the move from the aborted position to the next move end position may not be possible or
desirable. The J= command may be used to jog each motor in the coordinate system to the original end
position of the aborted move, provided 113 is 0 (no segmentation mode).

Examples:
B1R ; Start Motion Program 1
A ; Abort the program
#1J=#2J= ; Jog motors to original move-end position
R ; Resume program with next move
ABS
Function: Select absolute position mode for axes in addressed coordinate system.
Scope: Coordinate-system specific
Syntax: ABS

ABS ({axis}[,{axis}...])
where

{axi s} isaletter (X,Y, Z, A,B,C, U, V, W) representing the axis to be specified or the character R to
specify radial vector mode

This command, without any arguments, causes all subsequent positions for al axesin the coordinate
system in motion commands to be treated as absolute positions (thisis the default condition). An ABS
command with arguments causes the specified axes to be in absolute mode and all othersto remain
unchanged.

If Ris specified as one of the axes, the I, J, and K terms of the circular move radius vector specification
will be specified in absolute form (i.e. as a vector from the origin, not from the move start point). An
ABS command without any arguments does not affect this vector specification. The default radial vector
specification is incremental.

If amotion program buffer is open when this command is sent to PMAC, the command will be entered
into the buffer for later execution.

Examples:

ABS(X, Y) ; X & Y made absolute -- other axes and radial vector left unchanged
ABS ; All axes made absolute -- radial vector left unchanged

ABS(R) ; Radial vector made absolute -- all axes left unchanged
{axis}={constant}

Function: Re-define the specified axis position.

Scope: Coordinate-system specific

Syntax: {axi s}={constant}

where

{axi s} isaletter fromtheset (X,Y,Z,U,V, W, A, B, C) specifying the axis whose present position is
to be re-named.
{const ant } isafloating-point value representing the new name value for the axis' present position.

This command re-defines the current axis position to be the value specified in{ const ant } , in user
units (as defined by the scale factor in the axis definition). It can be used to relocate the origin of the
coordinate system. This does not cause the specified axis to move; it smply assigns a new value to the
position.

156 Online Commands

PMAC Product Guide

Internally, a position bias register is written to which creates this new position offset. PSET isthe
eguivalent motion program command.

Examples:

X=0 ; Call axis X’s current position zero

Z=5000 ; Re-define axis Z' s position as 5000

B{constant}

Function: Point the addressed coordinate system to a motion program.
Scope: Coordinate-system specific

Syntax: B{ const ant }

where

{const ant } isafloating point value from 0.0 to 32767.99999 representing the program and location to
point the coordinate system to; with the integer part representing the program number and the fractional
part multiplied by 100,000 representing the line label (zero fractional part means the top of the program).
This command causes PMAC to set the program counter of the addressed coordinate system to the
specified motion program and location. Usually it is used to set the program counter to the beginning of a
motion program. The next Ror S command will start execution at this point.

If {const ant } isaninteger, the program counter will point to the beginning of the program whose
number matches{ const ant } . Fixed motion program buffers (PROG) can have numbers from 1 to
32,767. The rotary motion program carries program number O for the purpose of this command.
If {const ant } isnot an integer, the fractional part of the number representsthe linelabel (Nor O) in
the program to which to point. The fractional value multiplied by 100,000 determines the number of the
line label to which to point (it fills the fraction to five decimal places with zeros).

Note:

If amotion program buffer (including ROTARY) is open when this command is
sent to PMAC, the command is entered into the buffer for later execution to be
interpreted as a B-axis move command.

Examples:

B7 ;points to the top of PROG 7

BO ;points to the top of the rotary buffer

B12. 6 ;points to label N60000 of PROG 12

B3. 025R ;points to label N2500 of PROG 3 and runs
CLEAR

Function: Erase currently opened buffer.

Scope: Glabal

Syntax CLEAR

CLR

This command empties the currently opened program, PLC, rotary, etc. buffer. Typically, as abuffer file
is created in the host computer, it starts with the OPEN{ buf f er } and CLEAR commands (even though,
technically these lines are not part of the buffer) and follows with the actual contents. Thiswill allow
easy editing of the buffers from the host and repeatedly downloading of the buffers, erasing the old
buffer’s contents in the process.

Examples:

OPEN PRGG 1 ; Open motion program buffer 1
CLEAR ; Clear out this buffer

F1000 ; Program redlly starts here!
X2500 ;...and ends on thisline

Online Commands 157

PMAC Product Guide

CLCSE ; This closes the program buffer
OPEN PLC 3 CLEAR CLOSE ; ThiserasesPLC 3
CLOSE
Function: Close the currently opened buffer.
Scope: Glabal
Syntax: CLOSE

CLS

This closes the currently opened buffer. This should be used immediately after the entry of a motion,
PLC, rotary, etc. buffer. If the buffer isleft open, subsequent statements that are intended as on-line
commands (e.g. P1=0) will be entered into the buffer instead. Put CLOSE at the beginning and end of
any file to be downloaded to PMAC.

When PMAC receives a CLOSE command, it automatically appends a RETURN statement to the end of
the open program buffer.

If any program or PLC in PMAC isimproperly structured (e.g. no ENDI F or ENDWHI LE to matchan | F

or VHI LE), PMAC will report an ERRO03 at the CLOSE command for any buffer until the problem is
fixed.

Examples:

CLOSE ; This makes sure all buffers are closed
OPEN PRCG 1 ; Open motion program buffer 1

CLEAR ; Clear out this buffer

F1000 ; Program actually starts herel...

X2500 ;...and ends on thisline!

CLOSE ; This closes the program buffer

LI ST PROG 1 ; Request listing of closed program

F1000 ; PMAC starts listing

X2500

RETURN ; Thiswas appended by the CLOSE command
{constant}

Function: Assign value to variable PO, or to table entry.
Scope: Glabal

Syntax: {const ant }

where

{const ant } isafloating point value

This command is the equivalent of PO={ const ant } . That is, avalue entered by itself on acommand
line will be assigned to P-Variable PO. This alows simple operator entry of numeric values through a
dumb terminal interface. Where the value goesis hidden from the operator. The PMAC user program
must take PO and use it as appropriate.

Note:

If aspecial tableon PMAC (e.g. STI MULUS, COVP) has been defined but not
filled, a constant value will be entered into this table, not into PO.

Examples:
In amotion program:
PO=-1 ; Set POto anillegal value
SEND Ent er nunber of parts in run:
; Prompt operator at dumb terminal
; Operator smply needs to type in number
VWHI LE (PO<1) WAIT ; Hold until get legal response

158 Online Commands

PMAC Product Guide

P1=0 ; Initialize part counter
VWHI LE (PO<P1) ; Loop once per part
P1=P1+1
DATE
Function: Report PROM firmware revision date.
Scope: Glabal
Syntax: DATE
DAT

This command causes PMAC to report the revision date of the PROM firmware revision it isusing. The
date is reported in the American style: mm/dd/yy (month/day/year).

Example:
DATE Ask PMAC for firmware revision date
07/ 22/ 92 PMAC responds with July 22, 1992
DEFINE TBUF
Function: Create a buffer for axis transformation matrices.
Scope: Glabal
Syntax: DEFI NE TBUF {constant}
DEF TBUF {constant}
where

{const ant } isapositive integer representing the number of transformation matrices to create

This command reserves space in PMAC’s memory for one or more axis transformation matrices. These
matrices can be used for real-time trandation, rotation, scaling, and mirroring of the X, Y, and Z axes of
any coordinate system. A coordinate system selects which matrix to use with the TSELnh command,
where n is an integer from 1 to the number of matrices created here.

Note:

PMAC will reject this command, reporting an ERRO03 if 16=1 or 3, if any
ROTARYor GATHER buffer exists. Any of these buffers must be deleted first.

The number of long words of unused buffer memory can be found by issuing the SI ZE command. Each
defined matrix takes 21 words of memory.

Example:
DELETE GATHER
DEF TBUF 1
DEFI NE TBUF 8

DELETE GATHER

Function: Erase the data gather buffer

Scope: Global
Syntax: DELETE GATHER
DEL GAT

This command causes the data-gathering buffer to be erased. The memory that was reserved is now de-
allocated and is available for other buffers (motion programs, PLC programs, compensation tables, etc.).
If Data Gathering isin progress (an ENDGATHER command has not been issued and the gather buffer has
not been filled), PMAC will report an error on receipt of this command.

Online Commands 159

PMAC Product Guide

PMAC' s Executive Program inserts this command automatically at the top of afile when it uploads a
buffer from PMAC into its editor, so the next download will not be hampered by an existing gather
buffer. Use this command aswell when creating a program file in the editor (see Examples, below).

Note:

When the executive program’s data gathering function operates, it reserves the
entire open buffer space for gathered data automatically. When this has happened,
no additional programs or program lines may be entered into PMAC'’ s buffer space
until the DELETE GATHER command has freed this memory.

Examples:

CLGCSE ; Make sure no buffers are open
DELETE GATHER ; Free memory

OPEN PROG 50 ; Open new buffer for entry
CLEAR ; Erase contents of buffer

; Enter new contents here

DELETE TBUF

Function: Delete buffer for axis transformation matrices.
Scope: Glaobal
Syntax: DELETE TBUF

DEL TBUF

This command frees up the space in PMAC’s memory that was used for axis transformation matrices.
These matrices can be used for real-time trandation, rotation, scaling, and mirroring of the X, Y, and Z
axes of any coordinate system.

Note:

PMAC will rgject this command, reporting an ERROO7 if 16=1 or 3, if any
ROTARY or GATHER buffer exists. Any of these buffers must be deleted first.

Examples:

DEL TBUF

DELETE TBUF

DISABLE PLC

Function: Disable specified PLC programs

Scope: Glabal

Syntax: DI SABLE PLC {constant}[,{constant}]
DS PLC {constant}[,{constant}]
DI SABLE PLC {constant}..{constant}
DS PLC {constant}..{constant}

where

{const ant } isaninteger from O to 31, representing the program number.

This command causes PMAC to disable (stop executing) the specified PLC program or programs. PLC

programs are specified by number and may be specified in acommand singularly, in alist (separated by

commas), or in arange of consecutively numbered programs. PLC programs can be re-enabled by using
the ENABLE PLC command.

If amotion or PLC program buffer is open when this command is sent to PMAC, the command will be
entered into that buffer for later execution.
Examples:

DI SABLE PLC 1
DS PLC 5

160 Online Commands

PMAC Product Guide

DS PLC 3,4,7
DI SABLE PLC 0..31

ENABLE PLC

Function: Enable specified PLC programs

Scope: Glabal

Syntax: ENABLE PLC {constant}[,{constant}]

ENA PLC {constant}[, {constant}]
ENABLE PLC {constant}..{constant}
ENA PLC {constant}..{constant}

where
{const ant } isaninteger from O to 31, representing the program number.

This command causes PMAC to enable (start executing) the specified PLC program or programs. PLC
programs are specified by number and may be used singularly in this command, in alist (separated by
commas), or in arange of consecutively numbered programs.

If amotion or PLC program buffer is open when this command is sent to PMAC, the command will be
entered into that buffer for later execution. I-Variable 15 must be in the proper state to allow the PLC
programs specified in this command to execute.

Note:

This command must be used to start operation of a PLC program after it has been
entered or edited because the OPEN PLC command disables the program
automatically, and CLOSE does not re-enable it.

Examples:

ENABLE PLC 1
ENA PLC 2,7
ENABLE PLC 3, 21
ENABLE PLC 0.. 31

This example shows the sequence of commands to download a simple PLC program and have it enabled
automatically on the download:

OPEN PLC 7 CLEAR

P1=P1+1

CLCSE

ENABLE PLC 7

F

Function: Report motor following error
Scope: Motor specific
Syntax: F

This command causes PMAC to report the present motor following error (in counts, rounded to the
nearest tenth of a count) to the host. Following error is the difference between motor desired and
measured position at any instant. When the motor is open loop (killed or enabled), following error does
not exist and PMAC reports avalue of 0.

Examples:

F ; Ask for following error of addressed motor
12 ; PMAC responds

#3F ; Ask for following error of Motor 3

-6.7 ; PMAC responds

Online Commands 161

PMAC Product Guide

FRAX
Function: Specify the coordinate system's feedrate axes.
Scope: Coordinate-system specific
Syntax: FRAX
FRAX({axis}[,{axis}...])
where

{axi s} (optional) isacharacter (X, Y, Z, A, B, C, U, V, W) specifying which axisis to be used in the
vector feedrate calculations

This command specifies which axes are to be involved in the vector-feedrate (velocity) calculations for
upcoming feedrate-specified (F) moves. PMAC calculates the time for these moves as the vector distance
(square root of the sum of the squares of the axis distances) of all the feedrate axes divided by the
feedrate. Any non-feedrate axes commanded on the same line will complete in the same amount of time,
moving at whatever speed is necessary to cover the distance in that time.

Vector feedrate has obvious geometrical meaning only in a Cartesian system for which it resultsin
constant tool speed regardless of direction, but it is possible to specify for non-Cartesian systems and for
more than three axes.

If only non-feedrate axes are commanded to move in a feedrate-specified move, PMAC will compute the
vector distance, and therefore the move time, as zero and will attempt to do the move in the acceleration
time (TA or 2*TS), possibly limited by the maximum velocity and/or acceleration parameters for the
motors. Thiswill probably be much faster than intended.

If amotion program buffer is open when this command is sent to PMAC, it will be entered into the buffer
for later execution.

For instance, in a Cartesian XY Z system, if using FRAX(X, Y) , dl of the feedrate-specified moves will
be at the specified vector feedrate in the XY -plane, but not necessarily in XY Z-space. If using

FRAX(X, Y, Z) or FRAX, the feedrate-specified moves will be at the specified vector feedratein XY Z-
space. Default feedrate axes for a coordinate system are X, Y, and Z.

Examples:

FRAX ; Make all axes feedrate axes

FRAX(X, Y) ; Make X and Y axes only the feedrate axes
FRAX(X, Y, 2) ; Make X, Y, and Z axes only the feedrate axes
H

Function: Perform afeedhold

Scope: Coordinate-system specific

Syntax: H

This causes the currently addressed coordinate system to suspend execution of the program starting
immediately by bringing its time base value to zero, decelerating along its path at arate defined by the
coordinate system I-variable Ix95. Technically the program is still executing after an Hcommand, but at
zero speed. This means that the motors defined in the coordinate system cannot be moved while
performing the feed hold.

To perform a hold of the currently addressed coordinate system in a manner that permits jogging of the
motorsin the coordinate system while in feed hold mode, refer to the\ program hold command.

The Hcommand is similar in effect to a%® command, except that deceleration is controlled by 1x95, not
1x94, and execution can be resumed with an Ror an S command, instead of a%d.00 command. In
addition, Hworks under external time base, whereas a%® command does not.

162 Online Commands

PMAC Product Guide

Full speed execution along the path will commence again on an Ror S command. The ramp up to full
speed will also take place at arate determined by 1x95 (full time-base value, either internally or externaly
set). Oncethe full speed is reached, 1x94 determines any time-base changes.

HOME

Function: Start Homing Search Move
Scope: Motor specific

Syntax: HOME

HM

This command causes the addressed motor to perform a homing search routine. The characteristics of the
homing search move are controlled by motor I-Variables 1x03 and 1x19-1x26, plus encoder |-Variables 2
and 3 for that motor’ s position encoder.

The on-line home command simply starts the homing search routine. PMAC provides no automatic
indication that the search has completed (although the In-Position interrupt can be used for this purpose)
or whether the move completed successfully. Generally, polling or a combination of polling and
interrupts, is used to determine completion and success.

By contrast, when a homing search move is given in amotion program (e.g. HOVEL, 2), the motion
program will keep track of completion by itself as part of its sequencing algorithms.
If thereisan axis offset in the axis-definition statement for the motor and/or following error in the motor

servo loop, the reported position at the end of the homing search move will be equal to the axis offset
minus the following error, not to zero.

Examples:

HOVE ; Start homing search on the addressed motor
#1HM ; Start homing search on Motor 1
#3HMAHM ; Start homing search on Motors 3 and 4
HOMEZ

Function: Do aZero-Move Homing

Scope: Motor specific

Syntax: HOVEZ

HW

This command causes the addressed motor to perform a zero-move homing search. Instead of jogging
until it finds a pre-defined trigger and calling its position at the trigger the home position, with this
command the motor calls wherever it is (commanded position) at the time of the command the home
position.

If there is an axis offset in the axis-definition statement for the motor and/or following error in the motor
servo loop, the reported position at the end of the homing operation will be equal to the axis offset minus
the following error, not to zero.

Example:

On-line Command Examples

HOVEZ ; Do zero-move homing search on the addressed motor
#1HVEZ ; Do zero-move homing search on Motor 1

#3HVZ#4AHVZ ; Do zero-move homing search on Motors 3 and 4
Buffered Motion Program Examples

HOVEZ1
HOVEZ2, 3
On-line Commands Issued from PLC Program
I F (P1=1)
C\VD' #5HOVEZ" ; Program issues on-line command

Online Commands 163

PMAC Product Guide

P1=0 ; So command is not repeatedly issued
ENDI F

l{constant}

Function: Report the current I-Variable values
Scope: Glabal
Syntax: I {constant}[..{constant}]

where
{const ant } isaninteger from O to 1023 representing the number of the [-variable.

The optional second{ const ant } must be at least as great asthefirst { const ant } -- it represents the
number of the end of the range.

This command causes PMAC to report the current value of the specified I-Variable or range of 1-
Variables.

When 19is0 or 2, only the value of the I-variable itself isreturned (e.g. 10000). When19is1 or 3, the
entire variable value assignment statement (e.g. | 130=10000) isreturned by PMAC.

When 19is0 or 1, the values of address I-Variables are reported in decimal form. When 19is2 or 3, the
values of these variables are reported in hexadecimal form.

Note:

If amotion program buffer (including arotary buffer) isopen, | { const ant }

will be entered into that buffer for later execution, to be interpreted as afull-circle
move command with avector to the center along the X-axis (see Circular Movesin
the Writing a Motion Program section of this manual).

Examples:

15 ; Request the value of 15

2 ; PMAC responds

1 130.. 135 ; Request the value of 1130 through 1135
60000 ; PMAC responds with 6 lines

5000

5000

50000

1

20000

To see the effect of 19 on the form of the response, observe the following:
19=0 1125

49152 ; Short form, decimal

19=1 1125

| 125=49152 ; Long form, decimal

19=2 1125

$C000 ; Short form, hexadecimal

19=3 1125

| 125=$C000 ; Long form, hexadecimal

164 Online Commands

PMAC Product Guide

l{constant}={expression}

Function: Assign avalueto an |-variable

Scope: Glabal

Syntax: I {constant}[..{constant}]={expression}
where

{const ant } isaninteger from O to 1023 representing the number of the I-variable.

the optional second{ const ant } must be at least as great asthefirst { const ant } -- it represents the
number of the end of the range.

{expressi on} containsthe value to be given to the specified |-Variables.

This command assigns the value on the right side of the equals sign to the specified I-Variable or range of
I-Variables.

If amotion or PLC program buffer is open when this command is sent to PMAC, the command will be
entered into the buffer for later execution.

Examples:

| 5=2

1 130=1. 25*1 130
| 22..44=0
 102=$C003

1 104=] 103

{constant}=*

Function: Assign factory default value to an I-Variable

Scope: Glabal

Syntax: I {constant}[..{constant}]=*

where

{const ant } isaninteger from O to 1023 representing the number of the I-Variable.

the optional second{ const ant } must be at least as great asthefirst { const ant } -- it representsthe
number of the end of the range.

This command sets the specified |-variable or range of |-Variables to the factor default value. Each |-
Variable has its own factory default. These are shown in the I-Variable Specification section of this
manual.

Examples:
| 13=*
1 100. . 199=*
INC
Function: Specify incremental move mode
Scope: Coordinate-system specific
Syntax: I NC

I NC({axis}[,{axis}...])
where

{axi s} isaletter (X,Y,Z, A, B, C, U, V, W) representing the axis to be specified, or the character R to
specify radial vector mode.

The I NC command without arguments causes all subsequent positions for all axes in position motion
commands to be treated as incremental distances. An | NC statement with arguments causes the specified
axes to be in incremental mode, and all others stay the way they were. The default axis specification is
absolute.

Online Commands 165

PMAC Product Guide

If Ris specified as one of the axes, the I, J, and K terms of the circular move radius vector specification
will be specified in incremental form (i.e. as a vector from the move start point, not from the origin). An
I NC command without any arguments does not affect this vector specification. The default vector
specification is incremental.

If amotion program buffer is open when this command is sent to PMAC, it will be entered into the buffer
as a program statement.

Examples:

I NC(A, B, C ; A, B, and C axes made incremental -- other axes and radius vector left asis
I NC ; All axes made incremental -- radius vector left asis

I NC(R) ; Radius vector made incremental -- all axesleft asis

J!

Function: Adjust motor commanded position to nearest integer count

Scope: Motor specific

Syntax: J!

This command causes the addressed motor, if the desired velocity is zero, to adjust its commanded
position to the nearest integer count value. It can be valuable to stop dithering if the motor is stopped
with its commanded position at afractional value, and integral gain is causing oscillation about the
commanded position.

Examples:
OPEN PLC 7 CLEAR
| F (Mb0=1) ; Condition to start branch
C\VD' #1J/1 " ; Tell motor to stop
VWH LE (ML33=0) ; Wait for desired velocity to reach zero
ENDWHI LE
CVD' #1J!" ; Adjust command position to integer value
Mb0=0 ; To keep from repeated execution
ENDI F
J+
Function: Jog positive
Scope: Motor specific
Syntax: J+

This command causes the addressed motor to jog in the positive direction indefinitely. Jogging
acceleration and vel ocity are determined by the values of 1x19-1x22 in force at the time of this command.

PMAC will reject this command if the motor isin a coordinate system that is currently running a motion
program (reporting ERROOL if 16is 1 or 3).

Examples:

J+ ; Jog addressed motor positive
#7J+ ; Jog Motor 7 positive
#2J+#3J+ ; Jog Motors 2 and 3 positive

166 Online Commands

PMAC Product Guide

J-

Function: Jog negative
Scope: Motor specific
Syntax: J-

This command causes the addressed motor to jog in the negative direction indefinitely. Jogging
acceleration and vel ocity are determined by the values of 1x19-1x22 in force at the time of this command.

PMAC will reject this command if the motor isin a coordinate system that is currently running a motion
program (reporting ERROO1 if 16 is 1 or 3).

Examples:

J- ; Jog addressed motor negative
#5J- ; Jog Motor 5 negative
#3J-#4J- ; Jog Motors 3 and 4 negative
J/

Function: Jog stop

Scope: Motor specific

Syntax: J/

This command causes the addressed motor to stop jogging. It also restores position control if the motor’s
servo loop has been opened (enabled or killed) with the new commanded position set equal to the actual
position at the time of the J/ command. Jogging deceleration is determined by the values of 1x19-Ix21 in
force at the time of this command.

PMAC will reject this command if the motor isin a coordinate system that is currently running a motion
program (reporting ERROOL if 16is 1 or 3).

Examples:

#1J+ ; Jog Motor 1 positive

J/ ; Stop jogging Motor 1

035 ; Open-loop output of 5% on Motor 1
Q@ ; Open loop output of 0%

J/ ; Restore closed-loop control

K ; Kill output

J/ ; Restore closed-loop control
J:{constant}

Function: Jog relative to commanded position
Scope: Motor specific

Syntax: J:{constant}

where

{const ant } isafloating point value specifying the distance to jog, in counts.

This command causes a motor to jog the distance specified by { const ant } relative to the present
commanded position. Jogging acceleration and velocity are determined by the values of 1x19-1x22 in
force at the time of this command. Compareto J*{ const ant } , whichisajog relative to the present
actual position.

A variable incremental jog command can be executed with the J: * command.

PMAC will reject this command if the motor is in a coordinate system that is currently running a motion
program (reporting ERROOL if 16is 1 or 3).

Online Commands 167

PMAC Product Guide

Examples:

#1HM ; Do homing search move on Motor 1

J: 2000 ; Jog adistance of 2000 counts (to 2000 counts)

J: 2000 ; Jog adistance of 2000 counts (to 4000 counts)

J:*

Function: Jog to specified variable distance from present commanded position
Scope: Motor specific

Syntax: J.*

This command causes the addressed mator to jog the distance specified in the motor’ s variable jog
position/distance register relative to the present commanded position. Jogging acceleration and velocity
are determined by the values of 1x19-1x22 in force at the time of this command. Compareto J** which
isajog relative to the present actual position.

The variable jog position/distance register is a floating-point register with units of counts. It is best
accessed with afloating-point M-Variable. Theregister islocated at PMAC address L:$082B for motor
1, L:$08EB for motor 2, etc. The usual procedureisto write the destination position to this register by
assigning avalue to the M-Variable, then issuing the J: * command.

PMAC will reject this command if the motor isin a coordinate system that is currently running a motion
program (reporting ERROOL if 16is 1 or 3).

Examples:

ML72->L: $082B ; Define #1 variable jog position/distance register
#1HVEZ ; Declare present position to be zero

ML72=3000 ; Assign distance value to register

#1J: * ; Jog Motor 1 this distance; end cmd. pos. will be 3000
#1J:* ; Jog Motor 1 this distance; end cmd. pos. will be 6000
ML72=P1* S| N(P2) ; Assign new distance value to register

#1J:* ; Jog Motor 1 this distance

#1J= ; Return to pre-jog target position

J=

Function: Jog to prejog position

Scope: Motor specific

Syntax: J=

This command causes the addressed motor to jog to the last pre-jog and pre-handwheel-move position
(the most recent programmed position). Jogging accel eration and vel ocity are determined by the values
of 1x19-1x22 in force at the time of this command.

The register containing this position information for the motor is called the target position register
(D:$080B for Motor 1, D:$08CB for Motor 2, etc.). Suggested M-V ariable definitions M163, M263, etc.
can be used in programs to give access to these registers.

If the/ or\ stop command has been used to suspend program execution and one or more motors jogged
away from the stop position, the J= command must be used to return the motor(s) back to the stop
position before program execution can be resumed.

The J= command can be useful also if a program has been aborted in the middle of a move, because it
will move the motor to the programmed move end position (provided 113=0 so PMAC isnot in
segmentation mode), so the program may be resumed properly from that point.

168 Online Commands

PMAC Product Guide

PMAC will reject this command if the motor isin a coordinate system that is currently running a motion
program (reporting ERROOL if 16is 1 or 3).

Examples:

&1Q ; Stop motion program at end of move

#1J+ ; Jog Motor 1 away from this position

J/ ; Stop jogging

J= ; Jog back to position where program quit

R ; Resume motion program

&1A ; Stop motion program in middle of move
#1J=#2J=#3J= ; Move al motors to original move end position
R ; Resume motion program

J={constant}

Function: Jog to specified position
Scope: Motor specific

Syntax: J={const ant }
where

{const ant } isafloating point value specifying the location to which to jog, in encoder counts.

This command causes the addressed motor to jog to the position specified by { const ant } . Jogging
acceleration and velocity are determined by the values of 1x19-1x22 in force at the time of this command.

A variable jog-to-position can be executed with the J=* command.

PMAC will reject this command if the motor isin a coordinate system that is currently running a motion
program (reporting ERROO1 if 16 is 1 or 3).

Examples:

J=0 ; Jog addressed motor to position 0
#4J=5000 ; Jog Motor 4 to 5000 counts
#8J=- 32000 ; Jog Motor 8 to -32000 counts
J=*

Function: Jog to specified variable position
Scope: Motor specific

Syntax: J=*

This command causes the addressed motor to jog to the position specified in the motor’ s variable jog
position/distance register. Jogging acceleration and velocity are determined by the values of 1x19-1x22 in
force at the time of this command.

The variable jog position/distance register is a floating-point register with units of counts. It is best
accessed with afloating-point M-Variable. Theregister islocated at PMAC address L:$082B for motor
1, L:$08EB for motor 2, etc. The usual procedureisto write the destination position to this register by
assigning a value to the M-Variable, then issuing the J=* command.

Virtually the same result can be obtained by writing to the motor target position register and issuing the
J= command. However, using the J=* command permits returning to the real target position afterwards
without having to restore the target position register. Also, the J=* command uses a register whose value
isscaled in counts, not fractions of a count.

PMAC will rgect this command if the motor isin a coordinate system that is currently running a motion
program (reporting ERROO1 if 16 is 1 or 3).

Online Commands 169

PMAC Product Guide

Examples:

ML72->L: $082B ; Define #1 variable jog position/distance reg.
ML72=3000 ; Assign position value to register

#1J=* ; Jog Motor 1 to this position

ML72=P1* S| N(P2) ; Assign new position value to register
#1J=* ; Jog Motor 1 to this position

#1J= ; Return to prejog target position
J=={constant}

Function: Jog to specified motor position and make that position the pre-jog position
Scope: Motor specific

Syntax: J=={const ant}

where

{ constant} is afloating point value specifying the location to which to jog, in encoder counts

This command causes the addressed motor to jog the position specified by { const ant } . It also makes
this position the pre-jog position, so it will be the destination of subsequent J= commands. Jogging
acceleration and vel ocity are determined by the values of 1x19-1x22 in force at the time of this command.

PMAC will reject this command if the motor isin a coordinate system that is currently running a motion
program (reporting ERROO1 if 16 is 1 or 3).

Examples:

#1J==10000 ; Jog Motor 1 to 10000 counts and make that the pre-jog position.
J+ ; Jog indefinitely in the positive direction

J= ; Return to 10000 counts

JM{constant}

Function: Jog Relative to Actua Position

Scope: Motor specific

Syntax: J™{const ant }

where

{const ant } isafloating point value specifying the distance to jog, in counts.

This causes a motor to jog the distance specified by { const ant } relative to the present actual position.
Jogging acceleration and velocity are determined by the values of 1x19-1x22 in force at the time of this
command. ComparetoJ: { const ant } whichisajog relative to the present commanded position.

Usudly, theJ: { const ant } command is more useful because its destination is not dependent on the
following error at the instant of the command. The J*0 command can be useful for swallowing any
existing following error.

A variable incremental jog can be executed with the J** command.

PMAC will reject this command if the motor isin a coordinate system that is currently running a motion
program (reporting ERROOL if 16is 1 or 3).

Examples:

#1HM ; Do homing search move on Motor 1

J~2000 ; Jog adistance of 2000 counts from actual position
; If actual was -5 cts, new command posis 1995 cts

J~2000 ; Jog adistance of 2000 counts from actual position

; If actual was 1992 cts, new cmd posis 3992 cts

170 Online Commands

PMAC Product Guide

J/\ *

Function: Jog to specified variable distance from present actual position
Scope: Motor specific

Syntax: Jnx

This command causes the addressed motor to jog the distance specified in the motor’ s variable jog
position/distance register relative to the present actual position. Jogging acceleration and velocity are
determined by the values of 1x19-1x22 in force at the time of this command. ComparetoJ: * whichisa
jog relative to the present commanded position.

The variable jog position/distance register is a floating-point register with units of counts. It is best
accessed with afloating-point M-Variable. Theregister islocated at PMAC address L:$082B for motor
1, L:$08EB for motor 2, etc. The usual procedureisto write the destination position to this register by
assigning avalue to the M-Variable, then issuing the J** command.

PMAC will reject this command if the motor isin a coordinate system that is currently running a motion
program (reporting ERROOL if 16is 1 or 3).

Examples:

ML72->L: $082B ; Define #1 variable jog position/distance reg.

#1HVZ ; Declare present position to be zero

ML72=3000 ; Assign distance value to register

#1JI1N* ; Jog Motor 1 thisdistance; if following error at command was 3, end command position
; will be 2997

#1IN* ; Jog Motor 1 thisdistance; if following error at command was 2, end command position
; will be 5995

ML72=P1* S| N(P2) ; Assign new distance value to register

#1I1N* ; Jog Motor 1 this distance

#1J= ; Return to prejog target position

{jog command}*{constant}

Function: Jog until trigger
Scope: Motor specific
Syntax: J="{constant}

J={constant}"{constant}
J:{constant}*{constant}
J™{const ant }*{const ant}
J=*~{const ant }
J: *~{const ant}
Jr*~{const ant}

where
{const ant} after the” isafloating point value specifying the distance from the trigger to which to jog
after the trigger is found, in encoder counts

This command format permits ajog-until-trigger function. Whenthe”{ const ant} structureis added
to any definite jog command, the jog move can be interrupted by a pre-defined trigger condition, and the
motor will move to apoint relative to the trigger position as specified by the final value in the command.
The indefinite jog commands J+ and J- cannot be turned into jog-until-trigger moves. Jog-until-trigger
moves are similar to homing search moves, except they have a definite end position in the absence of a
trigger and they do not change the motor zero position.

Online Commands 171

PMAC Product Guide

The jog-until-trigger function can be used with any jog command, whether the basic jog command is
definite or indefinite. If the basic jog command is definite (e.g. J=10000), in the absence of atrigger the
move will simply stop at the pre-defined position. If the basic jog command isindefinite (e.g. J+), in the
absence of atrigger the motor will keep moving until stopped by another command or error condition.

The trigger condition for ajog-until-trigger move can be either an input flag or awarning following error
condition for the motor. If bit 17 of I1x03 is 0 (the default), the trigger is atransition of an input flag
and/or encoder index channel from the set defined for the motor by 1x25. Encoder/flag variables 2 and 3
(e.g. 1912 and 1913) define which edges of which input signals create the trigger.

If bit 17 of 1x03 is 1, the trigger is the warning following error status bit of the motor becoming true.
Ix12 for the motor sets the error threshold for this condition.

Thetrigger position can be either the hardware-captured position or a software-read position. If bit 16 of
IX03 is O (the default), the encoder position latched by the trigger in PMAC s DSPGATE hardwareis
used as the trigger position. Thisisthe most accurate option because it uses the position at the moment of
the trigger, but it can only be used with incremental encoder feedback brought in on the same channel
number as the triggering flag set. This option cannot be used for other types of feedback or for triggering
on following error.

If bit 16 of 1x03 is 1, PMAC reads the present sensor position after it seesthetrigger. This can be used
with any type of feedback and either trigger condition, but can be less accurate than the hardware capture
because of software delays.

Jogging acceleration and velocity are determined by the values of 1x19-1x22 in force at the time of this
command.

PMAC will reject this command if the motor isin acoordinate sytem that is currently running a motion
program (reporting ERROOL if 16is 1 or 3).

Examples:
#1J=~1000 ; Jog to pre-jog position in the absence of atrigger
; but if trigger isfound, jog to +1000 counts from trigger
#2J:5000"- 100 ; Jog 5000 counts in the positive direction in the absence of atrigger
; but if trigger isfound, jog to -100 counts from trigger position
#3J=20000"0 ; Jog to 20000 counts in the absence of atrigger
; but if trigger isfound, return to trigger position
K
Function: Kill motor output
Scope: Motor specific
Syntax: K

This command causes PMAC to kill the outputs for the addressed motor. The servo loop is disabled, the
DAC outputs are set to zero (I1x29 and/or Ix79 offsets are still in effect), and the AENA output for the
motor istaken to the disable state (polarity is determined by E17).

Closed-loop control of this motor can be resumed with aJ/ command. The A command will re-establish
closed-loop control for al motorsin the addressed coordinate system and the <CTRL- A> command will
do so for al motors on PMAC.

The action on a K command is equivalent to what PMAC does automatically to the motor on an amplifier
fault or afatal following error fault.

172 Online Commands

PMAC Product Guide

PMAC will reject this command if the motor isin a coordinate system that is currently running a motion
program (reporting ERROOL if 16 is1 or 3). The program must be stopped first, usually with an A
command. However, the global <CTRL- K> command will kill all motorsimmediately, regardless of
whether any are running motion programs.

Examples:

K ; Kill the addressed motor

#1K ; Kill Motor 1

J/ ; Re-establish closed-loop control of Motor 1
LEARN

Function: Learn present commanded position
Scope: Coordinate-system specific

Syntax : LEARN[({axi s}[,{axis}...]]

LRN[({axi s}[,{axis}...]]

This command causes PMAC to add aline to the end of the open motion program buffer containing axis
position commands equal to the current commanded positions for some or al of the motors defined in the
addressed coordinate system. In thisway PMAC can learn a sequence of pointsto be repeated by
subsequent execution of the motion program.

PMAC effectively performs a PMATCH function, reading motor commanded positions and inverting the
axis definition equations to compute axis positions.

If axis names are specified in the LEARN command, only position commands for those axes are used in
the line added to the maotion program. |f no axis names are specified in the learn command, position
commands for all nine possible axis names are used in the line added to the motion program. The
position command for an axis with no motor attached (phantom axis) will be zero.

Note:

If amotor is closed loop, the learned position will differ from the actual position
by the amount of the position following error because commanded position is used.
If amotor is open loop or killed, PMAC automatically sets motor commanded
position equal to motor actual position, so the LEARN function can be used
regardless of the state of the motor.

Examples:

&l ; Address coordinate system 1

#1- >10000X ; Definemotor 1inC.S. 1

#2->10000Y ; Definemotor 2inC.S. 1

OPEN PROG 1 CLEAR ; Prepare program buffer for entry

F10 TA200 TS50 ; Enter required non-move commands { move motors to a position, e.g. #1 to 13450
; commanded, #2 to 29317 commanded}

LEARN(X, Y) ; Tell PMAC to learn these positions

X1. 345 Y2.9317 ; Thisistheline that PMAC adds to PROG 1 { move motors to new position, e.g. #1 to
; 16752 cmd., #2 to 34726 cmd}

LEARN ; Tell PMAC to learn positions

A0 BO CO U0 VO W X1.6752 Y3.4726 Z0
; PMAC adds positions for al axesto PROG 1

Online Commands 173

PMAC Product Guide

LIST

Function: List the contents of the currently opened buffer
Scope: Glabal

Syntax: LI ST

This command causes PMAC to report the contents of the currently opened buffer (PLC, PROG, or ROT)
to the host. If no buffer is open, PMAC will report an error (ERROO03 if 16=1 or 3). Note that what is
reported will not include any OPEN, CLEAR or CLOSE statements (since these are not program
commands).

An unopened buffer can be listed by specifying the buffer name in the list command (e.g. LI ST PROG 1).
See more LI ST commands, below.

Examples:

OPEN PRCG 1 ; Open buffer for entry

LI ST ; Request listing of open buffer

LI NEAR ; PMAC reports contents of open buffer
F10

X20 Y20

X0 YO

RETURN

CLCsSE ; Close buffer

LI ST ; Request listing of open buffer
<BELL>ERR003 ; PMAC reports error because no open buffer
LIST PC

Function: List program at program counter

Scope: Coordinate-system specific

Syntax: LI ST PC[,[{constant}]]

where

{const ant } isapositive integer representing the number of words in the program to be listed

This command causes PMAC to list the program lines that it are about to cal culate in the addressed
coordinate system, with the first line preceded by the program number and each line preceded by the
address offset. LI ST PCjust liststhe next lineto be calculated. LI ST PC, listsfrom the next line to be
calculated to the end of the program. LI ST PC, { const ant} liststhe specified address range size
starting at the next line to be calculated. To see the current line of execution, usethe Ll ST PE
command.

Because PMAC cal culates ahead in a continuous sequence of moves, the LI ST PC (Program
Calculation) command will in general, return aprogram line further down in the program than LI ST PE
will. If the coordinate system is not pointing to any motion program, PMAC will return an error
(ERROO3 if 16=1 or 3). Initially, the pointing must be done with the B{ const ant } command.

Examples:

LI ST PC ; List next lineto be calculated
P1: 22: X10Y20 ; PMAC responds

LI ST PC, 4 ; List next four words of program to be calculated
P1: 22: X10Y20 ; PMAC responds

24: X15Y30

LI ST PC, ; List rest of program

P1: 22: X10Y20 ; PMAC responds

24: X15Y30

26: ML=0

28: RETURN

174 Online Commands

PMAC Product Guide

LIST PE

Function: List program at program execution
Scope: Coordinate-system specific
Syntax: LI ST PE[,[{constant}]]
where

{const ant } isapositive integer representing the number of words in the program to be listed.

This command causes PMAC to list the program lines starting with the line containing the move that it is
currently executing in the addressed coordinate system, with the first line preceded by the program
number, and each line preceded by the address offset.

Because PMAC calculates ahead in a continuous sequence of moves, the LI ST PC (Program Cal cul ation)
command will in general return a program line further down in the program than L1 ST PE will.

LI ST PE returns only the currently executing line. L1 ST PE, returnsfrom the currently executing line
to the end of the program. LI ST PE, {const ant } returnsthe specified number of wordsin the
program, starting at the currently executing line.

If the coordinate system is not pointing to any motion program, PMAC will return an error (ERROO3 if
16=1 or 3). Initially the pointing must be done with the B{ const ant } command.

Examples:

LI ST PE ; List presently executing line

P5: 35: X5Y30 ; PMAC responds

LI ST PE, 4 ; List four program words, starting with executing line
P5: 35: X5Y30 ; PMAC responds

37: X12Y32

LI ST PE, ; List rest of program, starting with executing line
P5: 35: X5Y30 ; PMAC responds

37: X12Y32

39: X0 Y10

41: RETURN

LIST PLC

Function: List the contents of the specified PLC program

Scope: Glabal

Syntax: LI ST PLC {constant}

where

{const ant } isaninteger from O to 31 representing the number of the PLC program.

This command causes PMAC to report the contents of the specified PLC program buffer to the host. The
contents are reported in ASCII text form. If 19is0 or 2, the contents are reported in short form (e.g.
ENDW. If 19is 1 or 3, the contents are reported in long form (e.g. ENDVWHI LE).

PL Cs 0-15 can be protected by password. If the PLC is protected by password and the proper password
has not been given, PMAC will reject this command (reporting an ERROO2 if 16=1 or 3).

Examples:
LI ST PLC O
LI ST PLC 5

Online Commands 175

PMAC Product Guide

LIST PROGRAM

Function: List the contents of the specified motion program.
Scope: Glabal
Syntax: LI ST PROGRAM {constant} [{start}] [,{length}]

LI ST PROG {constant} [{start}] [,{length}]
where
{const ant } isaninteger from 1 to 32767 specifying the number of the motion program.

the optional { st art} parameter isan integer constant specifying the distance from the start of the buffer
(in words of memory) to begin thelisting (O is the default).

the optional { | engt h} parameter (after acomma) is an integer constant specifying the number of words
of the buffer to be sent to the host (to the end of the buffer isthe default).

This command causes PMAC to report the contents of the specified fixed motion program buffer (PROG)
to the host. The contents are reported in ASCII text form. If 19is0 or 2, the contents are reported in
short form (e.g. LI N). 1f 19is1 or 3, the contents are reported in long form (e.g. LI NEAR).

If neither { start} nor{l engt h} isspecified, the entire contents of the buffer will be reported. If
{start} isspecified, thereporting will begin{ st art } words from the beginning of the buffer. If
{1 engt h} isspecified, the reporting will continue for { | engt h} words from the starting point.

If either {start},{Il engt h}, or both, or just the commaisincluded in the command, the listing of the
program will include the buffer address offsets with each line. Having alisting with these offsets can be
useful in conjunction with later use of the PC (Program-Counter) and LI ST PC commands.

If the motion program requested by this command does not exist in PMAC, PMAC will rgject this
command (reporting an ERROO3 if 16=1 or 3).

PROGs 1000-32767 can be protected by password. If the PROG is protected by password and the proper
password has not been given, PMAC will regject this command (reporting an ERR002 if 16=1 or 3).

Examples:

LI ST PROG 9 ; Request listing of all of motion program 9
LI NEAR ; PMAC responds

F10

X10Y10

X0YO

RETURN

LI ST PROG 9, ; Request listing of program w/ address offsets

0: LI NEAR

1: F10

2: X10Y10 ; Note that a 2-axis command takes two addresses
4: X0YO

6: RETURN

LI ST PROG 9, 4 ; Request listing starting at address 4
4: X0YO
6: RETURN

LI ST PROCG 9, 2,4 ; Request listing starting at 2, four words long
2: X10Y10
4: X0YO

LI ST PROG 9, , 2 ; Request listing starting at top, 2 words long
0: LI NEAR
1. F10

176 Online Commands

PMAC Product Guide

M{constant}

Function: Report the current M-Variable values
Scope: Glabal

Syntax: M constant}[..{constant}]
where

{const ant } isaninteger from O to 1023 representing the number of the M-V ariable.

The optional second { const ant } must be at least as great asthefirst { const ant } -- it representsthe
number of the end of the range.

This command causes PMAC to report the current value of the specified M-variable or range of M-
variables. It does not cause PMAC to report the definition (address) of the M-V ariables; that is done with
the M const ant } - > command.

Note:

If amotion program buffer (including arotary buffer) is open when this command
issent to PMAC it will be entered into the buffer for later execution, to be
interpreted as an M-code subroutine call.

Examples:

M : Host asks for value
3548976 : PMAC's response
ML65

5.75

M. .3

1

0

1

M{constant}={expression}

Function: Assign value to M-variable(s).
Scope: Glabal
Syntax: M{constant}[..{constant}]={expression}

where

{const ant } isaninteger from O to 1023 representing the number of the M-V ariable.

The optional second{ const ant } must be at least as great asthefirst { const ant } -- it representsthe
number of the end of the range;

{expressi on} containsthe value to be given to the specified M-Variables.

This command assigns the value on the right side of the equals sign to the specified M- Variables. It does
not assign a definition (address) to the M-V ariables; that is done withthe M const ant } -
>{definition} command.

If amotion or PLC program buffer is open when this command is sent to PMAC, it will be entered into
the buffer for later execution.

Examples:
ML=1

MI=MD & $20
MLO2=- 16384
ML. . 8=0

Online Commands 177

PMAC Product Guide

M{constant}->

Function: Report current M-variable definition(s)
Scope: Glabal

Syntax: M constant}[..{constant}]->
where

{const ant } isaninteger from O to 1023 representing the number of the M-V ariable.

the optional second{ const ant } must be at least as great asthefirst { const ant } -- it represents the
number of the end of the range.

This command causes PMAC to report the definition (address) of the specified M-V ariable or range of M-
Variables. It does not cause PMAC to report the value of the M-Variables; that is done with the
M const ant } command.

When 19is0 or 2, only the definition itself (e.g. Y: $FFC2, 0) isreturned. When 19is lor 3, the entire
definition statement (e.g. ML1- >Y: $FFC2, 0) isreturned.

Examples:

ML- > : Host requests definition
Y: $FFC2, 8 ; PMAC's response
MLO1. . 103->

X: $C001, 24, S
Y: $C003, 8, 16, S

X: $C003, 24, S

M{constant}->*

Function: Self-referenced M-Variable definition
Scope: Glabal

Syntax: Mconstant}[..{constant}]->*
where

{const ant } isaninteger from O to 1023 representing the number of the M-variable

the optional second{ const ant } must be at least as great asthefirst { const ant } -- it represents the
number of the end of the range.

This command causes PMAC to reference the specified M-Variable or range of M-Variablesto its own
definition word. To use an M-Variable asaflag, status bit, counter, or other simple variable, thereisno
need to find an open area of memory, because it is possible to use some of the definition space to hold the
value. Definethisform of the M-Variable and it can be used the same as a P-variable, except it only

takes integer values in the range -1,048,576 to +1,048,575 (-220 to +220-1).

When the definition is made, the value is set automatically to 0. This command is also useful to erase an
existing M-Variable definition.

Examples:
MLOO- >*
MRO. . 39->*
MD. . 1023- >* ; Thiserases all existing M-variable definitions
; Itisagood ideato use this before loading new ones

178 Online Commands

PMAC Product Guide

M{constant}->D:{address}

Function: Long fixed-point M-V ariable definition

Scope: Glabal

Syntax: M constant}[..{constant}]->D:]{address}
where

{const ant } isaninteger from 0 to 1023 representing the number of the M-Variable.

the optional second { const ant } must be a least as great asthefirst { const ant } -- it represents the
number of the end of the range.

{addr ess} isaninteger constant from 0 to 65,535 ($0 to $FFFF if specified in hex).

This command causes PMAC to define the specified M-variable or range of M-Variablesto a 48-bit
double word (both X and Y memory; X more significant) at the specified location in PMAC’ s address
space. Thedataisinterpreted as afixed-point signed (two’s complement) integer.

The definition consists of the letter D, an optional colon (:), and the word address.
Memory locations for which this format is useful are labeled with D: in the memory map.

Examples:

ML61->D: $0028 ; Motor 1 desired position register specified in hex
ML61- >D40 ; Motor 1 desired position register specified in decimal
ML62- >D$2C ; Motor 1 actual position register specified in hex
M{constant}->L:{address}

Function: Long word floating-point M-V ariable definition

Scope: Global

Syntax: M constant}[..{constant}]->L[:]{address}
where

{const ant } isaninteger from 0O to 1023 representing the number of the M-V ariable.

the optional second{ const ant } must be at least as great asthefirst { const ant } -- it representsthe
number of the end of the range.

{addr ess} isaninteger constant from 0 to 65,535 ($0 to $FFFF if specified in hex).

This command causes PMAC to define the specified M-Variable or range of M-Variablesto point to a
long word (48 bits) of data-- both X and Y memory -- at the specified location in PMAC’ s address space.
The dataisinterpreted as a floating-point value with PMAC’ s own 48-bit floating-point format.

The definition consists of the letter L, an optional colon (:), and the word address. Memory locations for
which this format is useful are labeled with L: in the memory map.

Examples:
ML65- >L: $081F
M265- >L$0820
M265- >L2080

M{constant}->X/Y:{address}

Function: Short word M-Variable definition
Scope: Glabal
Syntax: M constant}[..{constant}]->
X[:]{address}, {offset}[,{width}[,{format}]]

M constant}[..{constant}]->
Y[:]{address},{offset}[,{width}[,{format}]]
where
{const ant } isaninteger from 0 to 1023 representing the number of the M-Variable.

Online Commands 179

PMAC Product Guide

the optional second{ const ant } must be at least as great asthefirst { const ant } -- it representsthe
number of the end of the range.
{addr ess} isaninteger constant from 0 to 65,535 ($0 to $FFFF if specified in hex).
{of f set} isaninteger constant from O to 23, representing the starting (least significant) bit of the word
to be used in the M-Variables, or 24 to specify the use of al 24 bits.
{w dt h} (optional) isaninteger constant from the set {1, 4, 8, 12, 16, 20, 24}, representing the number of
bits from the word to be used in the M-Variables; if { W dt h} isnot specified, avalue of 1 is assumed.
{format} (optional) isaletter fromtheset [U, S, D, C], specifying how PMAC isto interpret this
value: (U=Unsigned integer, S=Signed integer, D=Binary-coded Decimal, C=Complementary binary-
coded decimal); if { f or mat } isnot specified, U is assumed.
This command causes PMAC to define the specified M-Variable or range of M-Variablesto point to a
location in one of the two halves (X or Y) of PMAC'sdata memory. In thisform, the variable can have a
width of 1 to 24 bits and can be decoded severa different ways, so the bit offset, bit width, and decoding
format must be specified (the bit width and decoding format do have defaults).
The definition consists of the letter X or Y, an optional colon (:), the word address, the starting bit
number (offset), an optional bit width number, and an option format-specifying letter.
Legal valuesfor bit width and bit offset are inter-related. The table below shows the possible values of
{wi dt h}, and the corresponding legal values of { of f set } for each setting of { wi dt h} .
{wi dt h} {offset}

1 0--23

4 0,4,8,12,16,20

8 0,4,8,12,16

12 0,4,8,12
16 04,8

20 04

24 0

The format isirrelevant for 1-bit M-V ariables and should not be included for them. If no format is
specified, U is assumed.

Examples:

Machine Output 1

ML- >Y: $FFC2, 8, 1 ; 1-bit (full spec.)

ML- >Y$FFC2, 8 ; 1-bit (short spec.)
Encoder 1 Capture/Compare Register

MLO3- >X: $C003, 0, 24, U ; 24-bit (full spec.)
MLO3- >X$C003, 24 ; 24-bit (short spec.)
DAC 1 Output Register

MLO2- >Y: $C003, 8, 16, S ; 16-bit value

MLO2- >Y49155, 8, 16, S ; same, decimal address

180 Online Commands

PMAC Product Guide

MFLUSH

Function: Clear pending synchronous M-V ariable assignments
Scope: Coordinate-system specific

Syntax: MFLUSH

This command permits the user to clear synchronous M-V ariable assignment commands that have been
put on the stack for intended execution with a subsequent move (without executing the commands). As
an on-line command, it is useful for making sure pending outputs are not executed after a program has
been stopped.

Examples:

/ ; Stop execution of a program

MFLUSH ; Clear M-Variable stack

B1R ; Start another program; formerly pending M-variables will not execute
O{constant}

Function: Open loop output

Scope: Motor specific

Syntax: O[const ant}

where

{const ant } isafloating-point value representing the magnitude of the output as a percentage of 1x69
for the motor, with arange of +/-100.

This command causes PMAC to put the motor in open-loop mode and force an output of the specified
magnitude, expressed as a percentage of the maximum output parameter for the motor (1x69). This
command is commonly used for set-up and diagnostic purposes (for instance, a positive O command must
cause position to count in the positive direction, or closed-loop control cannot be established), but it can
also be used in actual applications.

If the motor is not PMAC-commutated, this command will create a DC output voltage on the single DAC
for the motor. If the motor is commutated by PMAC, the commutation algorithm is still active and the
specified magnitude of output is apportioned between the two DA C outputs for the motor according to the
instantaneous commutation phase angle.

If the value specified is outside the range +/-100, the output will saturate at +/-100% of 1x69.

Closed-loop control for the motor can be re-established with the J/ command. It isagood ideato stop
the motor first with an Q0 command if it has been moving in open-loop mode.

To perform avariable O-command, define an M-Variable to the filter result register (X:$003A, etc.),
command an Q0 to the motor to put it in open-loop mode, then assign a variable value to the M-Variable.
This technique will even work on PMAC-commutated motors.

PMAC will reject this command if the motor isin a coordinate system that is currently running a motion
program (reporting ERROOL if 16is 1 or 3).

Examples:

0 ; Open-loop output 50% of 1x69 for addressed motor
#2033. 333 ; Open-loop output 1/3 of 1x69 for Motor 2

@ ; Open-loop output of zero magnitude

J/ ; Re-establish closed-loop control

Online Commands 181

PMAC Product Guide

OPEN PLC

Function: Open a PLC program buffer for entry
Scope: Glabal

Syntax: OPEN PLC {constant}

where

{const ant} isaninteger from O to 31 representing the PLC program to be opened.

This command causes PMAC to open the specified PLC program buffer for entry and editing. This
permits subsequent program lines that are valid for a PLC to be entered into this buffer. When entry of
the program is finished, the CLOSE command should be used to prevent further lines from being put in
the buffer.

No other program buffers (PLC, fixed or rotary motion) may be open when this command is sent (PMAC
will report ERROO7 if 16=1 or 3). Precede an OPEN command with a CLOSE command to make sure no
other buffers have been left open.

PL Cs 0-15 can be protected by password. If the PLC is protected by password and the proper password
has not been given, PMAC will reject this command (reporting an ERRO02 if 16=1 or 3).

Opening a PLC program buffer automatically disables that PLC program. Other PLC programs and
motion programs will keep executing. Closing the PLC program buffer after entry does not re-enable the
program. To re-enable the program, the ENABLE PLC command must be used, or PMAC must be reset
(with asaved value of 15 permitting this PLC program to execute).

Examples:
CLOSE ; Make sure other buffers are closed
DELETE GATHER ; Make sure memory isfree
OPEN PLC 7 ; Open buffer for entry, disabling program
CLEAR ; Erase existing contents
IF (ML1=1) ; Enter new version of program...
CLCSE ; Close buffer at end of program
ENABLE PLC 7 ; Re-enable program
OPEN PROGRAM
Function: Open afixed motion program buffer for entry
Scope: Glabal
Syntax: OPEN PROGRAM {const ant }

OPEN PROG {const ant}
where

{const ant } isaninteger from 1 to 32767 representing the motion program to be opened.

This command causes PMAC to open the specified fixed (non-rotary) motion program buffer for entry or
editing. Subsequent program commands valid for motion programs will be entered into this buffer.
When entry of the program is finished, the CLOSE command should be used to prevent further lines from
being put in the buffer.

No other program buffers (PLC, fixed or rotary motion) may be open when this command is sent (PMAC
will report ERROO7 if 16=1 or 3). Precede an OPEN command with a CLOSE command to make sure no
other buffers have been left open.

No motion programs may be running in any coordinate system when this command is sent (PMAC will
report ERROO1 if 16=1 or 3). Aslong as afixed motion program buffer is open, no motion program may
be run in any coordinate system (PMAC will report ERRO15 if 16=1 or 3).

PROGs 1000-32767 can be protected by password. If the PROG is protected by password and the proper
password has not been given, PMAC will reject this command (reporting an ERRO02 if 16=1 or 3).

182 Online Commands

PMAC Product Guide

After any fixed motion program buffer has been opened, each coordinate system must be commanded to

point to a motion program with the B{ const ant } command before it can run a motion command
(otherwise PMAC will report ERRO15 if 16=1 or 3)

Examples:

CLOSE ; Make sure other buffers are closed
DELETE GATHER ; Make sure memory isfree

OPEN PROG 255 ; Open buffer for entry, disabling program
CLEAR ; Erase existing contents

X10 Y20 F5 ; Enter new version of program...
CLCSE ; Close buffer at end of program
&1B255R ; Point to this program and run it

P

Function: Report motor position

Scope: Motor specific

Syntax: P

This command causes PMAC to report the present actual position for the addressed motor to the host,
scaled in counts, rounded to the nearest tenth of a count.

PMAC reports the value of the actual position register plus the position bias register, plus the
compensation correction register, and if bit 16 of Ix05is 1 (handwheel offset mode), minus the master
position register.

Examples:

P ; Request the position of the addressed motor
1995 ; PMAC responds

#1P ; Request position of Motor 1

-0.5 ; PMAC responds

#2P#4P ; Request positions of Motors 2 and 4

9998 ; PMAC responds with Motor 2 position first
10002 ; PMAC responds with Motor 4 position next
P{constant}

Function: Report the current P-variable values

Scope: Glabal

Syntax: P{constant}[..{constant}]

where

{const ant } isaninteger from O to 1023 representing the number of the P-Variable.

the optional second{ const ant } must be at least as great asthefirst { const ant } -- it represents the

number of the end of the range.

This command causes PMAC to report the current value of the specified P-Variable or range of P-
Variables.

Examples:

P1 ; Host asks for value
25 ; PMAC responds
P1005

3.444444444

P100. . 102

17.5

- 373

0. 0005

Online Commands

183

PMAC Product Guide

P{constant}={expression}

Function: Assign avalueto aP-Variable

Scope: Glabal

Syntax: P{constant}[..{constant}] ={expression}
where

{const ant } isaninteger from O to 1023 representing the number of the P-Variable.

the optional second{ const ant } must be at least as great asthefirst { const ant } -- it represents the
number of the end of the range.

{expressi on} containsthe value to be given to the specified P-Variables.

This command causes PMAC to set the specified P-Variable or range of P-Variables equal to the value on
the right side of the equals sign.

Examples:

P1=1

P75=P32+P10
P100..199=0

P10=$2000
P832=SIN(3.14159* Q10)

PASSWORD={string}

Function: Enter/Set Program Password
Scope: Glabal

Syntax: PASSWORD={ st ri ng}
where

{string} isaseriesof non-control ASCII characters (values from 32 decimal to 255 decimal). The
password string is case sensitive.

This command permits the user to enter the card’ s password, or once entered properly to change it.
Without a properly entered password, PMAC will not open or list the contents of any motion program
numbered 1000 or greater or of PLC programs 0-15. |f asked to do so, it will return an error (ERR002
reported if 16 isset to 1 or 3).

The default password is the null password (which means no password is needed to list the programs).
Thisis how the card is shipped from the factory and also after a$$$* * * re-initialization command.
When thereis anull password, it is considered automatically to have entered the correct password on
power-up/reset.

If the correct password has been entered (which is always the case for the null password), PMAC
interprets the PASSWORD={ st r i ng} command as changing the password and it can be changed to
anything. When the password is changed, it has been matched automatically and the host computer has
access to the protected programs.

Note:
The password does not require quote marks. If using quote marks when entering
the password string for the first time, use them every time this password string is
matched.

184 Online Commands

PMAC Product Guide

If the correct password has not been entered since the latest power-up/reset, PMAC interprets the
PASSWORD={ st ri ng} command as an attempt to match the existing password. If the command
matches the existing password correctly, PMAC acceptsit asavaid command and the host computer has
access to the protected programs until the PMAC isreset or hasits power cycled. If the command does
not match the existing password correctly, PMAC returns an error (reporting ERR002 if 16=1 or 3) and
the host computer does not have access to the protected programs. The host computer is free to attempt to
match the existing password.

There isno way to read the current password. If the password is forgotten and access to the protected
programsis required, the card must be re-initialized with the $$$* * * command which clears al program
buffers aswell as the password. Then the programs must be reloaded, and a new password entered.

Examples:
{Starting from power-up/reset with a null password}
LISTPLC1 ; Request listing of protected program
P1=P1+1 ; PMAC responds because there is no password
RETURN
PASSWORD=Bush ; This sets the password to Bush
LISTPLC1 ; Request listing of protected program
P1=P1+1 ; PMAC responds because password has been
RETURN ; matched by changing it.
5 ; Reset the card
LISTPLC1 ; Request listing of protected program
ERRO002 ; PMAC regects because password not entered
PASSWORD=Reagan ; Attempt to enter password
ERRO002 ; PMAC rgects as incorrect password
PASSWORD=BUSH ; Attempt to enter password
ERRO002 ; PMAC rgjects as incorrect (wrong case)
PASSWORD=Bush ; Attempt to enter password

; PMAC accepts as correct password
LISTPLC1 ; Request listing of protected program
P1=P1+1 ; PMAC responds because password matched
RETURN
PASSWORD=Clinton ; This changes password to Clinton
LISTPLC1 ; Request listing of protected program
P1=P1+1 ; PMAC responds because password has been
RETURN ; matched by changing it.
$$$; Reset the card
PASSWORD=Clinton ; Attempt to enter password

; PMAC accepts as correct password
LISTPLC1 ; Request listing of protected program
P1=P1+1 ; PMAC responds because password matched
RETURN
PC
Function: Report Program Counter
Scope: Coordinate-system specific
Syntax: PC

This command causes PMAC to report the motion program number and address offset of the line in that
program that it will next calculate (in the addressed coordinate system). It will also report the program
number and address offset of any linesit must RETURN to if it isinside a GOSUB or CALL jump (up to 15

deep).

Online Commands 185

PMAC Product Guide

The number reported after the colon is not aline number; as an addres offset, it is the number of words of
memory from the top of the program. The LI ST PROGRAMcommand, when used with comma
delimiters, shows the program or section of the program with address offsets for each line. TheLl ST
PC command can show lines of the program with address offsets from the point of calculation.

Because PMAC cal culates ahead in a continuous sequence of moves, the PC (Program Calculation)
command will in general return a program line further down in the program than PE will.

If the coordinate system is not pointing to any motion program, PMAC will return an error (ERROO3 if
16=1 or 3). Initially the pointing must be done with the B{ const ant } command.

Examples:

PC

P1: 0 ; Ready to execute at the top of PROG 1

PC

P76: 22 ; Ready to execute at 22nd word of PROG 76
LI ST PC

P76: 22: X10Y20 ; Program line at 22nd word of PROG 76

PC

P1001: 35>P3. 12 ; Execution will return to PROG 3, address 12
PE

Function: Report program execution pointer

Scope: Coordinate-system specific

Syntax: PE

This command causes PMAC to report the motion program number and address offset of the currently
executing programmed move in the addressed coordinate system. Thisis similar to the PC command,
which reports the program number and address offset of the next move to be calculated. Since PMAC is
calculating ahead in a continuous sequence of moves, PCwill in general report amove line several moves
ahead of PE.

If the coordinate system is not pointing to any motion program, PMAC will return an error (ERROO3 if
16=1 or 3). Initially the pointing must be done with the B{ const ant } command.

Examples:
PE

P1:2

PE

P1:5

PMATCH

Function: Re-match axis positions to motor positions
Scope: Coordinate-system specific
Syntax: PVATCH

This command causes PMAC to recalculate the axis starting positions for the coordinate system to match
the current motor commanded positions (by inverting the axis definition statement equations and solving
for the axis position).

Normally this does not need to be done. However, if amotor move function, such as ajog move, an
open-loop move, or a stop on abort or limit, was done since the last axis move or home, PMAC will not
know automatically that the axis position has changed. If an axis moveis then attempted without the use
of the PMATCH command, PMAC will use the wrong axis starting point in its cal culations.

186 Online Commands

PMAC Product Guide

In addition, with an absolute sensor, a PMATCH command should be executed before the first
programmed move, so the starting axis position matches the (non-zero) motor position.

If the PMATCH function is not performed, PMAC will use the last axis destination position as the starting
point for its upcoming axis move cal culations which is not necessarily the same position as the current
commanded motor positions.

The PMATCH function can be executed from within a motion program using CVD* PMATCH' with
DWEL Ls both before and after. Thisisuseful if the coordinate system setup changes in the middle of the
program (e.g. new axis brought in, or following mode changed).

If more than one motor is defined to a given axis (asin a gantry system), the commanded position of the
lower-numbered motor is used in the PMAC calculations.

Note:

If 114 isset to 1, the PMATCH function will be executed automatically every time
program execution is started. Most users will want to use 114=1 so they do not
have to worry about when this needs to be done.

Example:

#1J+ ; Jog motor 1

#1J/ ; Stop jogging

PMATCH ; Match axis position to current motor position
B200R ; Execute program 200

OPEN PROG 10 CLEAR

C\VD' &1#4- >100C" ; Bring C-axisinto coordinate system

DWELL100

C\VD' PMATCH! ; Issue PMATCH so C-axis has proper start position
DWELL100

Ca0

Q

Function: Quit Program at end of move
Scope: Coordinate-system specific
Syntax: Q

This causes the currently addressed coordinate system to cease execution of the program at the end of the
currently executing move or the next move if that has already been calculated. The program counter is set
to the next line in the program, so execution may be resumed at that point with an R or S command.

Compare thisto the similar / command, which always stops at the end of the currently executing move.

Examples:

B10R ; Point to beginning of PROG 10 and run
Q ; Quit execution

R ; Resume execution

Q ; Quit execution again

S ; Resume execution for a single move

Online Commands 187

PMAC Product Guide

Q{constant}

Function: Report Q-Variable value

Scope: Coordinate-system specific

Syntax: Qconstant}[..{constant}]
where

{const ant} isaninteger from O to 1023 representing the number of the Q-variable.

the optional second{ const ant } must be at least as great asthefirst { const ant } -- it represents the
number of the end of the range.

This command causes PMAC to report back the present value of the specified Q-Variable or range of Q-
Variables for the addressed coordinate system.

Examples:

QLo

35

Q255

-3.4578
QL01. . 103

0

98.5

- 0. 333333333

Q{constant}={expression}

Function: Q-Variable value assignment

Scope: Coordinate-system specific

Syntax: Q{constant}|[..{constant}]={expression}
where

{constant} is an integer from 0 to 1023 representing the number of the Q-Variable.

the optional second{constant} must be at least as great as the first {constant} -- it represents the number
of the end of the range.

{expression} contains the value to be given to the specified Q-Variables.

This command causes PMAC to assign the value of the expression to the specified Q-variable or range of
Q-variables for the addressed coordinate system.

If amotion program buffer is open when this command is sent to PMAC, it is entered into the buffer for
later execution.

Examples:
QL00=2.5
Ql..10=0

R

Function: Run Motion Program

Scope: Coordinate-system specific

Syntax: R

This command causes the addressed PMAC coordinate system to start continuous execution of the motion
program addressed by the coordinate system’s program counter from the location of the program counter.
Alternately, it will restore operation after a\ or Hcommand has been issued (even if aprogram wasor is
not running). Addressing of the program counter is doneinitially using the B{ const ant } command.
The coordinate system must be in a proper condition in order for PMAC to accept this command.

Otherwise PMAC will reject this command with an error; if 16is1 or 3, it will report the error number.
The following conditions can cause PMAC to reject this command (also listed are the remedies):

188 Online Commands

PMAC Product Guide

Both limits set for amotor in coordinate system (ERR010)

Clear limits

Another moveisin progress (ERR011)

Stop move (e.g. Withj /)

Open-loop motor in coordinate system (ERR012)

Closeloopwith J/ or A

I nactivated motor in coordinate system (ERR013)

Change 1x00 to 1 or remove motor from coordinate system

No motorsin the coordinate system (ERR014)

Put at least 1 motor in coordinate system

Fixed motion program buffer open (ERR015)

Close buffer and point to program

No program pointed to (ERR015)

Point to program with B command

Program structured improperly (ERR016)

Correct program structure

Motor(s) not at same position as stopped with / or \
command (ERR017)

Move back to stopped position with J=

Examples:

&1B1R ; Coordinate System 1 point to PROG 1 and run
&2B200. 06 ; Coordinate System 2 point to N6000 of PROG 200 and run
Q ; Quit this program

R ; Resume running from point where stopped

H ; Do afeed hold on this program

R ; Resume running from point where stopped
R[H]{address}

Function: Report the contents of a specified memory addresses
Scope: Global

Syntax: R H {address} [,{constant}]

where

{addr ess} consistsof aletter X, Y, or L; an option colon (;); and an integer value from O to 65535 (in
hex, $0000 to $FFFF); specifying the starting PMAC memory or 1/O address to be read.

{const ant } (optional) isan integer from 1 to 16 specifying the number of consecutive memory
addresses to be read; if thisis not specified, PMAC assumes avalue of 1.

This command causes PMAC to report the contents of the specified memory word address or range of
addresses to the host (it is essentially a PEEK command). The command can specify either short (24-hit)
wordsin PMAC’ s X-memory, short (24-bit) wordsin PMAC’'s Y -memory, or long (48-bit) words
covering both X and Y memory (X-word more significant). This choice is controlled by the use of the X,

Y, or L address prefix in the command, respectively.

If the letter H is used after the R in the command, PMAC reports back the register contents in unsigned
hexadecimal form, with six digits for a short word and twelve digits for along word. If the letter H is not
used, PMAC reports the register contentsin signed decimal form.

Examples:

RHX: 49152 ; Request contents of X-register 49152 ($C000) in hex
8F4017 ; PMAC respondsin unsigned hex (note no '$)
RHX: $C000 ; Request contents of X-reg $C000 (49152) in hex
8F4017 ; PMAC respondsin unsigned hex

RX: 49152 ; Request contents of same register in decimal

- 7389161 ; PMAC respondsin signed decimal

RX: $C000 ; Request contents of same register in decimal

- 7389161 ; PMAC respondsin signed decimal

RX0 ; Request contents of servo cycle counter in decimal
2953211 ; PMAC respondsin signed decimal

RL$0028 ; Request contents of #1 cmd. pos. reg in decimal
3072000 ; PMAC responds (=1000 counts)

RHY1824, 12 ; Request set-up words of the conversion table

Online Commands

189

PMAC Product Guide

00C000 00C004 00COO8 00COOC 00C010 00C014 00CO18
00C01C 400723 0000295 000000 000000 ; PMAC respondsin hex

S

Function: Execute one move (step) of motion program
Scope: Coordinate-system specific

Syntax: S

This command causes the addressed PMAC coordinate system to start single-step execution of the motion
program addressed by the coordinate system’ s program counter from the location of the program counter.
Addressing of the program counter is doneinitially using the B{ const ant } command.

At the default 153 value of zero, a STEP command causes program execution through the next move or
DWEL L command in the program, even if this takes multiple program lines.

When I53 isset to 1, a STEP command causes program execution of only a single program line, even if
thereis no move or DVELL command on that line. If thereis more than one DWELL or DELAY command
on aprogram line, asingle STEP command will only execute one of the DWELL or DELAY commands.

Regardless of the setting of 153, if program execution on a Step command encounters a BLOCKSTART
statement in the program, execution will continue until a BLOCKSTOP statement is encountered.

If the coordinate system is already executing a motion program when this command is sent, the command
puts the program in single-step mode, so execution will stop at the end of the latest calculated move. In
this case, its action is the equivalent of the Q command.

The coordinate system must be in a proper condition in order for PMAC to accept this command.
Otherwise PMAC will rgject this command with an error; if 16is1 or 3, it will report the error number.
The same conditions that cause PMAC to reject an R command will cause it to regject an S command,;
refer to those conditions under the R command specification.

Examples:

&3B20S ; Coordinate System 3 points to beginning of PROG 20 and step
P1 ; Ask for value of P1

1 ; PMAC responds

S ; Do next step in program

P1 ; Ask for value of P1 again

- 3472563 ; PMAC responds --probable problem
SAVE

Function: Copy setup parameters to non-volatile memory
Scope: Glabal

Syntax: SAVE

This command causes PMAC to copy setup information from active memory to non-volatile memory, so
this information can be retained through power-down or reset. Its exact operation depends on the type of
PMAC used.

For standard PMACs with battery-backed RAM, only the basic setup information is stored with the SAVE
command: |-V ariables, encoder conversion table entries, and VME/DPRAM address entries. This
information is copied back from flash to active memory during a normal power-up/reset operation. User
programs, buffers, and definitions are ssmply held in RAM by the battery backup; thereis no need to save
these.

190 Online Commands

PMAC Product Guide

For option PMACs with flash-backed RAM, al user setup information including programs, buffers, and
definitionsis copied to flash memory with the SAVE command. Thisinformation is copied back from
flash to active memory during a normal power-up/reset operation. This means that anything changed in
PMAC' s active memory that is not saved to flash memory will be lost in a power-on/reset cycle.

The SAVE operation can be inhibited by changing jumper E50 from its default state. If the SAVE
command is issued with jumper E50 not in its default state, PMAC will report an error. Theretrieval of
information from non-volatile memory on power-up/reset can be inhibited by changing jumper E51 from
its default state.

PMAC does not provide the acknowledging handshake character to the SAVE command until it has
finished the saving operation, a significant fraction of a second later on PMACs with battery backup and
about five to ten seconds on PMACs with flash backup. The host program should be prepared to wait
much longer for this character than is necessary on most commands. For this reason, do not include the
SAVE command as part of adump download of alargefile.

During execution of the SAVE command, PMAC will not execute other background tasks, including user
PL Cs and automatic safety checks, such asfollowing error and overtravel limits. Particularly on boards
with the flash backup where saving takes many seconds, make sure the system is not depending on these
tasks for safety when the SAVE command is issued.

Examples:

| 130=60000 ; Set Motor 1 proportional gain
SAVE ; Save to non-volatile memory

| 130=80000 ; Set new value

$$% ; Reset card

1 130 ; Request value of 1130

60000 ; PMAC responds with saved value
SIZE

Function: Report the amount of unused buffer memory in PMAC.
Scope: Glabal

Syntax: SI ZE

This command causes PMAC to report to the host the amount of unused long words of memory available
for buffers. If no program buffer (motion, PLC or rotary buffer) is open, thisvalue is reported as a
positive number. If abuffer is currently open, the value is reported as a hegative number.

Examples:

DEFI NE GATHER ; Reserve all remaining memory for gathering
SI ZE ; Ask for amount of open memory

0 ; PMAC reports none available

DELETE GATHER ; Free up memory from gathering buffer

SI ZE ; Ask for amount of open memory

41301 ; PMAC reports number of words available
OPEN PROG 10 ; Open a motion program buffer

SI ZE ; Ask for amount of open memory

-41302 ; The negative sign shows a buffer is open

Online Commands 191

PMAC Product Guide

TYPE

Function: Report type of PMAC
Scope: Glabal

Syntax: TYPE

This command causes PMAC to return a string reporting the configuration of the card. 1t will report the
configuration as atext string in the following format:

{PMAC type} { Bustype} { Backup type} ,{ Servo Type} ,{ Ladder type} ,{ Clock Multiplier}
where

{PMAC type}:

PVACL First generation PMAC (including PMAC”1.5")
PVAC2 Second generation PMAC

PMACUL Ultralite (MACRO only PMAC2)
{Bustype}:

| SA IBM-PC ISA bus

VMVE VME bus

STD STD bus

| SA/ VVE PMAC1 firmware can support both busses
{ Backup type} :

BATTERY Battery-backed RAM

FLASH AMD-style flash-backed RAM

| - FLASH Intel-style flash-backed RAM

{Servo type}:

PI D Standard PID servo algorithm

ESA Option 6 Extended servo algorithm

{ Ladder type}

{blank} no ladder-logic diagram support

LDs Ladder-logic diagram support

{ Clock multiplier}:

CLK Xn where n isthe multiplication of crysta frequency to CPU frequency
Examples:

TYPE

PMAC1, | SA/VME, BATTERY, PID, CLK X1
TYPE

PMAC2, | SA, FLASH, ESA, CLK X3

TYPE

PMACUL, VME, FLASH, PID, LDs, CLK X2
UNDEFINE

Function: Erase coordinate system definition
Scope: Coordinate-system specific
Syntax: UNDEFI NE

UNDEF

This command causes PMAC to erase al of the axis definition statementsin the addressed coordinate
system. It does not affect the axis definition statementsin any other coordinate systems. It can be useful
before making new axis definitions.

To erase the axis definition statement of asingle motor only, usethe#{ const ant } - >0 command; to
erase all the axis definition statements in every coordinate system, use the UNDEFI NE ALL command.

192 Online Commands

PMAC Product Guide

Examples:

&l ; Address Coordinate System 1

#1-> ; Ask for axis definition of Motor 1

10000X ; PMAC responds

#2- > ; Ask for axis definition of Motor 2

10000Y ; PMAC responds

UNDEFI NE ; Erase axis definitions

&2 ; Address Coordinate System 2

#1->10000X ; Redefine Motor 1 as X-axis in Coordinate System 2
#2->10000Y ; Redefine Motor 2 as Y -axis in Coordinate System 2
UNDEFINE ALL

Function: Erase coordinate definitionsin all coordinate systems
Scope: Global

Syntax: UNDEFI NE ALL

UNDEF ALL

This command causes all of the axis definition statementsin all coordinate systemsto be cleared. Itisa
useful way of starting over on areload of PMAC' s coordinate system definitions.

Examples:

&1#1- > ; Request axis definition of Motor 1 in Coordinate System 1
1000X ; PMAC responds

&2#5- > ; Request axis definition of Motor 5 in Coordinate System 2
1000X ; PMAC responds

UNDEFI NE ALL ; Erase al axis definitions

&1#1- > ; Request axis definition of Motor 1 in Coordinate System 1
0 ; PMAC responds that there is no definition

&2#5- > ; Request axis definition of Motor 5 in Coordinate System 2
0 ; PMAC responds that there is no definition

1

\%

Function: Report motor velocity

Scope: Motor specific

Syntax: \%

This command causes PMAC to report the present actual motor velocity to the host, scaled in
counts/servo cycle, rounded to the nearest tenth. It is reporting the contents of the motor actual velocity
register (divided by [1x09* 32]).

To convert this reported value to counts/msec, multiply by 8,388,608* (Ix60+1) and divide by 110. It can
be further converted to engineering units with additional scaling constants.

Note:

The velocity values reported here are obtained by subtracting positions of
consecutive servo cycles. Assuch, they can be very noisy. For purposes of
display, it is probably better to use averaged velocity values held in registers
Y:$082A, Y :$08EA, etc., accessed with M-Variables.

Online Commands 193

PMAC Product Guide

Examples:

\% ; Request actual velocity of addressed motor
21.9 ; PMAC responds with 21.9 cts/cycle (*8,388,608/3,713,707 = 49.5 cts/msec)
#6V ; Request velocity of Motor 6

-4.2 ; PMAC responds

#5VH#2V ; Request velocities of Motors 5 and 2

0 ; PMAC responds with Motor 5 first

7.6 ; PMAC responds with Motor 2 second
VERSION

Function: Report PROM firmware version number

Scope: Glabal

Syntax: VERSI ON

VER
This command causes PMAC to report the firmware version it is using.
When aflash-memory PMAC isin bootstrap mode (powering up with E51 ON), PMAC will report the
version of the bootstrap firmware, not the operational firmware. Otherwise, it will report the operational
firmware version. To change from bootstrap mode to normal operational mode, use the <CTRL- R>
command.

Examples:

VERSI ON ; Ask PMAC for firmware version
1.12D ; PMAC responds

W{address}

Function: Write values to specified addresses

Scope: Glabal

Syntax: W addr ess}, {val ue} [,{value}...]
where

{addr ess} consistsof aletter X, Y, or L; an option colon (:); and an integer value from 0 to 65535 (in
hex, $0000 to $FFFF); specifying the starting PMAC memory or 1/O address to be read.

{const ant } isaninteger, specified in decimal or hexadecimal, specifying the value to be written to the
specified address.

further { const ant s} specify integer values to be written into subsequent consecutive higher addresses.

This command causes PMAC to write the specified { const ant } value to the specified memory word
address, or if aseriesof { const ant } valuesis specified, to write them to consecutive memory
locations starting at the specified address (it is essentially a memory POKE command). The command can
specify either short (24-bit) wordsin PMAC’s X-memory, short (24-bit) word(s) in PMAC’s Y -memory,
or long (48-bit) words covering both X and Y memory (X-word more significant). Thischoiceis
controlled by the use of the X, Y, or L address prefix in the command, respectively.

Examples:
WY: $C002, 4194304 ; This should put 5V on DAC2 (provided 1200=0 so servo does not overwrite)
Wr$720, $00C000, $00C004, $00C008, $00C00C

; Thiswrites the first four entries to the encoder conversion table

194 Online Commands

PMAC Product Guide

Z

Function: Make commanded axis positions zero
Scope: Coordinate-system specific

Syntax: Z

This command causes PMAC to re-label the current commanded axis positions for al axesin the
coordinate system as zero. It does not cause any movement; it merely re-names the current position.

This command is simply a short way of executing { axi s} =0 for all axes in the coordinate system.
PSET XO YO (etc.) isthe equivalent motion program command.

This does not set the motor position registersto zero; it changes motor position bias registers to reflect the
new offset between motor zero positions and axis zero positions. However, the motor reported positions
will reflect the new bias, and report positions of zero (+/- the following error).

Examples:

<CTRL- P> ; Ask for reported motor positions
2001 5002 3000 0 0O OOO ; PMAC reports positions

4 ; Zero axis positions

<CTRL- P> ; Ask for reported motor positions again
12-100000 ; PMAC responds

Online Commands 195

PMAC Product Guide

196 Online Commands

PMAC Product Guide

BUFFER COMMANDS

The PMAC motion controller isrich in features and expansion capabilities. Because this manual
illustrates the implementation of PMAC in atypical application, some of the PMAC advanced
buffer commands are not described. Further information of all the PMAC buffer commands can
be obtained from the PMAC Software Reference manual.

{axis}{data}[{axis}{data}...]

Function: Position-only move specification

Type: Motion program (PROG and ROT)
Syntax: axi s}{data}[{axis}{data}...]
where

{axi s} isthe character specifying which axis(X,Y, Z,A,B,C, U, V, W).

{dat a} isaconstant (no parentheses) or an expression (in parentheses) representing the end position or
distance.

[{axis}{data}...] istheoptional specification of simultaneous movement for more axes.

Thisisthe basic PMAC move specification statement. It consists of one or more groupings of an axis
label and its associated value. The value for an axisis scaled (units determined by the axis definition
statement); it represents a position if the axisisin absolute (ABS) mode, or adistance if the axisisin
incremental (INC) mode. The order in which the axes are specified does not matter.

This command tells the axes where to move. It does not tell them how to move there. Other program
commands and parameters define how. These must be set up ahead of time.

The type of motion a given motion command causes is dependent on the mode of motion and the state of
the system at the beginning of the move.

Examples:

X1000

X(P1+P2)

Y (Q100+500) Z35 C(P100)
X1000 Y 1000

A(P1) B(P2) C(P3)

X(Q1* SIN(Q2/Q3)) U500

{axis}{data}.{data} [{axis}{data}:{data}...]

Function: Position and velocity move specification

Type: Motion program (PROG and ROT)

Syntax: {axis}{data}:{data} [{axis}{data}:{data}...]
where

{axi s} isthe character specifying which axis(X,Y, Z,A,B,C, U, V, W).

{dat a} isaconstant (no parentheses) or an expression (in parentheses) representing the end position or
distance.

: {dat a} represents the ending velocity.

[{axis}{data}:{data}...] istheoptiona specification of simultaneous movement for more
axes.

Buffer Commands 197

PMAC Product Guide

In the case of PVT (position, velocity, time) motion mode, both the ending position and velocity are
specified for each segment of each axis. The command consists of one or more groupings of axislabels
with two data items separated by a colon character.

Thefirst dataitem for each axis is the scaled ending position or distance depending on whether the axisis
in absolute (ABS) or incremental (I NC) mode. Position scaling is determined by the axis definition
statement and the second data item (after the colon) isthe ending velocity.

The velocity units are the scaled position units as established by the axis definition statements divided by
the time units as set by Ix90 for Coordinate System x. The velocity hereis a signed quantity, not just a
magnitude. See the examplesin the PVT mode description of the Writing a Motion Program section of
this manual.

The time for the segment is the argument for the most recently executed PVT or TA command, rounded to
the nearest millisecond.

In PVT mode, if no velocity is given for the segment, PMAC assumes an ending velocity of zero for the
segment.

Examples:

X1000:50

Y500:-32 Z737.2:68.93
A(P1+P2):(P3) B(SIN(Q1)):0

{axis}{data}"{data}[{axis}{data}*{data}...]

Function: Move until trigger

Type: Motion program

Syntax: {axi s}{data}"{data}[{axis}{data}~{data}...]
where

{axi s} isthe character specifyingwhich axis(X, Y, Z,A,B, C, U, V, W).

thefirst { dat a} isaconstant (no parentheses) or expression (in parentheses) representing the end
position or distance in the absence of atrigger.

the second { dat a} (after the ™ arrow) is a constant (no parentheses) or expression (in parentheses)
representing the distance from the trigger position.

[{axis}{data}~{data}...] istheoptiona specification of simultaneous movement for more axes.

In the RAPI D move mode, this move specification permits a move-until-trigger function. Thefirst part of
the move description for an axis (before the » sign) specifies where to move in the absence of atrigger. It
isaposition if the axisisin absolute mode; it isadistance if the axisisin incremental mode. In both
cases the units are the scaled axis user units. If no trigger is found before this destination is reached, the
move is a standard RAPI D move.

The second part of the move description for an axis (after the * sign) specifies the distance from the
trigger position to end the post-trigger move if atrigger isfound. The distance is expressed in the scaled
axis user units.

Each motor assigned to an axis specified in the command executes a separate move-until-trigger. All the
assigned motors will start together, but each can have its own trigger condition. If acommon trigger is
required, the trigger signal must be wired into all motor interfaces. Each motor can finish at a separate
time; the next line in the program will not start to execute until all motors have finished their moves. No
blending into the next moveis possible.

198 Buffer Commands

PMAC Product Guide

Thetrigger for amotor can be either a hardware input trigger if bit 17 of 1x03 is 0, or the motor warning
following error status bit if bit 17 of Ix03is1 (bit 16 of 1x03 should also be setto 1 inthiscase). If a
hardware input trigger is used, Encoder/Flag |-Variables 2 and 3 (e.g. 1902 and 1903) for the flag channel
specified by 1x25 determine which edges of which flags cause the trigger. 1f the warning following error
bit is used for torque-limited triggering, then 1x12 sets the size of the warning following error.

The speed of the move, both before the trigger and after, is set by 1x22 if 150=0 or by I1x16 if 150=1. The
acceleration is set by 1x19 to Ix21.

On the same line, some axes may be specified for normal untriggered RAPI D moves that will execute
simultaneously.

If the move ends for a motor without atrigger being found, the trigger move status bit (bit 7 of the second
motor status word returned on a? command) is left set after the end of the move. If the trigger has been
found, this bit is cleared to O at the end of the move.

Examples:

X100070

X107-0. 01 Y5.4370.05
A(P1)~(P2) B107200 C(P3)"0 X10

{axis}{data} [{axis}{data}...] {vector}{data} [{vector}{data}...]

Function: Circular arc move specification
Type: Motion program (PROG and ROT)
Syntax {axis}{data} [{axis}{data}...] {vector}{data}

[{vector}{data}...]

where
{axi s} isacharacter specifying which axis (X, Y, Z,A,B,C, U, V, W);.

{dat a} isaconstant (no parentheses) or an expression (in parentheses) representing the end position or
distance.

[{axis}{data}...] istheoptional specification of simultaneous movement for more axes.

{vect or} isacharacter (I, J, or K) specifying a vector component (parallel tothe X, Y, or Z axis,
respectively) to the center of the arc; or the character R specifying the magnitude of the vector.

{dat a} specifiesthe magnitude of the vector component.
[{vector}{data}...] istheoptiona specification of more vector components.

For a blended circular mode move, both the move endpoint and the vector to the arc center are specified.
The endpoint is specified just asin a LI NEAR mode move, either by position (referenced to the
coordinate system origin), or distance (referenced to the starting position).

The center of the arc for a circular move must be specified also in the MOVE command. Usualy, thisis
done by defining the vector to the center. This vector can either be referenced to the starting point of the
move (incremental radial vector mode -- the default, or if an | NC (R) command has been given), or it
can be referenced to the coordinate system origin (absolute radial vector mode -- if an ABS (R)
command has been given).

Alternatively, just the magnitude of the vector to the center can be specified with R{ dat a} on the
command line. If thisisthe case, PMAC will calculate the location of the center itself. If thevalue

specified by { dat a} is positive, PMAC will compute the short arc path to the destination (<= 1809); if it

Buffer Commands 199

PMAC Product Guide

is negative, PMAC will compute the long arc path (>= 180°). It is not possible to specify afull circlein
one command with the R vector specifier.

The plane for the circular arc must have been defined by the NORMAL command (the default -- NORMAL
K- 1 -- definesthe XY plane). This command can define only planesin XY Z-space, which means that
only the X, Y, and Z axes can be used for circular interpolation. Other axes specified in the same move
command will be interpolated linearly to finish in the same time.

The direction of the arc to the destination point (clockwise or counterclockwise) is controlled by whether
the card isin CIRCLEL (clockwise) or CIRCLE2 (counterclockwise) mode. The sense of clockwisein
the plane is determined by the direction of the NORMAL vector to the plane.

If the destination point is a different distance from the center point than the starting point, theradiusis
changed smoothly through the course of the move, creating aspiral. Thisis useful in compensating for
any round off errorsin the specifications. However, if the distance from either the starting point or the
destination point to the center point is zero, an error condition will be generated and the program will
stop.

If the vector from the starting point to the center point does not lie in the circular interpolation plane, the
projection of that vector into the planeisused. If the destination point does not liein the same circular
interpolation plane as the starting point, a helical move is done to the destination point.

If the destination point (or its projection into the circular interpolation plane containing the starting point)
isthe same as the starting point, a full 360° arc is made in the specified direction (provided that 1JK
vector specification isused). In this case, only the vector needs to be specified in the move command,
because for any axis whose destination is not specified, the destination point is taken to be the same as the
starting point automatically.

If no vector and no radial magnitude is specified in the MOVE command, alinear move will be done to the
destination point, even if the program isin circular mode

Note:

PMAC performs arc moves by segmenting the arc and performing the best cubic
fit on each segment. |-Variable 113 determines the time for each segment. 113
must be set greater than zero to put PMAC into this segmentation mode in order
for arc movesto be done. If 113 is set to zero, circular arc moves will be donein
linear fashion.

Examples:

X5000 Y 3000 11000 J1000

X(P101) Z(P102) I(P201) K(P202)

X1015

X10Y20C515 35

Y5Z3R2

J10 ; Specifiesafull circle of 10 unit radius

A{data}

Function: A-Axis move
Type: Motion program (PROG or ROT)
Syntax: A{ dat a}

where
{dat a} isafloating-point constant or expression representing the position or distance in user units for
the U-axis.

200 Buffer Commands

PMAC Product Guide

This command causes amove of the A-axis. (See{ axi s} {dat a} descriptions, in this section.)

Examples:

Al0

A(P23)

A25 B10 Z35
A(20*SI N(QB))

ABS

Function: Absolute move mode
Type: Motion program (PROG and ROT)
Syntax: ABS [({axis}[,{axis}...])]

where
{axi s} isacharacter (X,Y,Z,A,B,C,U,V,W) representing the axis to be specified, or the character R to
specify radial vector mode

The ABS command without arguments causes all subsequent positions in motion commands for all axes
in the coordinate system running the motion program to be treated as absolute positions. Thisis known as
absolute mode and it is the power-on default condition. An ABS statement with arguments causes the
specified axes in the coordinate system running the program to be in absolute mode and all others stay the
way they were before.

If Ris specified as one of the axes, thel, J, and K terms of the circular move radius vector specification
will be specified in absolute form (i.e. as a vector from the origin, not from the move start point). An
ABS command without any arguments does not affect this vector specification. The default radial vector
specification is incremental.

If no motion program buffer is open when this command is sent to PMAC, it will be executed as an on-
line coordinate system command.

Examples:
ABS(X,Y)
ABS
ABS(V)
ABS(R)

ADDRESS

Function: Motor/coordinate system modal addressing

Type: PLC programs 1 to 31 only

Syntax: ADDRESS [#{constant}][& constant}]
ADR [#{constant}][& constant}]

where
{const ant } isaninteger constant from 1 to 8 representing the motor (#) number or the coordinate
system (&) number to be addressed.

When executed, this statement sets the motor and/or coordinate system that will be addressed by this
particular PLC program when it commands motor- or coordinate-system-specific commands with no
addressing in those commands. The addressed coordinate system also controls which set of Q-Variables
is accessed, even for ATAN2 functions which use QO automatically.

Buffer Commands 201

PMAC Product Guide

This command does not affect host addressing, the addressing of other PLC programs, or the selection of
the control panel inputs. The addressing staysin effect until another ADDRESS statement supersedesit.
Default addressing at power-on/reset is#1 and & 1.

In motion programs, there is no modal addressing for COMVIAND statements; each COMVAND statement
must contain the motor or coordinate system specifier within its quotation marks. A motion program
automatically operates on the Q-Variables of the coordinate system executing the program.

Examples:

ADDRESS &4

ADR #2

ADDRESS &2#2

ADR#1 ; Modally address Motor 1
cvD' J+" ; Thiswill start Motor 1 jogging
C\VD' #2J+" ; Thiswill start Motor 2 jogging
(VD ANV ; Thiswill stop Motor 1
ADIS{constant}

Function: Absolute displacement of X, Y, and Z axes
Type: Motion program (PROG and ROT)
Syntax: ADI S{ const ant }

where

{const ant } isaninteger constant representing the number of the first of three consecutive Q-Variables
to be used in the displacement vector.

This command loads the currently selected (with TSEL) transformation matrix for the coordinate system
with offset values contained in the three Q-variables starting with the specified one. This has the effect of
renaming the current commanded X, Y, and Z axis positions (from the latest programmed move) to the
values of these variables (X=Q{ data}, Y=Q({data} +1), Z=Q({ data} +2)).

This command does not cause any movement of any axes; it simply renames the present positions. This
command isequivalenttoaPSET X(Qdata}) Y(Q{data}+1)) Z(Q {data}+2))
command, except that ADI S does not force a stop between moves, as PSET does.

Examples:

Q0=7.5

Q1=12.5

Q2=25

ADI S 20 ; Thismakes the current X position 7.5, Y 12.5, 225
AND ({condition})

Function: Conditional AND

Type: PL C program only

Syntax: AND ({condition})

where

{condi ti on} isasimple or compound condition.

This statement forms part of an extended compound | F or WHI LE condition to be evaluated inaPLC
program. It must immediately follow an | F, WHI LE, AND, or OR statement. This AND is a Boolean
operator logically combining the full conditions on its line and the program line immediately above. It
takes lower precedence than AND or OR operators within a compound condition on asingle line (the
parentheses cause those to be executed first), but it takes higher precedence than an OR operator that starts
aline.

202 Buffer Commands

PMAC Product Guide

In motion programs, there can be compound conditions within one program line, but not across multiple
program lines, so this statement is not permitted in motion programs.

Note:

Thislogical AND command which acts on condition, should not be confused with
the bit-by-bit & (ampersand) operator that acts on values.

Examples:

IF (ML1=1) ; This branch will start a motion program running
AND (ML2=1) ; onacycle whereinputs M11 and M12 are 1 and
AND (M21=0) ; M21isstill zero. Notethat M21 isimmediately
C\VD'R! ; set to one so the run command will not be given
M1=1 ; again in the next cycle.

ENDI F

AROT{constant}

Function: Absolute rotation/scaling of X, Y, and Z axes

Type: Motion program (PROG and ROT)

Syntax: AROT{ const ant }

where

{const ant } isaninteger representing the number of the first of nine consecutive Q-Variables to be
used in the rotation/scaling matrix.

This command loads the currently selected (with TSEL) transformation matrix for the coordinate system
with rotation/scaling values contained in the nine Q-V ariables starting with the specified one. This has
the effect of renaming the current commanded X, Y, and Z axis positions (from the latest programmed
move) by multiplying the XY Z vector by this matrix.

The rotation and scaling is done relative to the base XY Z coordinate system, defined by the axis
definition statements. The math performed is:

[Xrot Yrot Zrot] T= [Rot Matrix] [Xbase Ybase Zbase] T
This command does not cause any movement of any axes; it simply renames the present positions.

Note:

When using this command to scale the coordinate system, do not use the radius
center specification for circle commands. The radius does not get scaled. Use the
I, J, Kvector specification instead.

Examples:
Create a 3x3 matrix to rotate the XY plane by 30 degrees about the origin:
Q40=C0OS(30) Q41=SI N(30) 42=0

43=-SI N(30) Q44=C0S(30) Q45=0
6=0 47=0 8=1

AROT 40 ; Implement the change
Create a 3x3 matrix to scale the XY Z space by afactor of 3
@&60=3 @&1=0 @&2=0

@&3=0 ®4=3 @&5=0

&6=0 @&7=0 ®68=3

AROT 50 ; Implement the change

Buffer Commands 203

PMAC Product Guide

B{data}

Function: B-axis move

Type: Motion program (PROG and ROT)
Syntax: B{ dat a}

where

{dat a} isafloating-point constant or expression representing the position or distance in user units for
the U-axis.

This command causes a move of the B-axis. (See{ axi s} {dat a} descriptionin this section.) Program
commands{ axi s}{data},A C U V,WXY, Z, CALL, READ.

BLOCKSTART
Function: Mark start of stepping block
Type: Motion program (PROG and ROT)
Syntax: BLOCKSTART
BSTART

This statement allows for multiple moves to be done on asingle STEP command. Execution on a STEP
command will proceed until the next BLOCKSTOP statement in the program (without BLOCKSTART,
only asingle servo command is executed on a STEP command). Also, if 1x92=1 (move blending
disabled), all moves between BLOCKSTART and BLOCKSTOP will be blended together. This does not
affect how a program is executed from aRUN command if 1x92=0.

This structure is useful particularly for executing a single sequence of PVT mode moves because the
individual segments do not end at zero vel ocity, making normal stepping very difficult.

Examples:

For the program segment:
BLOCKSTART

I NC

X10: 100

X20: 100

X20: 100

X10: 0

BLOCKSTOP

All four move segments will be executed on asingle S command.

BLOCKSTOP
Function: Mark end of stepping block
Type: Motion program (PROG and ROT)
Syntax: BLOCKSTOP
BSTOP

This statement marks the end of the block of statements, begun with a BLOCKSTART, to be done on a
single STEP command, or to be blended together even if 1x92=1 (move blending disabled). This does not
affect how a program is executed from a RUN command if 1x92=1.

Examples:
See example under BLOCKSTART in this section.

204 Buffer Commands

PMAC Product Guide

C{data}

Function: C-axismove

Type: Motion program (PROG and ROT)
Syntax: C{ dat a}

where

{ dat a} isafloating-point constant or expression representing the position or distance in user units for
the U-axis.

This command causes a move of the C-axis. (See{ axi s} {dat a} descriptionin this section.) Program
commands{ axi s}{data},A B, U V,WX Y, Z, CALL, READ

CALL

Function: Jump to subprogram with return

Type: Motion program (PROG and ROT)

Syntax: CALL{data} [{letter}{data}...]
where

thefirst { dat a} isafloating-point constant or expression from 1.00000 to 32767.99999, with the integer
part representing the motion program number to be called and the fractional part representing the line
label (N or O) within the program to be called (the line label number is equal to the fractional part
multiplied by 100,000; every motion program has an implicit NO at the top).

{l etter} isany letter of the English alphabet, except N or O, representing the variable into which the
value following it will be placed (Q101 to Q126 for A to Z respectively).

following { dat a} isafloating-point constant or expression representing the value to be put into the
variable.

This command allows the program to execute a subprogram and then return execution to the next linein
the program. A subprogram is entered into PMAC the same as a program, and is labeled as PROGN (so
one program can call another as a subprogram). The number n of the PROG heading is the one to which
the value after CALL refers: CALL7 would execute PROG7 and return. Commanding execution of a non-
existent subprogram will cause program execution to stop in an error condition.

The value immediately following CALL can take fractional values. If thereis no fractional component,
the called program starts at the beginning. If thereisafractional component, the called program is
entered at aline label specified by the fractional component (if this label does not exist, PMAC will
generate an error and stop execution). PMAC works with five fractional digits to specify the line label; if
fewer are used, it fills out the rest with zeros automatically. For instance, CALL 35. 1 isinterpreted as
CALL 35. 10000 which causesajump to label NLOOOO of program 35. CALL 47. 123 causesa
jump to label N12300 of program 47.

If letters and data (e.g. X1000) follow the CALL{ dat a} , these can be arguments to be passed to the
subprogram. If arguments are to be passed, the first line executed in the subroutine should be a READ
statement. This statement will take the values associated with the specified |etters and place them in the
appropriate Q-Variable. For instance, the data following A is placed in variable Q101 for the coordinate
system executing the program; that following B is placed in Q102; and so on, to the datafollowing Z
being placed in Q126. Then the subprogram can use these variables. If the subprogram calls another
subprogram with arguments, the same Q-variables are used. Refer to the READ section for more details.

Buffer Commands 205

PMAC Product Guide

If there is no READ statement in the subroutine, or if not all the letter valuesin the CALL line are read (the
READ statement stops as soon asit sees aletter in the calling line that is not in itslist of lettersto read),
the remaining letter commands are executed upon return from the subroutine according to their normal
function. For example, @01 X10 Y10 isequivadenttoaCALL 1000. 01 X10 Y10. Toimplement
the normal function for Q01 (linear move mode), there would be the following subroutine in PROG 1000:

N1000 LI NEAR RETURN

Upon the return, X10 Y10 would be executed as a move according to the move mode in force, which is
LI NEAR.

If the specified program and line label do not exist, the CALL command is ignored, and the program
continues asiif it were not there.

Examples:

CALL500 ; to Prog 500 at the top (NO)
CALL500. 1 ; to Prog 500 label N10000
CALL500. 12 ; to Prog 500 label N12000
CALL500. 123 ; to Prog 500 label N12300
CALL500. 1234 ; to Prog 500 label N12340
CALL500. 12345 ; to Prog 500 label N12345
CALL700 D10 E20 ; to Prog 700 passing D and E
CIRCLE1

Function: Set blended clockwise circular move mode
Type: Motion program (PROG and ROT)
Syntax: Cl RCLE1

CR1

This command puts the program into clockwise circular move mode. The plane for the circular
interpolation is defined by the most recent NORMAL command which has a so defined the sense of
clockwise and counterclockwise in the plane.

The program is taken out of this circular move mode by another move mode command: the other
Cl RCLE mode, LI NEAR, PVT, RAPI Detc. Any circular move command must have either an Ror an
I JK vector specification; otherwise it will be performed as alinear move even when in Cl RCLE mode.

Note:

PMAC must be in move segmentation mode (113>0) in order to perform circular
interpolation. If 113=0 (no move segmentation), the moves will be linearly

interpolated.
Examples:
LI NEAR ; Linear interpolation mode
X10Y10 F2 ; Linear move
Cl RCLE1 ; Clockwise circular interpolation mode
X20 Y20 |10 ; Arc of 10-unit radius
X25 Y15 J-5 ; Arc of 5-unit radius
LI NEAR ; Go back to linear mode
X25 Y5 ; Linear move

206 Buffer Commands

PMAC Product Guide

CIRCLE2

Function: Set blended counterclockwise circular move mode
Type: Motion program (PROG and ROT)

Syntax: Cl RCLE2

ClR2

The CI RCLE2 command puts the program into counterclockwise circular move mode. The plane for the
circular interpolation is defined by the most recent NORMAL command which has also defined the sense
of clockwise and counterclockwise in the plane.

The program is taken out of this circular move mode by another move mode command: the other

Cl RCLE mode, LI NEAR, PVT, RAPI D etc. Any circular move command must have either an Ror an

I JK vector specification; otherwise it will be performed as alinear move even when in CI RCLE mode.

Note:

PMAC must be in move segmentation mode (113>0) in order to perform circular
interpolation. If 113=0 (no move segmentation), the moves will be linearly

interpolated.
Examples:
LI NEAR ; Linear interpolation mode
X10Y0 F2 ; Linear move
Cl RCLE2 ; Counterclockwise circular interpolation mode
X20 Y10 J10 ; Arc of 10-unit radius
X15 Y15 | -5 ; Arc of 5-unit radius
Cl RCLE1 ; Clockwise circle mode
X5 Y25 J10 ; Arc move of 10-unit radius
COMMAND"{command}"
Function: Program command issuance
Type: Motion program (PROG and ROT); PLC program
Syntax: COMVAND " {command}"

CvD "{conmmand}"

This statement causes the program to issue a command to PMAC asif it came from the host (except for
addressing modes). If thereisamotor- or coordinate-system-specifier (#n or &n) within the quoted
string, a motor- or coordinate-system-specific command will be directed to that motor or coordinate
system. If thereis no specifier, amotor- or coordinate-system-specific command will be directed to the
first motor or coordinate system. Any specifier within a COMVIAND statement is not modal; it does not
affect the host addressing specifications or the modal addressing of any program, including its own.

If 162=0, PMAC issues a carriage-return (<CR>) character automatically at the end of any data response
to the command. If 162=1, PMAC does not issue a <CR> character at the end of the data response; a
SENDMMmust be used to issue a<CR> in this case.

Each PLC program has its own addressing mode for both motors and coordinate systems, independent of
each other and independent of the host addressing modes. These are controlled by the PLC program
ADDRESS command. This modal addressing affects commands issued from within a PLC program that
do not have motor or coordinate-system specifiers. At power-up/reset, all PLC programs are addressing
Motor 1 and Coordinate System 1.

There is no modal ADDRESS command in motion programs. Any motor-specific or coordinate-system-
specific command issued from within a motion program without a specifier is addressed automatically to
Motor 1 or Coordinate System 1, respectively.

Buffer Commands 207

PMAC Product Guide

Commands issued from within a program are placed in the command queue, to be parsed and acted upon
at the appropriate time by PMAC’s command interpreter, which operates in background, between other
background tasks. If issued from a motion program, the command will not be interpreted before the next
MOVE or DVWEL L command in the motion program is calculated. If issued from a PLC program, the
command will not be interpreted before the end of the current scan of the PLC. Thisdelay can make the
action appear to execute out of sequence.

Because of the queuing of commands and the fact that command interpretation is alower priority than
command issuing, it is possible to overflow the queue. If thereis no room for anew command, program
execution is temporarily halted until the new command can be placed on the queue.

In addition, commands that generate a response to the host (including errorsif 16 is not equal to 2)
potentially can fill up the response queue if thereis no host or the host is not prepared to read the
responses. Thiswill halt program execution temporarily until the response queue is emptied. In
standalone applications, set |1 to 1, disabling the serial handshake, so that any responses can be sent out
of the serial port (the default response port) at any time, even if there is no host to receiveit.

In aPLC program, have at least one of the conditions that caused the command issuance to occur set false
immediately. Thiswill prevent the same command from being issued again on succeeding scans of the
PLC, overflowing the command and/or response queues. Typically in amotion program, the time
between moves prevents this overflow unless there are alot of commands and the moves take a very short
time.

PMAC will not issue an acknowledging character (<ACK> or <LF>) to avalid command issued from a
program. It will issue a<BELL> character for an invalid command issued from a program unless 16 is set
to 2. Do not set 16 to 2 in early development so it will be known when PMAC has rejected such a
command. Setting 16 to 2 in the actual application can prevent program hang-up from afull response
gueue or from disturbing the normal host communications protocol.

Many otherwise valid commands will be rejected when issued from a motion program. For instance, a
motor cannot be jogged in the coordinate system executing the program because all these motors are
considered to be running in the program, even if the program is not requesting a move of the motors at
that time.

When issuing commands from a program, be sure to include all the necessary syntax (motor and/or
coordinate system specifiers) in the command statement or use the ADDRESS command. For example,
use CMD' #4HM' and CMD' &1 A" instead of CVMD' HM' and CVD'" A" . Otherwise, motor and coordinate
system commands will be sent to the most recently addressed motor and coordinate system which may
not always be as the one intended.

Examples:
COMMAND"#1}+"
CMD"#4HM"
CMD"&1B5R"
CMD"P1"

47.5

ADDRESS#H3
COMMAND"J-"

IF(M40=1 AND M41=1)
CMD"&4R"
M41=0

ENDIF

208 Buffer Commands

PMAC Product Guide

COMMAND"{letter}

Function: Program control-character command issuance
Type: Motion program (PROG or ROT), PLC program
Syntax: COMVANDM | et t er}

CvDMl etter}

where{| et t er} isaletter character from A to Z (upper or lowercase) representing the corresponding
control character.

This statement causes the motion program to issue a control-character command as if it came from the
host. All control-character commands are global, so there are no addressing concerns.

Note:

Do not put the up-arrow character and the letter in quotes (e.g., COMWAND" *A")
or PMAC will attempt to issue a command with the two non-control characters”
and A as in this example, instead of the control character.

Commands issued from within a program are placed in the command queue, to be parsed and acted upon
at the appropriate time by PMAC’s command interpreter, which operates in background, between other
background tasks. If issued from a motion program, the command will not be interpreted before the next
move or dwell command in the motion program is calculated. 1f issued from a PLC program, the
command will not be interpreted before the end of the current scan of the PLC. This delay can make the
action appear to execute out of sequence.

Because of the queuing of commands and the fact that command interpretation is alower priority than
command issuing, it is possible to overflow the queue. If thereis no room for anew command, program
execution is temporarily halted until the new command can be placed on the queue.

In addition, commands that generate a response to the host (including errorsif 16 isnot equal to 2)
potentially can fill up the response queue if there is no host or the host is not prepared to read the
responses. Thiswill temporarily halt program execution until the response queue is emptied. In
standalone applications, it isagood ideato set 11 to 1, disabling the serial handshake, so any responses
can be sent out of the serial port (the default response port) at any time, even if there is no host to receive
it.

InaPLC program, it isagood idea to have at least one of the conditions that caused the command
issuance to occur set false immediately. Thiswill prevent the same command from being issued again on
succeeding scans of the PLC, overflowing the command and/or response queues. Typically in amotion
program, the time between moves prevents this overflow unless there are alot of commands and the
moves take a very short time.

PMAC will not issue an acknowledging character (<ACK> or <LF>) to avalid command issued from a
program. It will issue a <BELL> character for an invalid command issued from a program unless 16 is set
to 2.

Do not set 16 to 2 in early development so that it will be known when PMAC has rejected such a
command. Setting 16 to 2 in the actual application can prevent program hang-up from afull response
gueue or from disturbing the normal host communications protocol

Examples:

CVD*Dwould disable all PLC programs (equivalent to issuing a <CONTROL- D> from the host).

CVDMK would kill (disable) al motorson PMAC

CVDM A would stop all programs and moves on PMAC, aso closing any |oops that were open.

Buffer Commands 209

PMAC Product Guide

DELAY{data}
Function: Delay for specified time
Type: Motion program
Syntax: DELAY{ dat a}

DLY{ dat a}
where

{ dat a} isafloating-point constant or expression, specifying the delay time in milliseconds.

This command causes PMAC to keep the command positions of all axesin the coordinate system
constant (no movement) for the time specified in{ dat a} .

There are three differences between DELAY and DVELL.

1. If DELAY comes after a blended move, the TA deceleration time from the move occurs within the
DELAY time, not beforeit.

2. Theactual time for DELAY does varies with a changing time base (current % value, from whatever
source), whereas DWEL L always uses the fixed time base (%100).

3. PMAC pre-computes upcoming moves (and the lines preceding them) during a DELAY, but it does
not do so during a DWELL.

A DELAY command is equivalent to a zero-distance move of the time specified in milliseconds. Asfor a
move, if the specified DELAY time is less than the acceleration time currently in force (TA or 2*TS), the
delay will be for the acceleration time, not the specified DELAY time.

Examples:

DELAY 750

DELAY (Q1+100)

DISABLE PLC {constant}[,{constant}...]

Function: Disable PLC programs

Type: Motion program (PROG or ROT), PLC program
Syntax: DI SABLE PLC {constant}[,{constant}...]

DI SABLE PLC {constant}[..{constant}]
DIS PLC {constant}[,{constant}...]
DIS PLC {constant}[..{constant}]

This command disables the operation of the specified PLC programs. The programs are specified by
number and can be used singly, in alist separated by commas, or in a continuous range.

Disabling a PL C cannot stop the PLC in the middle of a scan; it prevents it from starting the next scan.

Examples:
DISABLEPLC1
DISABLEPLC4,5
DISABLEPLC7..20

DISPLC 3,8,11

DISPLCO0..31

DISPLAY [{constant}] "{message}"

Function: Display Text to Display Port

Type: Motion program (PROG and ROT), PLC program
Syntax: DI SPLAY [{constant}] "{nmessage}"

DI SP [{constant}] "{message}"

where
{const ant } isaninteger value between 0 and 79 specifying the starting character number on the
display; if no valueis specified, 0 is used.

210 Buffer Commands

PMAC Product Guide

{message} isthe ASCII text string to be displayed.

This command causes PMAC to send the string contained in { mnessage} to thedisplay port (J1
connector) for the liquid crystal or vacuum-fluorescent display (Accessory 12 or equivalent).

The optional constant value specifies the starting point for the string on the display; it has arange of O to
79, where O is upper left, 39 is upper right, 40 is lower left, and 79 is lower right.

Examples:
DISPLAY 10"Hello World"
DISP"VALUE OF P1IS’

DISP 15, 8.3, P1
DISPLAY ... {variable}
Function: Formatted display of variable value
Type: Motion program (PROG and ROT), PLC program
Syntax: DI SPLAY {constant}, {constant}.{constant}, {variabl e}
DI SP {constant}, {constant}.{constant}, {vari abl e}
where
thefirst { const ant } isan integer from 0 to 79 representing the starting location (character number) on
the display.

the second { const ant } isan integer from 2 to 16 representing the total number of characters to be used
to display the value (integer digits, decimal point, and fractional digits).

thethird{ const ant } isaninteger from0to 9 (and at least two less than the second { const ant })
representing the number of fractional digitsto be displayed.

{vari abl e} isthe name of the variable to be displayed.

This command causes PMAC to send a formatted string containing the value of the specified variable to
the display port. Thevalueof any I, P, Q, or M-Variable may be displayed with this command.

The first constant value specifies the starting point for the string on the display; it has arange of 0 to 79,
where 0 is upper left, 39 is upper right, 40 is lower left, and 79 is lower right. The second constant
specifies the number of characters to be used in displaying the value; it has arange of 2 to 16. The third
constant specifies the number of places to the right of the decimal point; it has arange of 0 to 9, and must
be at |east two less than the number of characters. The last thing specified in the statement is the name of
thevariable-- 1, P, Q, or M.

Examples:

DISPLAY 0, 8.0, P50
DISPLAY 24,2.0, M1
DISPLAY 40, 12.4, Q100

DWELL
Function: Dwell for specified time
Type: Motion program (PROG and ROT)
Syntax: DWELL{ dat a}
DVWE{ dat a}
where

{dat a} isanon-negative floating point constant or expression representing the dwell timein
milliseconds.

This command causes the card to keep the commanded positions of all axes in the coordinate system
constant for the time specified in{ dat a} .

There are three differences between DWEL L and the similar DELAY command. First, if the previous servo
command was a blended move, there will be a TA time deceleration to a stop before the dwell time starts.
Second, DVEELL is not sensitive to avarying time base -- it dways operatesin 'real time' (as defined by

Buffer Commands 211

PMAC Product Guide

110). Third, PMAC does not pre-compute upcoming moves (and the program lines before them during
the DMELL) ; it waits until after it is done to start further calculations, which it performsin the time
specified by 111 or 112.

Use of any DWELL command, even a DWELLO whilein external time base, will cause aloss of
synchronicity with the master signal.

Examples:
DWELL250
DWELL (P1+P2)
DWEO

ELSE

Function: Start false condition branch

Type: Motion program (PROG only), PLC program

Syntax: ELSE (Motion or PLC Program)
ELSE {acti on} (Motion Program only)

This statement must be matched with an | F statement (ELSE requires apreceding | F, but | F does not
require afollowing ELSE). It follows the statements executed upon atrue | F condition. It isfollowed
by the statements to be executed upon afalse | F condition.

With nested | F branches, match the EL SE statements to the proper | F statement. In amotion program, it
ispossibleto have asingle-line | F statement (I F({ condi ti on}) {action}). AnELSE statement
on the next program line is matched to this| F statement automatically, even if it should be matched to a
previous | F statement. To match a specific | F statement, place a non-EL SE statement in between.

EL SE lines can take two forms (only the first of which isvalid in aPLC program):

With no statement following on that line, al subsequent statements down to the next ENDI F statement
will be executed provided that the preceding IF condition is false.

ELSE
{statenent}
[{statenent}

ENDIF

With a statement or statements following on that line, the single statement will be executed provided that
the preceding | F condition isfalse. No ENDI F statement should be used in this case

ELSE {statement} [{statenment}...]

This single-line EL SE branch formis valid only in motion programs. If thisis placed in a PLC program,
PMAC will put the statements on the next program line and expect an ENDI F to close the branch. The
logic will not be as expected.

Examples:
Thisfirst example has multi-line true and false branches. It can be used in either a motion program or a
PLC program.
| F (ML1=1)
P1=17
P2=13
ELSE
P1=13
P2=17
ENDI F

212 Buffer Commands

PMAC Product Guide

This second example has a multi-line true branch, and a single-line false branch. This can be used only in
amotion program.
| F (ML1=0)
X(P1)
DWELL 1000
ELSE DWELL 500

This example has a single-line true branch, and a multi-line false branch. This structure can be used only
in amotion program.
| F (SIN(P1)>0.5) Y(1000*SI N(P1))
ELSE
P1=P1+5
Y(1100*SI N(P1))
ENDI F

This example has single-line true and false branches. This structure can be used only in a motion
program.

IF (PL !< 5) X10

ELSE X-10

ENABLE PLC

Function: Enable PLC Buffer(s)

Type: Motion program (PROG and ROT), PLC program
Syntax: ENABLE PLC {constant}[,{constant}...]

ENABLE PLC {constant}[..{constant}]
ENA PLC {constant}[,{constant}...]
ENA PLC {constant}[..{constant}]

This command enables the operation of the specified PLC buffers provided I5 is set properly to alow
their operation.

Examples:

ENABLEPLCO

ENABLEPLC 1,25

ENABLEPLC 1..16

ENA PLC7

ENDIF

Function: Mark end of conditional block

Type: Motion program (PROG only), PLC program
Syntax: ENDI F

ENDI

This statement marks the end of a conditional block of statements begun by an | F statement. It can close
out the true branch, following the | F statement, in which case there is no false branch, or it can close out
the fal se branch, following the EL SE statement.

When nesting conditions, it isimportant to match this ENDI F with the proper | F or ELSE statement. In
aPLC program, every | F or | F/ ELSE pair must take an ENDI F, so the ENDI F always matches the
most recent | F statement that does not already have amatching ENDI F. In amotion programan | F or
EL SE statement with action on the same line does not require an ENDI F, so the ENDI F would be
matched with a previous | F statement.

Buffer Commands 213

PMAC Product Guide

Examples:

| F (P1>0)
X1000

ENDI F

| F (P5=7)
X1000
ELSE
X2000
ENDI F

ENDWHILE

Function: Mark end of conditional loop
Type: Motion program (PROG only), PLC program
Syntax: ENDWHI LE

ENDW

This statement marks the end of a conditional loop of statements begun by a\WHI LE statement. V\HI LE
loops can be nested, so an ENDVWHI LE statement matches the most recent WHI LE statement not matched
aready by aprevious ENDWHI LE statement.

In amotion program a WHI LE statement with an action on the same line does not require a matching
ENDWHI LE.

In the execution of a PLC program, when an ENDWHI LE statement is encountered, that scan of the PLC
is ended, and PMAC goes onto other tasks (communications, other PLCs). The next scan of this PLC will
start at the matching WHI LE statement.

In the execution of a motion program, if PMAC finds two jumps backward (toward the top) in the
program while looking for the next move command, PMAC will pause execution of the program and not
try to blend the moves together. It will go on to other tasks and resume execution of the motion program
on alater scan. Two statements can cause such ajump back: ENDWHI LE and GOT O (RETURN does not
count).

The pertinent result is that PMAC will not blend moves when it hits two ENDWHI LE statements (or the
same ENDWHI LE twice) between execution of move commands.

Examples:
VH LE (QL0<10)
QLO=Q10+1
ENDVWHI LE
F{data}
Function: Set move feedrate (velocity)
Type: Motion program (PROG and ROT)
Syntax: F{ dat a}
where

{dat a} isapositive floating-point constant or expression representing the vector velocity in user length
units per user time units.

This statement sets the commanded velocity for upcoming LI NEAR and CI RCLE mode blended moves.
It will be ignored in other types of moves (SPLI NE, PVT, and RAPI D). It overrides any previous TMor
F statement, and is overridden by any following TMor F statement.

214 Buffer Commands

PMAC Product Guide

The units of velocity specified in an F command are scaled position units (as set by the axis definition
statements) per time unit (defined by Feedrate Time Unit I-Variable for the coordinate system: 1x90).

The velocity specified here is the vector velocity of al of the feedrate axes of the coordinate system. That
is, the movetimeis calculated as the vector distance of the feedrate axes (square root of the sum of the
squares of the individual axes), divided by the feedrate value specified here. The minimum effective
feedrate value will provide amove time of 223 msec. The maximum effective feedrate value will provide
amovetime of 1 msec. Any non-feedrate axes commanded to move on the same move-command line
will move at the speed necessary to finish in this same amount of time.

If the vector distance of afeedrate-specified moveis so short that the computed move time (vector
distance divided by feedrate) would be less than the acceleration time currently in force (TA or 2*TS), the
move will take the full acceleration time instead, and the axes will move more slowly than specified by
the F command

Axes are designated as feedrate axes with the FRAX command. 1f no FRAX command is used, the default
feedrate axes arethe X, Y, and Z axes. Any axisinvolved in circular interpolation is automatically a
feedrate axis, regardless of whether it was specified in the latest FRAX command. In multi-axis systems,
feedrate specification of movesisreally only useful for systems with Cartesian geometries, for which
these moves give a constant velocity in the plane or in 3D space, regardless of movement direction.

Note:

If only non-feedrate axes are commanded to move in a feedrate-specified move,
PMAC will compute the vector distance, and so the move time as zero and will
attempt to do the move in the acceleration time (TA or 2*TS), possibly limited by
the maximum velocity and/or acceleration parameters for the motor(s). Thiswill
probably be much faster than intended.

Examples:
F100

F31.25

F(Q10)
F(SIN(P8* P9))

FRAX

Function: Specify feedrate axes
Type: Motion program (PROG and ROT)
Syntax: FRAX [({axis}[,{axis}...])]

where
{axi s} isacharacter (X,Y,Z, A, B, C,U,V, W) specifying which axisisto be used in the vector
feedrate calculations.

This command specifies which axes are to be involved in the vector-feedrate (velocity) calculations for
upcoming feedrate-specified (F) moves. PMAC calculates the time for these moves as the vector distance
(square root of the sum of the squares of the axis distances) of all the feedrate axes divided by the
feedrate. Any non-feedrate axes commanded on the same line will complete in the same amount of time,
moving at whatever speed is necessary to cover the distance in that time.

Vector feedrate has obvious geometrical meaning only in a Cartesian system, for which it resultsin
constant tool speed regardless of direction, but it is possible to specify for non-Cartesian systems, and for
more than three axes.

Buffer Commands 215

PMAC Product Guide

Note:

If only non-feedrate axes are commanded to move in a feedrate-specified move,
PMAC will compute the vector distance, and so the move time as zero and will
attempt to do the move in the acceleration time (TA or 2*TS), possibly limited by
the maximum velocity and/or acceleration parameters for the motor(s). This will
probably be much faster than intended.

The FRAX command without arguments causes all axes in the coordinate system to be feedrate axesin
subsequent move commands. The FRAX command with arguments causes the specified axes to be
feedrate axes, and all axes not specified to be non-feedrate axes, in subsequent move commands.

If no motion program buffer is open when this command is sent to PMAC, it will be executed as an on-
line coordinate system command.

Examples:

For athree-axis cartesian system scaled in millimeters:
FRAX(X, Y)

I NC

X30 Y40 Z10 F100

Vector distanceis SQRT(3O2 + 402) =50 mm. At aspeed of 100 mm/sec, move time (unblended) is 0.5
sec. X-axis speed is30/0.5 = 60 mm/sec; Y -axis speed is 40/0.5 = 80 mm/sec; Z-axis speed is 10/0.5 =
20 mm/sec.

Z20

Vector distanceis SQRT(O2 +02) =0 mm. Movetime (unblended) is 0.0 sec, so Z-axis speed is limited

only by acceleration parameters.
FRAX(X, Y, Z)

I NC

X-30 Y-40 Z120 F65

Vector distance is SQRT(-30" + -40° +120°) = 130 mm. Movetimeis 130/65 = 2.0 sec. X-axis speed is
30/2.0 = 15 mm/sec; Y -axis speed is 40/2.0 = 20 mm/sec; Z-axis speed is 120/2.0 = 60 mm/sec.

GOSUB

Function: Unconditiona jump with return
Type: Motion program (PROG only)
Syntax: GOSUB{ dat a}

where

{dat a} isaconstant or expression representing the line label to jump to.
{letter} (optional) isany letter character except N or O.

This command causes the motion program execution to jump to the line label (N or O) of the same motion
program specified in { dat a} with ajump back to the commands immediately following the GOSUB
upon encountering the next RETURN command.

If { dat a} isaconstant, the path to the subroutine will have been linked before program run time, so the
jumpisvery quick. If {dat a} isavariable expression, it must be evaluated at run time and the
appropriate label then searched for. The search starts downward in the program to the end, and then
continues (if necessary) from the top of the program down.

A variable GOSUB command permits the equivalent structure to the CA SE statement found in many high-
level languages.

If the specified line label is not found, the GOSUB command will be ignored and the program will
continue asif the command had not occurred.

216 Buffer Commands

PMAC Product Guide

The CALL command is similar, except that it can jump to another motion program.

Examples:

GOsuUB300 ; jumps to N300 of this program, to jump back on RETURN

G0osuUB8743 ; jumpsto N8743 of this program, to jump back on RETURN

GOSUB(P17) ; jumpsto thelinelabel of this program whose number matches the current value of P17, to jump
back onreturn

GOTO

Function: Unconditiona jump without return
Type: Motion program (PROG only)
Syntax: GOT({ dat a}

where

{dat a} isaninteger constant or expression with avalue from 0 to 99,999.

This command causes the motion program execution to jump to the line label (N or O) specified in
{dat a} , with no jump back.

If {dat a} isaconstant, the path to the label will have been linked before program run time, so the jump
isvery quick. If { dat a} isavariable expression, it must be evaluated at run time, and the appropriate
label then searched for. The search starts downward in the program to the end, then continues (if
necessary) from the top of the program down.

A variable GOTO command permits the equivalent structure to the CASE statement found in many high-
level languages (see Examples, below).

If the specified line label is not found, the program will stop and the coordinate system’s run time error bit
will be set.

Note:

Modern philosophies of the proper structuring of computer code strongly
discourage the use of GOTO because of its tendency to make code undecipherable.

Examples:
GOTO750
GOTO35000
GOTO1
GOTO(50+P1)
N51 P10=50* SIN(P11)
GOTO60
N52 P10=50* COS(P11)
GOTO60
N53 P10=50* TAN(P11)
N60 X (P10)
HOME
Function: Programmed homing
Type: Motion program
Syntax: HOVE {constant} [,{constant}...]
HOME {constant}..{constant} [,{constant}..{constant}...]
HM {constant} [,{constant}...]
HM {constant}..{constant} [,{constant}..{constant}...]
where

{const ant } isaninteger from 1 to 8 representing a motor number.

This causes the specified motors to go through their homing search cycles. Note that the motors must be
specified directly by number, not the matching axis letters. Specify which motors are to be homed. All

Buffer Commands 217

PMAC Product Guide

motors specified in a single HOVE command (e.g. HOVEL, 2) will start their homing cycles
simultaneously. To home some motors sequentially, specify them in consecutive commands (e.g. HOVEL
HOME2), even if on the sameline.

Any previous moves will come to a stop before the home moves start. No other program statement will
be executed until all specified motors have finished homing. Homing direction, speed, acceleration, etc.
are determined by motor I-Variables. |f amotor is specified that is not in the coordinate system running
the program, the command or portion of the command will be ignored, but an error will not be generated.

The speed of the home search move is determined by 1x23. If 1x23=0, then the programmed home
command for that axisisignored.

Note:

Unlike an on-line homing command, the motor numbers in a program homing
command are specified after the word HOVE itself, not before. In addition, an on-
line homing command starts the homing search -- it does not give any indication
when the search is complete; but a program homing command recognizes the end
of the search automatically, and then continues on in the program. A PLC program
can issue only an on-line home command.

Examples:
HOME1 ; These are motion program commands
HM1,2,3
HOMEL..3,5..7
HM1..8
#1IHOME ; These are on-line commands
#1HM #2HM #3HM
HOMEZ
Function: Programmed zero-move homing
Type: Motion program
Syntax: HOMEZ {constant} [,{constant}...]
HOVEZ {constant}..{constant} [,{constant}..{constant}...]
HVZ {constant} [,{constant}...]
HVZ {constant}..{constant} [,{constant}..{constant}...]
where

{const ant } isaninteger from one to eight representing a motor number.

This commands causes the specified motors to go through pseudo-homing search cycles. Inthis
operation, the present commanded position of the motor is made the zero position for the motor and the
new commanded position for the motor.

If thereisfollowing error and/or an axis definition offset at the time of the HOVEZ command, the reported
position after the command will be equal to the negative of the following error plus the axis definition
offset.

Motors must be specified directly by number, not the matching axis letters. Specify which motors are to
be homed. All motors specified in a single HOVMEZ command (e.g. HOVEZ1, 2) will home
simultaneously.

Note:

Unlike an on-line homing command, the motor numbers in a program homing
command are specified after the word HOVEZ itself, not before.

218 Buffer Commands

PMAC Product Guide

Examples:

HOMEZ1 ; These are motion program commands
HMZ1,2,3

HOMEZ1..35..7

HMZ1..8

#1IHOMEZ :These are on-line commands
#IHMZ #2HMZ #3HMZ

{data}

Function: I-vector specification for circular moves or normal vectors
Type: Motion program (PROG or ROT)

Syntax: | {dat a}

where

{dat a} isafloating-point constant or expression representing the magnitude of the I-component of the
vector in scaled user axis units.

In circular moves, this specifies the component of the vector to the arc center that is parallel to the X-axis.
The starting point of the vector is either the move start point (for | NC (R) mode -- default) or the XY Z-
origin (for ABS (R) mode).

In a NORMAL command, this specifies the component of the normal vector to the plane of circular
interpolation and tool radius compensation that is parallel to the X-axis.

Examples:

X10 Y20 15 J5

X(2*P1) | (P1)

| 33. 333 specifiesafull circle whose center is 33.333 units in the positive X-direction from the start and
end point

NORMAL | -1 specifiesavector normal to the YZ plane

l{constant}={expression}

Function: Set |-variable value

Type: Motion program (PROG and ROT), PLC Program
Syntax: | { const ant } ={ expr essi on}

where

{const ant } isaninteger value from 0 to 1023 representing the 1-Variable number.
{expressi on) represents the value to be assigned to the specified I-Variable.

This command sets the value of the specified |-Variable to that of the expression on the right side of the
equals sign. The assignment is done as the line is processed, which usually in amotion program is one or
two moves ahead of the move actually executing at the time (because of the need to calculate ahead in the
program).

For I-Variable value assignment to be synchronous with the beginning of the next movein the program,
assign an M-Variable to the register of the I-Variable and use a synchronous M-V ariabl e assignment
statement (M const ant } =={ expr essi on}).

Examples:
1130=30000
1902=1
1131=P131+1000

Buffer Commands 219

PMAC Product Guide

IDIS{constant}

Function: Incremental displacement of X, Y, and Z axes
Type: Motion program (PROG and ROT)

Syntax: | DI S{const ant }

where

{const ant } isaninteger representing the number of thefirst of three consecutive Q-variablesto be
used in the displacement vector.

This command adds to the offset values of the currently selected (with TSEL) transformation matrix for
the coordinate system the values contained in the three Q-V ariables starting with the specified one. This
has the effect of renaming the current commanded X, Y, and Z axis positions (from the | atest
programmed move) by adding the values of these variables (Xnew=Xold+Q{ constant},

Y new=Y old+Q({ constant} +1), Znew=Zold+Q({ constant} +2)).

This command does not cause any movement of any axes; it simply renames the present positions.

This command is similar to a PSET command, except that | DI S isincremental and does not force a stop
between moves, as PSET does.

Examples:

X0 YO Z0

Q0=7.5

Q1=12.5

Q2=20

ID'S 20 ; This makes the current position X7.5, Y12.5, Z20

IDI'S 20 ; This makes the current position X15 Y25 Z40

IF ({condition})

Function: Conditional branch

Type: Motion and PLC program

Syntax IF ({condition}) (Vaidinfixed motion (PROG) or PLC program only)

IF ({condition}) {action} [{action}...]

(Validin rotary or fixed motion program only)

where

{condi ti on} consistsof one or more sets of { expr essi on} {conpar at or} {expressi on}
joined by logical operators AND or OR.

{acti on} isaprogram command.

This command allows conditional branching in the program.

With an action statement or statements following on that line, it will execute those statements provided
the condition is true (this syntax is valid in motion programs only). If the condition isfalse, it will not
execute those statements; it will only execute any statements on afalse condition if the line immediately
following begins with ELSE. If the next line does not begin with EL SE, thereis an implied ENDI F at the
end of theline.

Note:
When there is an EL SE statement on the motion-program line immediately
following an | F statement with actions on the same line, that EL SE statement is
matched automatically to this| F statement, not to any preceding | F statements
under which this| F statement may be nested.

220 Buffer Commands

PMAC Product Guide

With no statement following on that line, if the condition is true, PMAC will execute al subsequent
statements on following lines down to the next ENDI F or EL SE statement (this syntax isvalid in motion
and PLC programs). |If the condition isfalse, it will skip to the ENDI F or EL SE statement and continue
execution there.

In arotary motion program, only the single-line version of the | F statement is permitted. No ELSE or
ENDI F statements are allowed.

In aPLC program, compound conditions can be extended onto multiple program lines with subsequent
AND and OR statements.

Thereisno limit on nesting of | F conditions and WHI LE loops (other than total buffer size) in fixed
motion and PLC programs. No nesting is alowed in rotary motion programs.

Examples:
| F (P1>10) M=1
I F (ML1=0 AND ML2! =0) M2=1 M3=1
| F (ML=0) P1=P1-1
ELSE P1=P1+1
| F (ML1=0)
P1=1000* SI N(P5)
X(P1)
ENDI F
| F (P1<0 OR P2!<0)
AND (P50=1)
X(P1)
DWELL 1000
ELSE
X(P1*2)
DWELL 2000
ENDI F

INC

Function: Incremental move mode
Type: Motion program
Syntax: INC [({axis}[,{axis}...])]

where
{axi s} isaletter specifying amotion axis (X, Y, Z, A, B, C, U, V, W), or the letter R specifying the arc
center radial vector.

The I NC command without arguments causes all subsequent command positions in motion commands for
all axesin the coordinate system running the motion program to be treated as incremental distances from
the latest command point. Thisisknown asincremental mode, as opposed to the default absolute mode.

An | NC statement with arguments causes the specified axes to be in incremental mode, and all others stay
the way they were.

If R is specified as one of the axes, the |, J, and K terms of the circular move radius vector specification
will be specified in incremental form (i.e. as a vector from the move start point, not from the origin). An
I NC command without any arguments does not affect this vector specification. The default radial vector
specification is incremental.

If no motion program buffer is open when this command is sent to PMAC, it will be executed as an on-
line coordinate system command.

Buffer Commands 221

PMAC Product Guide

Examples
| NC(A, ,c»
I NC
I NC(U)
I NC(R)
IROT{constant}
Function: Incremental rotation/scaling of X, Y, and Z axes
Type: Motion program (PROG and ROT)
Syntax: | ROT{ const ant }
where

{const ant } isaninteger representing the number of the first of nine consecutive Q-Variablesto be
used in the rotation/scaling matrix.

This command multiplies the currently selected (with TSEL) transformation matrix for the coordinate
system by the rotation/scaling values contained in the nine Q-Variables starting with the specified one.
This has the effect of renaming the current commanded X, Y, and Z axis positions (from the latest
programmed move) by multiplying the existing rotation/scaling matrix by the matrix containing these Q-
Variables, adding angles of rotation and multiplying scale factors.

Therotation and scaling is done relative to the latest rotation and scaling of the XY Z coordinate system,
defined by the most recent AROT or | ROT commands. The math performed is:

[New Rot Matrix] = [Old Rot Matrix] [Incremental Rot Matrix]
[Xrot Yrot Zrot] T = [New Rot Matrix] [Xbase Ybase Zbase] T

This command does not cause any movement of any axes; it simply renames the present positions.

Note:

When using this command to scale the coordinate system, do not use the radius
center specification for circle commands. The radius does not get scaled. Use the
I, J, K vector specification instead.

Examples:
Create a 3x3 matrix to rotate the XY plane by 30 degrees about the origin.
Q0=C0s(30) U41=SI N(30) 42=0

43=-SI N(30) Q44=C0S(30) Q45=0

Q46=0 47=0 8=1

| ROT 40 ; Implement the change, rotating 30 degrees from current
| ROT 40 ; Thisrotates afurther 30 degrees

Create a 3x3 matrix to scale the XY Z space by afactor of 3

60=3 ®B1=0 62=0

®53=0 B4=3 B5=0

B6=0 B7=0 68=3

| ROT 50 ; Implement the change, scaling up by afactor of 3
| ROT 50 ; Scale up by afurther factor of 3 (total of 9x)
J{data}

Function: JVector specification for circular moves

Type: Motion program (PROG and ROT)

Syntax: J{dat a}

where

{dat a} isafloating-point constant or expression representing the magnitude of the J-component of the
vector in scaled user axis units.

222 Buffer Commands

PMAC Product Guide

In circular moves, this specifies the component of the vector to the arc center that is parallel to the Y-axis.
The starting point of the vector is either the move start point (for | NC (R) mode -- default) or the XY Z-
origin (for ABS (R) mode).

In a NORMAL command, this specifies the component of the normal vector to the plane of circular
interpolation and tool radius compensation that is paralel to the Y-axis.

Examples:
X10 Y20 15 J5
Y(2*P1) J(P1)

J33. 333 specifiesafull circle whose center is 33.333 unitsin the positive Y -direction
from the start and end point

NORVAL J-1 specifies avector normal to the ZX plane

K{data}

Function: K-vector specification for circular moves

Type: Motion program (PROG and ROT)

Syntax: K{ dat a}

where

{dat a} isafloating-point constant or expression representing the magnitude of the K-component of the
vector in scaled user axis units.

In circular moves, this specifies the component of the vector to the arc center that is parallél to the Z-axis.
The starting point of the vector is either the move start point (for | NC (R) mode -- default) or the XY Z-
origin (for ABS (R) mode).

In a NORMAL command, this specifies the component of the normal vector to the plane of circular
interpolation and tool radius compensation that is paralel to the Y-axis.

Examples:

X10 Z20 15 K5
Z(2*P1) K(P1)

K33. 333 specifiesafull circle whose center is 33.333 units in the positive Z-direction from the
start and end point
NORMAL K- 1 specifies avector normal to the XY plane
LINEAR
Function: Blended linear interpolation move mode
Type: Motion program (PROG and ROT)
Syntax: LI NEAR
LI N

The LI NEAR command puts the program in blended linear move mode (thisis the default condition on
power-up/reset). Subsequent move commands in the program will be processed according to the rules of
thismode. On each axis, the card attempts to reach a constant velocity that is determined by the most
recent feedrate (F) or move time (TM) command.

The LI NEAR command takes the program out of any of the other move modes (Cl RCLE, PVT, RAPI D,
SPLI NE). A command for any of these other move modes takes the program out of LI NEAR mode.

Examples:
LI NEAR ABS

CIRCLE1 X10 Y20 1|5
LI NEAR X10 YO

OPEN PROG 1000 CLEAR
N1000 LI NEAR RETURN

Buffer Commands 223

PMAC Product Guide

M{constant}={expression}

Function: Set M-Variable value

Type: Motion program (PROG and ROT)
Syntax: M const ant } ={ expr essi on}
where

{const ant } isaninteger constant from 0 to 1023 representing the number of the M-Variable.
{expressi on} isamathematical expression representing the value to be assigned to this M-V ariable.

This command sets the value of the specified M-Variable to that of the expression on the right side of the
equals sign.

Note:

In amotion program, the assignment is done as the line is processed, not
necessarily in order with the actual execution of the move commands on either side
of it. If itisinthe middle of a continuous move sequence, the assignment occurs
one or two moves ahead of its apparent place in the program (because of the need
to calculate ahead in the program).

To have the actual assignment of the value to the variable be synchronous with the beginning of the next
move, use the synchronous M-V ariable assignment command M const ant } =={ expr essi on}
instead.

Examples:

ML=1

MLO2=$00FF
ML61=P161*| 108* 32
M20=M20 & $OF

M{constant}=={expression}

Function: Synchronous M-V ariable val ue assignment
Type: Motion program

Syntax: M const ant } =={ expr essi on}
where

{const ant } isaninteger constant from 0 to 1023 representing the number of the M-Variable.
{expressi on} isamathematical expression representing the value to be assigned to this M-Variable.

This command allows the value of an M-Variable to be set synchronously with the start of the next move
or dwell. Thisisuseful especialy with M-V ariables assigned to outputs, so the output changes
synchronously with beginning or end of the move. Non-synchronous cal culations (with the single =) are
fully executed ahead of time, during previous moves.

In thisform, the expression on the right side is evaluated just as for a non-synchronous assignment, but
the resulting value is not assigned to the specified M-Variable until the start of the actual execution of the
following motion command.

Note:

Remember that if using this M-Variable in further expressions before the next
move in the program is started, the value assigned in this statement will not be
received.

Examples:

X10

ML==1 ; Set Output 1 at start of actua blending to next move.
X20

MB0==P1+P2

224 Buffer Commands

PMAC Product Guide

M{constant}&={expression}

Function: M-V ariable and-equal's assignment
Type: Motion program (PROG and ROT)
Syntax: M const ant } &={ expr essi on}
where

{const ant } isaninteger constant from 0 to 1023 representing the number of the M-Variable.
{expressi on} isamathematical expression representing the value to be and with this M-Variable.

Thiscommand is equivalent to M const ant } =M const ant } & expr essi on}, except that the bit-
by-bit AND and the assignment of the resulting value to the M-V ariable do not happen until the start of the
actual execution of the following motion command. The expression itself is evaluated when the program
lineis encountered, asin a non-synchronous statement.

Note:

Remember that if using this M-V ariable in further expressions before the next
move in the program is started, the value assigned in this statement will not be

received.
Examples:
M2O&=$FE ; Mask out LSB of byte M20
MB46&=2 ; Clear all hits except bit 1
M{constant}|={expression}
Function: M Variable or-equals assignment
Type: Motion program (PROG and ROT)
Syntax: M const ant } | ={ expr essi on}
where

{const ant } isaninteger constant from 0 to 1023 representing the number of the M-Variable;
{expressi on} isamathematical expression representing the value to be OR with this M-Variable.

Thisformisequivaent to M const ant } =M const ant } | { expr essi on}, except that the bit-by-bit
OR and the assignment of the resulting value to the M-V ariable do not happen until the start of the
following servo command. The expression itself is evaluated when the program line is encountered, asin
anon-synchronous statement.

Note:

Remember that if using this M-Variable in further expressions before the next
move in the program is started, the value assigned in this statement will not be

received.
Examples:
M20| =$01 ; Set low bit of byte M20, leave other bits
MB75| =$FF00 ; Set high byte, leaving low byte asis
M{constant}*={expression}
Function: M-Variable XOR equals assignment
Type: Motion program (PROG and ROT)
Syntax: M dat a} *={ expr essi on}
where

{const ant } isaninteger constant from 0 to 1023 representing the number of the M-Variable.

Buffer Commands 225

PMAC Product Guide

{expressi on} isamathematical expression representing the value to be XOR with this M-Variable.

Thisformisequivaent to M const ant } =M const ant } *{ expr essi on}, except that the bit-by-bit
XOR and the assignment of the resulting value to the M-Variable do not happen until the start of the
following servo command. The expression itself is evaluated when the program line is encountered, asin
anon-synchronous statement.

Note:

Remember that if using this M-Variable in further expressions before the next
move in the program is started, the value assigned in this statement will not be

received.
Examples:
M2ON=$FF ; Toggle al bits of byte M20
MB9~=$80 ; Toggle bit 7 of M99, leaving other bitsasis
N{constant}
Function: Program line label
Type: Motion program (PROG and ROT)
Syntax: N{ const ant }

where
18
{const ant } isaninteger from 0 to 262,143 (2 -1).

Thisisalabel for alinein the program that alows the flow of execution to jump to that line with a GOTO,
GOSUB, CALL, G M T, or D statement or a B command.

A line needs alabel only to be ableto jump to that line. Line labels do not have to be in any sort of
numerical order. The label must be at the beginning of aline. Remember that each location label takes
up space in PMAC memory.

Note:

Thereis alwaysan implied NO at the beginning of every motion program. Putting
an explicit NO at the beginning may be useful in reading the program. Putting an
NO anywhere else in the program is useless and may confuse those reading the

program.
Examples:
N1
N65537 X1000
NORMAL
Function: Define normal vector to plane of circular interpolation and cutter radius compensation
Type: Motion program (PROG and ROT)
Syntax: NORMAL {vector}{data} [{vector}{data}...]
NRM {vector}{data} [{vector}{data}...]
where

{vect or} isoneof theletters|, J, and K, representing components of the total vector parallel to the X,
Y, and Z axes, respectively.
{ dat a} isaconstant or expression representing the magnitude of the particular vector component.

This statement defines the orientation of the plane in XY Z-space in which circular interpolation and cutter
radius compensation will take place by setting the normal (perpendicular) vector to that plane.

226 Buffer Commands

PMAC Product Guide

The vector components that can be specified are | (X-axis direction), J (Y -axis direction), and K (Z-axis
direction). Theratio of the component magnitudes determines the orientation of the normal vector, and
therefore, of the plane. The length of this vector does not matter -- it does not have to be a unit vector.

The direction sense of the vector does matter, because it defines the clockwise sense of an arc move and
the sense of cutter-compensation offset. PMAC uses aright-hand rule; that is, in aright-handed
coordinate system (I x J = K), if the right thumb points in the direction of the normal vector specified
here, the right fingers will curl in the direction of a clockwise arc in the circular plane, and in the direction
of offset-right from direction of movement in the compensation plane.

Examples:

The standard settings to produce circlesin the principal planes will therefore be:
NORVAL K-1 ; XY plane -- equivalent to G17

NORMAL J-1 ; ZX plane -- equivalent to G18

NORMAL -1 ; YZ plane -- equivalent to G19

By using more than one vector component, a circular plane skewed from the principal planes can be
defined:

NORMAL 1 0. 866 JO. 500

NORMAL J25 K-25

NORMAL J(-SIN(QL)) K(-COS(QL))

NORMAL | (P101) J(P201) K(301)

O{constant}

Function: Alternate line |abel

Type: Motion program (PROG and ROT)
Syntax: O[const ant}

where

{const ant } isaninteger from O to 262,143 (218—1)

Thisisan aternate form of label in the motion program. It allows the flow of execution to jump to that
line with a GOTO, GOSUB, CALL, G M T, or D statement or a B command. PMAC will store and report
thisasan N{ const ant } statement, but Olabels are legal to send to the program buffer. (N10 and O10
areidentical labelsto PMAC.)

A line needs alabel only to be ableto jump to that line. Line labels do not have to be in any sort of
numerical order. The label must be at the beginning of aline. Remember that each location label takes
up space in PMAC memory.

Examples:
a
065537 X1000

OR({condition})

Function: Conditional OR
Type: PLC program
Syntax: OR ({condition})

This statement forms part of an extended compound condition to be evaluated in a PLC program. It must
follow an| F, WHI LE, AND, or OR statement immediately. This ORis aboolean operator logically
combining the condition on its line with the condition on the program line above.

It takes lower precedence than operators within a compound condition on a single line (those within
parentheses) and also lower precedence than an AND operator that startsaline. (ORs operate on groups of
ANDed conditions.)

Buffer Commands 227

PMAC Product Guide

In motion programs, there can be compound conditions within one program line, but not across multiple
program lines, so this statement is not permitted in motion programs.

Thislogical OR, which acts on conditions, should not be confused with the bit-by-bit | (vertical bar) or-
operator, which operates on values.

Examples:
I F (ML1=1) ; This branch increments P1 every cycle that
AND (ML2=0) ; inputs M11 and M 12 are different, and decrements
OR (ML1=0) ; them every cycle that they are the same.
AND (ML2=1)
P1=P1+1
ELSE
P1=P1-1
ENDI F
| F (ML1=1 AND ML2=0) ; This does the same as above
OR (ML1=0 AND M12=1)
P1=P1+1
ELSE
P1=P1-1
ENDI F
P{constant}={expression}
Function: Set P-Variable value
Type: Motion program (PROG and ROT)
Syntax: P{ const ant } ={ expr essi on}
where

{const ant } isaninteger constant from 0 to 1023 representing the P-Variable number.
{expressi on} representsthe value to be assigned to this P-Variable.

This command sets the value of the specified P-Variable to that of the expression on the right side of the
equals sign. The assignment is done as the line is processed, which usually in amotion program is one or
two moves ahead of the move actually executing at the time (because of the need to calculate ahead in the
program).

Examples:

P1=0

P746=P20+P40

P893=SIN(Q100)-0.5

PSET

Function: Redefine current axis positions (position SET)
Type: Motion program

Syntax: PSET{ axi s}{data} [{axis}{data}...]

where
{axi s} isthe character specifyingwhich axis(X, Y, Z,A,B, C, U, V, W).
{dat a} isaconstant or an expression representing the new value for this axis position.

This command allows the user to re-define the value of an axis position in the middle of the program. It
is equivalent to the RS-274 G-Code G92. No move is made on any axis as aresult of this command -- the
value of the present commanded position for the axisis merely set to the specified value.

228 Buffer Commands

PMAC Product Guide

Internally, this command changes the value of the position bias register for each motor attached to an axis
named in the command. Thisregister holds the difference between the axis zero point and the motor zero
(home) point.

This command forces atemporary pause in the motion of the axes automatically; no moves are blended
through a PSET command. For more powerful and flexible offsets that can be done on the fly (X, Y, and
Z axes only), refer to the matrix manipulation commands such as ADI Sand | DI S.

Examples:

X10Y20

PSET X0 YO ; Cdll this position (0,0)

N92000 READ(X, Y, Z) ; To implement G92 in PROG 1000
PSET X(Q124) Y(QL25) Z(Q126) ; Equivalent of G92 X..Y..Z..
PVT{data}

Function: Set position-vel ocity-time mode

Type: Motion program (PROG and ROT)

Syntax: PVT{ dat a}

where

{dat a} isapositive constant or expression representing the time of a segment in milliseconds (PMAC
will round this value to the nearest integer in actual use).

This command puts the motion program into Position-V el ocity-Time move mode, and specifies the time
for each segment of the move. In this mode, each move segment in the program must specify the ending
position and velocity for the axis. Taking the starting position and velocity (from the previous segment),
the ending position and velocity, and the segment time, PMAC computes the unique cubic position profile
(parabolic velocity profile) to meet these constraints.

The segment time in a sequence of moves can be changed on the fly, either with another PVT command,
or withaTAcommand. TS, TM and F settings are irrelevant in this mode.

The PVT command takes the program out of any of the other move modes (L1 NEAR, Cl RCLE, SPLI NE,
RAPI D), and any of the other move mode commands takes the program out of PVT move mode.

Refer to the Writing a Motion Program section of this manual for more details of this mode.

Examples:

INC ; incremental mode, specify moves by distance
PVT200 ; enter this mode -- move time 200ms
X100:1500 ; cover 100 units ending at 1500 units/sec
X500:3000 ; cover 500 units ending at 3000 units/sec
X500:1500 ; cover 500 units ending at 1500 units/sec
X100:0 ; cover 100 units ending at O units/sec
PVT(P37)

Q{constant}={expression}

Function: Set Q-Variable value

Type: Motion program (PROG and ROT); PLC program
Syntax: Q const ant } ={ expr essi on}

where

{const ant } isaninteger value from 0O to 1023 representing the Q-V ariable number.
{expressi on} representsthe value to be assigned to the specified Q-Variable.

This command sets the value of the specified Q-Variable to that of the expression on the right side of the
equals sign. The assignment is done as the line is processed, which usually in a motion program

Buffer Commands 229

PMAC Product Guide

performing a continuous move sequence is one or two moves ahead of the move actually executing at the
time (because of the need to calculate ahead in the program).

Because each coordinate system has its own set of Q-Variables, it isimportant to know which coordinate
system’s Q-Variable is affected by this command. When executed from inside a motion program, this
command affects the specified Q-variable of the coordinate system running the motion program.

When executed from inside a PLC program, this command affects the specified Q-Variable of the
coordinate system specified by the most recent ADDRESS command executed inside that PLC program.
If there has been no ADDRESS command executed since power-on/reset, it affects the Q-Variable of
Coordinate System 1.

Examples:

Q=3

9=2. 71828

Q124=P100+ATAN(QL20)

R{data}

Function: Set circleradius

Type: Motion program (PROG or ROT)

Syntax: R{ dat a}

where

{dat a} isaconstant or expression representing the radius of the arc move specified in user length units.

This partial command defines the magnitude of the radius for the circular move specified on that
command line. It does not affect the moves on any other command lines. (If thereisno R radius
specification and no 1K vector specification on a move command line, the move will be done linearly,
even if the programisin Cl RCLE mode.)

If the radius value specified in { dat a} is greater than zero, the circular move to the specified end point

will describe an arc of less than or equal to 180° with aradial length of the specified value. If the radius
value specified in{ dat a} islessthan zero, the circular move to the specified end point will describe an

arc of greater than or equal to 180° with aradial length equal to the absolute value of { dat a} . If using
the AROT or | ROT commands to scale the coordinate system, do not use the radius center specification
for circlecommands. The radius does not get scaled. Usethel , J, K vector specification instead.

Note:
If the distance from the start point to the end point is more than twice the
magnitude specified in { dat a} , thereis no circular arc move possible. If the
distanceis greater than twice { dat a} by an amount less than 1x96 (expressed in
user length units), PMAC will execute a spiral to the end point. If the distanceis
greater by more than 1x96, PMAC will stop the program with a run-time error.

Examples:

RAPI D X0 YO ; Moveto origin

Cl RCLE1 ; Clockwise circle mode

X10 Y10 R10 ; Quarter circleto (10, 10)

X0 YO R-10 ; Three-quarters circle back to (0, 0)

X(P101) R(P101/2) ;Hadlf circleto (P101, 0)

230 Buffer Commands

PMAC Product Guide

RAPID

Function: Set rapid traverse mode

Type: Motion program (PROG and ROT)
Syntax: RAPI D

RPD

This command puts the program into a mode in which all motors defined to the commanded axes moveto
their destination pointsin jog-style moves. This mode isintended to create the minimum-time move from
one point to another. Successive moves are not blended together in this mode and the different motors do
not necessarily all reach their end points at the same time.

The accelerations and decelerations in this mode are controlled by motor jog-acceleration |-V ariables
Ix19, 1x20, and 1x21. If global I-variable 150 is set to 0, the velocities in this mode are controlled by the
motor jog speed |-variables Ix22. If 150 is set to 1, they are controlled by the motor maximum speed 1-
Variables Ix16. Only the motor with the greatest distance-to-speed ratio for the move actually moves at
this speed; all other motors are slowed from the specified speed to complete the move in approximately
the same time, so that the move is nearly linear.

The RAPI D command takes the program out of any of the other move modes (LI NEAR, CI RCLE, PVT,
SPLI NE); any of the other move-mode commands takes the program out of RAPI D mode.

Examples:

RAPI D X10 Y20 ; Move quickly to starting cut position
ML=1 ; Turn on cutter

LI NEAR X12 Y25 F2 ; Start cutting moves

ML=0 ; Turn off cutter

RAPI D X0 YO ; Move quickly back to home position
READ

Function: Read arguments for subroutine

Type: Motion program (PROG only)

Syntax: READ({l etter},[{letter}...])

where

{l etter} isany letter of the English alphabet, except N or O, representing the letter on the calling
program line whose following value isto be read into a variable

Note:
No space is allowed between READ and the left parenthesis.

This statement allows a subprogram or subroutine to take arguments from the calling routine. It looks at
the remainder of the line calling this routine (CALL, G, M T, D), takes the values following the specified
letters and puts them into particular Q-Variables for the coordinate system. For the Nth |etter of the
alphabet, the value is put in Q(100+N).

It scans the calling line until it sees aletter that isnot in the list of letters to READ, or until the end of the
calling line. Each letter value successfully read into a Q-Variable causes a bit to be set in Q100, noting
that it was read (bit N-1 for the Nth letter of the alphabet). For any letter not successfully read in the most
recent READ command, the corresponding bit of Q100 is set to zero.

Buffer Commands 231

PMAC Product Guide

The Q-Variable and flag bit of Q100 associated with each letter are shown in the following table:

Letter Target Q100 Bit Bit Value Bit Value
Variable Decimal Hex
A Q101 0 1 $01
B Q102 1 2 $02
C Q103 2 4 $04
D Q104 3 8 $08
E Q105 4 16 $10
F Q106 5 32 $20
G Q107 6 64 $40
H Q108 7 128 $80
| Q109 8 256 $100
J Q110 9 512 $200
K Q111 10 1,024 $400
L Q112 11 2,048 $800
M Q113 12 4,096 $1000
N Q114+ 13* 8,192* $2000*
O Q115* 14* 16,384* $4000*
P Q116 15 32,768 $8000
Q Q117 16 65,536 $10000
R Q118 17 131,072 $20000
S Q119 18 262,144 $40000
T Q120 19 524,288 $80000
U Q121 20 1,048,576 $100000
V Q122 21 2,097,152 $200000
W Q123 22 4,194,304 $400000
X Q124 23 8,388,608 $800000
Y Q125 24 16,777,216 $1000000
Z Q126 25 33,554,432 $2000000
*Cannot be used

Any letter may be read except N or O, which are reserved for line labels (and should only be at the
beginning of aline anyway). If aletter value is read from the calling line, the normal function of the
letter (e.g. an axismove) is overridden, so that |etter serves merely to pass a parameter to the subroutine.
If there are remaining letter values on the calling line that are not read, those will be executed according
to their normal function after the return from the subroutine.

Examples:

In standard machine tool code, a two-second DVEL L would be commanded in the program as a Q04
X2000, for instance. In PMAC, aG04 isinterpreted asa CALL to label NO4000 of PROG 1000, so to
implement this function properly, PROG 1000 would contain the following code:

NO4000 READ(X)
DVELL (Ql24)

RETURN

In standard machine tool code, the val ue assigned to the current position of the axis may be changed with
the 02 code, followed by the letters and the new assigned values of any axes (e.g. @32 X20 Y30). It
isimportant only to assign new values to axes specified in this particular G2 command, so the PMAC
subroutine implementing G92 with the PSET command must check to see if that particular axisis
specified:

232 Buffer Commands

PMAC Product Guide

N92000 READ(X, Y)

| F (QLOO & $800000 > 0) PSET X(Ql24)
| F (QLO0 & $1000000 > 0) PSET Y(QL25)
| F (QLO0 & $2000000 > 0) PSET Z(QL26)

RETURN

RETURN

Function: Return from subroutine jump/end main program
Type: Motion program (PROG only)

Syntax: RETURN

RET

The RETURN command tells the motion program to jump back to the routine that called the execution of
thisroutine. If this routine was started from an on-line command (RUN), program execution stops and the
program pointer is reset to the top of this motion program -- control is returned to the PMAC operating
system.

If this routine was started from a GOSUB, CALL, G M T, or D command in a motion program, program
execution jumps back to the command immediately following the calling command.

When the CLOSE command is sent to end the entry into a motion program buffer, PMAC automatically
appends a RETURN command to the end of that program. When the OPEN command is sent to an
existing motion program buffer, the final RETURN command is removed automatically.

Examples:

OPEN PROG 1 CLEAR

X20 F10

X0

CLOSE ; PMAC placesa RETURN here
OPEN PROG 1000 CLEAR

NO RAPI D RETURN ; Execution jumps back after one-line routine
N1000 LI NEAR RETURN ; Ditto

N2000 Cl RCLE1 RETURN ; Ditto

CLCsSE ; PMAC places a RETURN here
SEND

Function: Cause PMAC to send message

Type: Motion program (PROG and ROT); PLC program
Syntax: SEND'{ message}"

SENDS" { mnessage} "

SENDP" { message} "
This command causes PMAC to send the specified message out of one of PMAC’' s communications
ports. Thisisuseful particularly in the debugging of applications. It can be used also to prompt an
operator or to notify the host computer of certain conditions.
If 162=0, PMAC issues a carriage-return (<CR>) character at the end of the message automaticaly. If
162=1, PMAC does not issue a <CR> character at the end of the message; a SEND* Mmust be used to
issue a<CR> in this case.

Buffer Commands 233

PMAC Product Guide

Note:
If there is no host on the port to which the message is sent or the host is not ready
to read the message, the message isleft in the queue. If several messages back up
in the queue this way, the program issuing the messages will halt execution until
the messages are read. Thisisacommon mistake when the SEND command is
used outside of an edge-triggered condition in a PLC program. See Writing A
PLC Program section in this manual for more details.

On the serial port, it is possible to send messages to a non-existent host by disabling the port handshaking
with 11=1.
SEND transmits over the active communications response port whether serial, parallel host port (PC-Bus
or STD-Bus), VME-Bus port, or ASCII DPRAM buffer.
SENDS always transmits over the serial port regardless of what is the current active response port.
SENDP always transmits over the parallel host port (PC-Bus or STD-Bus), regardless of which port isthe
current active response port.
There is no SENDV command for the VME bus exclusively. The SEND command must be used with the
VME port as the active response port.
When PMAC powers up or resets, the active response port is the serial port. When any command is
received over a bus port, the active response port becomes the bus port. PMAC must then receive a
<CONTRQOL- Z> command to cause the response port to revert back to the serial port.

Note:

If aprogram, particularly aPLC program, sends messages immediately on power-
up/reset, it can confuse a host-computer program (such as the PMAC Executive
Program) that istrying to find PMAC by querying it and looking for a particular
response.

Itis possible, particularly in PLC programs, to order the sending of messages faster than the port can
handle them. Usually, thiswill happen if the same SEND command is executed every scan through the
PLC. For thisreason, have at |east one of the conditions that causes the SEND command to execute to be
set false immediately to prevent execution of this SEND command on subsequent scans of the PLC.

Note:

To cause PMAC to send the value of avariable, use the COMMAND statement
instead, specifying the name of the variable in quotes (e.g. CVD" P1").

Examples:
SEND' Mot i on Program St arted”
SENDS" DONE"
SENDP" Spi ndl e Cormand G ven"
| F (ML88=1) ; Coordinate System 1 Warning Following Error Bit set?
| F (P188=0) ; But not set last scan? (P188 follows M 188)
SEND' Excessi ve Fol |l owi ng Error" ; Notify operator
P188=1 ; To prevent repetition of message
ENDI F
ELSE ; Following Error bit not set
P188=0 ; To prepare for next time
ENDI F
SEND' THE VALUE OF P7 | S: " ; PMAC to send the message string
cvD' P7" ; PMAC to return the value of P7

234 Buffer Commands

PMAC Product Guide

SEND”{letter}

Function: Cause PMAC to send control character
Type: Motion program (PROG and ROT); PLC program
Syntax: SENDM I etter}

SENDS™M{ | etter}
SENDP { | etter}
where
{l etter} isoneof the charactersin @GABC. . . XYZ[\]"_

This command causes PMAC to send the specified control character over one of the communications
ports. These can be used for printer and terminal control codes, or for special communications to a host
computer

Control characters have ASCII byte values of 0to 31 ($1F). The specified {|etter} character determines
which control character is sent when the statement is executed. The byte value of the control character
sent is 64 ($40) less than the byte value of {letter}. The letters that can be used and their corresponding
control characters are:

{letter} | Letter Control Value
Value Character
@ 64 NULL 0
A 65 <CTRL- A> 1
B 66 <CTRL- B> 2
C 67 <CTRL- C 3
X 88 <CTRL- X> 24
Y 89 <CTRL- Y> 25
Z 90 <CTRL- Z> 26
[o1 ESC 27
\ 92 28
] 93 29
n 94 30
_ 95 31
Note:

Do not put the up-arrow character and the letter in quotes (do not use SEND' *A™")
or PMAC will attempt to send the two non-control characters”™ and A for this
example, instead of the control character.

SEND transmits over the active communications response port, whether serial, paralel host port (PC-Bus
or STD-Bus), or VME-Bus port.

SENDS always transmits over the serial port regardless of what is the current active response port.

SENDP always transmits over the parallel host port (PC-Bus or STD-Bus), regardless of which port isthe
current active response port.

There is no SENDV command for the VME bus exclusively. The SEND command must be used with the
VME port as the active response port.

When PMAC powers up or resets, the active response port is the serial port. When any command is
received over a bus port, the active response port becomes the bus port. PMAC must then receive a
<CONTROL- Z> command to cause the response port to revert back to the serial port.

Buffer Commands 235

PMAC Product Guide

Itis possible, particularly in PLC programs, to order the sending of messages faster than the port can
handle them. Thiswill almost always happen if the same SEND command is executed every scan through
the PLC. For thisreason, it is good practice to have at least one of the conditions that causes the SEND
command to execute to be set false immediately to prevent execution of this SEND command on
subsequent scans of the PLC.

SPLINE1

Function: Put program in uniform cubic spline motion mode
Type: Motion program (PROG and ROT)

Syntax: SPLI NE1

This modal command puts the program in cubic spline mode. In SPLI NE1 mode, each programmed
move takes TA time (Ix87 is default) -- there is no feedrate specification allowed. Each move on each
axisis computed as a cubic position trgjectory in which the intermediate positions are rel axed somewhat
so there are no velocity or accel eration discontinuities in blending the moves together.

Before the first move in any series of consecutive moves, a starting move of TA timeis added to blend
smoothly from a stop. After the last move in any series of consecutive moves, an ending move of TA
timeis added to blend smoothly to astop. If the TA timeis changed in the middle of a series of moves,
there will be a stop generated, with an extra TA; move and an extra TA, move added.

This command will take the program out of any of the other move modes (L1 NEAR, Cl RCLE, PVT,
RAPI D). The program will stay in this mode until another move mode command is executed.

Examples:
RAPI D X10 Y10
SPLI NE1 TA100
X20 Y15

X32 Y21

X43 Y26

X50 Y30
DWELL100
RAPI D X0 YO

SPLINEZ2

Function: Put program in non-uniform cubic spline motion mode
Type: Motion program (PROG and ROT)
Syntax: SPLI NE2

This modal command puts the program in non-uniform cubic spline mode. This modeis virtually
identical to the SPL1 NE1 uniform cubic spline mode described above, except that the TA segment time
can vary in acontinuous spline. This makes SPLI NE2 mode more flexible than SPLI NE1 mode, but it
takes slightly more computation time.

Examples:

RAPI D X10 Y10
SPLI NE2

X20 Y15 TA100
X32 Y21 TA120
X43 Y26 TA87
X50 Y30 TA62
DWELL100

RAPI D X0 YO

236 Buffer Commands

PMAC Product Guide

STOP

Function: Stop program execution
Type: Motion program (PROG)
Syntax: STOP

This command suspends program execution, whether started by RUN or STEP, keeping the program
counter pointing to the next line in the program, so that execution may be resumed with a RUN or STEP
command.

Examples:
A10 B10
A20 BO
STOP

A0 BO

TA{data}

Function: Set acceleration time
Type: Motion program (PROG and ROT)
Syntax: TA{ dat a}

where
{dat a} isaconstant or expression representing the acceleration time in milliseconds

This statement specifies the commanded accel eration time between blended moves (LI NEAR and

Cl RCLE mode), and from and to a stop for these moves. In PVT and SPLI NE1 mode moves, generally
which are continually accelerating and decelerating, it specifies the actual move segment time. The units
are milliseconds. PMAC will round the specified value to the nearest integer number of milliseconds
when executing this command (no rounding is done in storing the value in the buffer).

Note:

Make sure the specified acceleration time (TA or 2*TS) is greater than zero, even
if planning to rely on the maximum acceleration rate parameters (1x17). A
specified acceleration time of zero will cause adivide-by-zero error. The
minimum specified time should be TA1 TSO.

If the specified S-curve time (from TS, or 1x88) is greater than half the TA time, the time used for the
acceleration for blended moves will be twice the specified S-curve time.

The acceleration time is also the minimum time for a blended move; if the distance on a feedrate-
specified (F) moveis so short that the calculated move time is less than the acceleration time, or the time
of atime-specified (TM move is less than the accel eration time, the move will be done in the acceleration
timeinstead. Thiswill slow down the move. If TA controlsthe move time, it must be greater than the
113 time and the 18 period.

Note:

The acceleration time will be extended automatically when any motor in the
coordinate system is asked to exceed its maximum accel eration rate (I1x17) for a
programmed L1 NEAR mode move with 113=0 (no move segmentation).

A move executed in a program before any TA statement will use the default acceleration time specified by
coordinate system I-Variable 1x87.

In executing the TA command, PMAC rounds the specified value to the nearest integer number of
milliseconds (there is no rounding done when storing the command in the buffer).

Buffer Commands 237

PMAC Product Guide

Examples:

TA100

TA(P20)

TA(45. 3+SQRT(QLO))

TINIT

Function: Initialize selected transformation matrix
Type: Motion program (PROG and ROT)
Syntax: TINIT

This command initializes the currently selected (with TSEL) transformation matrix for the coordinate
system by setting it to the identity matrix. This makes the rotation angle 0, the scaling 1, and the
displacement 0, so the XY Z points for the coordinate system are as the axis definition statements created
them. PMAC will still perform the matrix calculations, even though they have no effect. TSELO should
be used to stop the matrix calculations

Subsequently, the matrix can be changed withthe ADI S, | DI S, AROT, and | ROT commands.

Examples:

TSEL 4 ; Select transformation matrix 4

TINT ; Initialize it to the identity matrix

| ROT 71 ; Do incremental rotation/scaling with Q71-Q79

TM{data}

Function: Set move time
Type: Motion program
Syntax: TM dat a}

where
{dat a} isafloating-point constant or expression representing the move time in milliseconds. The

maximum effective TMvalue is 223 msec. The minimum effective TMvalue is 1 msec.

This command establishes the time to be taken by subsequent LI NEAR or CI RCLE mode (blended)
motions. It overrides any previous TMor F statement, and is overridden by any subsequent TMor F
statement. Itisirrelevant in RAPI D, SPLI NE, and PVT move modes, but the latest value will stay active
through those modes for the next return to blended moves.

The acceleration time is the minimum time for a blended move; if the specified move time is shorter than
the accel eration time, the move will be done in the acceleration timeinstead. Thiswill slow down the
move. If TMcontrols the move time it must be greater than the 113 time and the 18 period.

Note:

For L1 NEAR mode moves with 113=0 (no move segmentation), if the commanded
velocity (distance/TM) of any motor in the move exceeds its maximum limit
(Ix16), all motors in the coordinate system will be slowed down in proportion so
that no motor exceeds its limit.

Examples:
TMBO

TMA7. 635
TM P1/ 3)

238 Buffer Commands

PMAC Product Guide

TS{data}

Function: Set S-Curve acceleration time
Type: Motion program (PROG and ROT)
Syntax: TS{ dat a}

where

{dat a} isapositive constant or expression representing the S-curve time in milliseconds.

This command specifies the time, at both the beginning and end of the total acceleration time, in LI NEAR
and Cl RCLE mode blended moves that is spent in S-curve acceleration.

If TS iszero, the acceleration is constant throughout the TA time and the velocity profileis trapezoidal.
If TS is greater than zero, the acceleration will start at zero and linearly increase through TS time, then
stay constant (for time TC) until TA- TStime, and linearly decreaseto zero at TA time (that is,
TA=2TS+TC). If TSisequa to TA/2, the entire acceleration will be spent in S-curve form (v values
greater than TA/2 override the TA value; total acceleration time will be 2TS.

Note:

For LI NEAR mode moves with PMAC not in segmentation mode (113=0), if the
rate of acceleration for any motor in the coordinate system exceeds that motor’s
maximum as specified by 1x17, the acceleration time for all motorsisincreased so
that no motor exceeds its maximum accel eration rate.

TS does not affect RAPI D, PVT, or SPLI NE mode moves, but it stays valid for the next return to blended
moves.

Note:
Make sure the specified acceleration time (TA or 2*TS) is greater than zero, even
if planning to rely on the maximum acceleration rate parameters (1x17). A
specified acceleration time of zero will cause adivide-by-zero error. The
minimum specified time should be TA1 TSO.

In executing the TS command, PMAC rounds the specified value to the nearest integer number of
milliseconds (there is no rounding done when storing the command in the buffer).

A blended move executed in a program before any TS statement will use the default S-curve time
specified by coordinate system I-variable 1x88.

Examples:

TS20

TS(QL7)

TS(39. 32+P43)

TSELECT{constant}

Function: Select active transformation matrix for X, Y, and Z axes
Type: Motion program (PROG and ROT)

Syntax: TSELECT{ const ant }

where

{const ant } isaninteger representing the number of the matrix to be used.

This command sel ects the specified matrix for use as the active transformation matrix for the X, Y, and Z
axes of the coordinate system running the motion program. This matrix can then be modified using the
TINI T,ADl S, ARCT, | DI S, and | ROT commands to perform trandlations, rotations, and scaling of the
three axes. This matrix will be used until another one is selected.

Buffer Commands 239

PMAC Product Guide

This matrix must have been created already with the on-line DEFI NE TBUF command. That command
specifies the number of matricesto create, and it must have specified a number at least as high asthe
number used in TSEL (amatrix cannot be selected that has not been created).

TSELO deselects all transformation matrices, saving cal culation time.

Examples:
DEFI NE TBUF 5 ; Create 5 transformation matrices
OPEN PROG 10 CLEAR

TSEL 3 ; Select transformation matrix 3 (of 5)
TINT ; Make matrix 3 the identity matrix

U{data}

Function: U-axis move

Type: Motion program

Syntax: U dat a}

where

{dat a} isafloating point constant or expression representing the position or distance in user units for
the U-axis.

This command causes a move of the U-axis. (See{ axi s} {dat a} descriptionin this section.)

Examples:

u10

U(P17+2. 345)

X20 U20

U(Cos(Q10)) V(SIN(QL0))

V{data}

Function: V-axis move
Type: Motion program (PROG and ROT)
Syntax: V{ dat a}

where
{dat a} isafloating point constant or expression representing the position or distance in user units for
the V-axis.

This command causes a move of the V-axis. (See{ axi s}{dat a} descriptionin this section.)

Examples:

V20

Us6. 5 V(P320)

Y10 V10

V(SQRT(Q0* RO+Q1* R1))
W{data}

Function: W-axis move
Type: Motion program
Syntax: W dat a}
where

{dat a} isafloating point constant or expression representing the position or distance in user units for
the W-axis.

This command causes a move of the W-axis. (See{ axi s} {dat a} description in this section.)

240 Buffer Commands

PMAC Product Guide

Examples:
Vb

W P10+33. 5)
Z10 W0

WABS(Q22* 2))
WAIT

Function: Suspend program execution
Type: Motion program (PROG and ROT)
Syntax: WAI T

This command may be used on the same line as aVWHI LE condition to hold up execution of the program
until the condition goes false. When the condition goes false, program execution resumes on the next
line. Use of the WAI T statement allows indefinite pauses without the need for repeated use of a servo
command (e.g. DWELL or DELAY) to eat up the time.

However, it isimpossible to predict how long the pause will be.

WAI T permits a faster resumption of the program upon the WHI LE condition going false. Also, the
program timer is halted when waiting, which allows the In-position bit to go true (which can be used to
trigger an action, or the next move).

Since PMAC executesaVWHI LE ({ condi ti on}) WAI T statement every real time interrupt until the
condition goes false, essentialy it isthe same asaPLCO. This could use excessive processor time and in
severe cases, trip the watchdog timer on PMAC' s that simultaneously run several motion programs that
use WAI T statements and or large PLCO programs.

For example, if the condition only needs to be checked every 20 msec and not every real time interrupt,
use a DVELL command to regulate the execution time of the WHI LE loop.

VWHI LE ({condition})

DWELL20
ENDW
Examples:
VWH LE (ML1=0) WAIT ; Pause here until Machine Input 1 set
VWH LE (ML87=0) WAIT ; Pause here until al axesin-position
ML=1 ; Turn on Output 1 to activate punch
WHILE({condition})
Function: Conditional looping
Type: Motion program (PROG only); PLC program
Syntax: WHI LE ({condition})

WHI LE ({condition}) {action}

where

{condi ti on} consists of one or more sets of { expr essi on} {conpar at or} {expressi on},
joined by logical operators AND or OR.

{acti on} isaprogram command.

This statement allows repeated execution of a statement or series of statements as long as the condition is
true. ItisPMAC’ sonly looping construct. It can take two forms;

(Valid in motion program only) With a statement following on the same line, it will repeatedly execute
that statement as long as the condition istrue. No ENDWHI LE is used to terminate the loop.

Buffer Commands 241

PMAC Product Guide

WH LE ({condition}) {action}

(Vadid in motion and PLC programs) With no statement following on the same line, it will execute
statements on subsequent lines down to the next ENDWHI LE statement.

VWHI LE ({condition})
{statenent}
[{statenent}

ENDVHI LE

If aWHI LE loop in a motion program has no move, DVELL, or DELAY inside, PMAC will attempt to
execute the loop twice (while true) each real-time interrupt cycle (stopped from more loops only by the
"double-jump-back” rule), much like a PLCO. This can starve the background tasks for time, possibly
even tripping the watchdog timer. PMAC will not attempt to blend moves through such an empty VWHI LE
loop if it finds the loop condition true twice or more.

In PLC programs, extended compound WHI LE conditions can be formed on multiple program lines
through use of AND and OR commands on the program lines immediately following the WHI LE command
itself (this structure is not available in motion programs). Conditions in each program line can be either
simple or compound. AND and OR operations within a program line take precedence over AND and OR
operations between lines.

Examples:
VWH LE (P20=0)

ENDVHI LE

VWH LE (QLO<5 AND Q11>1)

ENDVHI LE

VWH LE (ML1=0) WAIT ; sit until input goes true

I NC
VWH LE (ML1=0 OR ML2=0) X100 ; increment until 2 inputstrue

To do the equivalent of a For/Next loop:

P1=0 ; Initialize loop counter
VWH LE (P1<10) ; Loop until counter exceeds limit

X1000 ; Perform action to be repeated

P1=P1+1 ; Increment loop counter
ENDVHI LE ; Loop back
To do atimed wait in a PLC program, use the servo cycle counter as timer:
P90=16777216 ; Counter rollover value (2/24)
P91=MD ; Store starting value of MO (X:$0) counter
P92=0 ; Time elapsed so far
VWHI LE (P92<P93) ; Loop until past specified time

P92=(MD- P91) %90 ; Calculate time el apsed

; Modulo (%) operation to handle rollover

ENDVHI LE ; Loop back

To do extended compound conditionsin a PLC program:
VWH LE (ML1=1 AND M12=1)

OR (ML3=1 AND ML4=1)

AND (P1>0)

ENDVHI LE

242 Buffer Commands

PMAC Product Guide

X{data}

Function: X-axis move
Type: Motion program
Syntax: X{ dat a}
where

{dat a} isafloating point constant or expression representing the position or distance in user units for
the X-axis.

This command causes a move of the X-axis. (See{ axi s} {dat a} descriptionin this section.)

Examples:

X10

X15 Y20

X(P1) Y30
X(QLO*COS(Q1)) Y(QLO*SIN(QL))
X3.76 Z2.92 10.075 K3.42

Y{data}

Function: Y -axis move
Type: Motion program
Syntax: Y{ dat a}
where

{dat a} isafloating point constant or expression representing the position or distance in user units for
the Y -axis.

This command causes a move of the Y-axis. (See{ axi s}{dat a} descriptionin this section.)

Examples:

Y50

Y(P100)

X35 Y75

Y-0.221 Z3.475

Y(ABS(P3+P4)) A(| NT(P3-P4))

Z{data}

Function: Z-axis move
Type: Motion program
Syntax: Z{ dat a}
where

{dat a} isafloating point constant or expression representing the position or distance in user units for
the W-axis.

This command causes a move of the Z-axis. (See{ axi s} {dat a} description in this section.)

Examples:

Z20

Z(Qe5)

X10 Y20 Z30

Z23.4 R10.5

Z(P301+2* P302/ P303)

Buffer Commands 243

	What is PMAC?
	Standard Features for a Typical Application

	Configuring and Programming PMAC
	Hardware Setup
	Software Setup
	Programming PMAC

	Universal PMAC Lite Connectors and Indicators
	J1 - Display Port Outputs (JDISP Port)
	J2 - Control-Panel Port I/O (JPAN Port)
	J3 - Thumbwheel Multiplexer Port I/O (JTHW Port)
	J4 – RS-232 Serial Port Connection \(JRS232 Port
	J4A – RS-422 Serial Port Connection \(JRS422 Por
	J5 - General-Purpose Digital Inputs and Outputs (JOPTO Port)
	J6 - Auxiliary I/O Port Connector (JXIO Port)
	J7 - A/D Port Connector (JS1 Port)
	J8 - Position-Compare Connector (JEQU Port)
	J11 - Machine Connector (JMACH Connector)
	TB1 – Power Supply Terminal Block
	LED Indicators
	Fuse

	Universal PMAC Lite Dimensions
	Universal PMAC Lite Jumpers and Connectors Layout
	Default Jumper Configuration
	Troubleshooting
	Getting PMAC to Communicate Again
	Resetting PMAC to Factory Defaults
	Before Calling for Help

	Power-Supply Configuration Jumpers
	E85, E87, E88: Analog Circuit Isolation Control
	E89-E90: Input Flag Supply Control

	Clock Configuration Jumpers
	E98: DAC/ADC Clock Frequency Control
	E29-E33: Phase Clock Frequency Control
	E48: Option CPU Clock Frequency Control
	E3-E6: Servo Clock Frequency Control
	E34A-E38: Encoder Sample Clock
	E40-E43: Servo and Phase Clock Direction Control

	Encoder Configuration Jumpers
	E24-E27: Encoder Complementary Line Control
	E22-E23: Control-Panel Handwheel Enable
	E72-E73: Control Panel Analog Input Enable
	E74-E75: Encoder Sample Clock Output

	Board Reset/Save Jumpers
	E39: Reset-From-Bus Enable
	E50: Flash-Save Enable/Disable Control
	E51: Re-Initialization on Reset Control
	E93-E94: Reset from Bus by Software Enable
	E103: Watchdog Timer Disable
	E106: Power-Up/Reset Load Source

	Communication Jumpers
	E9-E10, E13-E14: Serial Interface Configuration Control
	E44-E47: Serial Baud Rate Selection
	E49: Serial Communications Parity Control
	E66-E71, E91-E92: ISA Bus Base Address Control
	E54-E55, E57-E59, E61-63, E65: Interrupt Source Control
	E76-E84, E86: Host Interrupt Signal Select
	E107-E108: Serial Port Configure

	I/O Configuration Jumpers
	E1-E2: Machine Output Supply Configure
	E7: Machine Input Source/Sink Control
	E17A - E17D: Amplifier-Enable Polarity Control
	E28: Following Error/Watchdog Timer Signal Control
	E100: Auxiliary Signals Supply Control
	E101-E102: Auxiliary Signals Output Voltage Configure
	E109: Display Port Configuration
	E110: Expansion Port Configuration

	Reserved Configuration Jumpers
	E0: Reserved for Future Use

	Ground Loops
	Star Ground Connection

	Opto-Isolation Circuits
	EMI, Electromagnetic Interference
	Twisted Wires
	Shielded Cable
	Wires Separation and Length

	Flat Cable Shielding
	Basic Rules for Proper Wiring
	Power Supplies
	Digital Power Supply
	Analog Power Supply
	Flags Power Supply (Optional)

	Overtravel Limits and Home Switches
	Types of Overtravel Limits
	Home Switches

	Motor Signals Connections
	Incremental Encoder Connection
	Termination Resistors
	DAC Output Signals
	Amplifier Enable Signal (AENAx/DIRn)
	Amplifier Fault Signal (FAULTn)

	General-Purpose Digital Inputs and Outputs (JOPTO Port)
	J5 (JOPTO): I/O Port Connector

	Serial Connections
	J4 (JRS232) Serial Port Connector
	J4A (JRS422): Serial Port Connector

	Machine Connections Example
	ACC-8P/ACC-8D Breakout Board
	J8 (JEQU): Position-Compare Connector
	TB1 (JPWR): Power Supply
	TB1 (4-Pin Terminal Block)

	Moving a Motor: Jog Commands and Motion Programs
	Axes and Coordinate Systems
	Online Commands
	Buffered (Program) Commands
	Computational Features
	I-Variables
	P-Variables
	Q-Variables
	M-Variables
	Array Capabilities
	Operators
	Functions
	Comparators

	I-Variables Setup
	Motor Definition I-Variables
	Motor Safety I-Variables
	S-Curve and Linear Acceleration Variables
	Rate vs Time: Programming the Maximum Acceleration Parameters
	Benefits of Using S-Curve Acceleration Profiles
	Motor Movement I-Variables
	Servo Control I-Variables
	Coordinate System I-Variables
	Encoder/Flag Setup I-Variables

	Encoder Conversion Table
	Jogging Moves
	Jog Acceleration
	Jog Speed
	Jog Commands
	Indefinite Jog Commands
	Jogging to a Specified Position
	Jog Moves Specified by a Variable
	Jog-Until-Trigger

	Homing Search Moves
	Homing Acceleration
	Homing Speed
	Home Trigger Condition
	Specify Flag Set
	Software Capture Option
	Trigger Signals and Edges
	Torque-Mode Triggering
	Merits of Dual Trigger
	Action on Trigger
	Home Command
	On-Line Command
	Monitoring for Finish
	Monitoring for Errors
	Buffered Program Command
	Homing from a PLC Program
	Motion vs. PLC Program Homing
	Zero-Move Homing
	Homing Into a Limit Switch
	Multi-Step Homing Procedures
	Which Direction to Home?
	Already Into Home?

	Command and Send Statements
	PMAC Position Registers
	Coordinate Systems
	Axis Definitions
	Axis Definition Statements

	Writing a Motion Program
	Running a Motion Program
	Subroutines and Subprograms
	Passing Arguments to Subroutines

	How PMAC Executes a Motion Program
	Linear Blended Moves
	Notes about Linear Interpolation Moves

	Circular Interpolation
	Splined Moves
	PVT-Mode Moves
	Other Programming Features
	Internal Timebase, the Feedrate Override
	Synchronous M-Variable Assignment
	Axis Transformation Matrices
	Learning a Motion Program

	Entering a PLC Program
	PLC Program Structure
	Calculation Statements
	Conditional Statements
	Level-Triggered Conditions
	Edge-Triggered Conditions

	WHILE Loops
	COMMAND and SEND statements
	Timers
	Resetting PMAC to Factory Defaults
	The Watchdog Timer (Red LED)
	Establishing Communications
	General
	Bus Communications
	Serial Communications

	Motor Parameters
	Motion Programs
	PLC Programs
	Global I-Variables
	I1 Serial Port Mode
	I5 PLC Programs On/Off
	I6 Error Reporting Mode
	I7 In-Position Number of Cycles
	I8 Real Time Interrupt Period
	I9 Full/Abbreviated Program Listing Form
	I13Programmed Move Segmentation Time
	I15 Degree/Radian Control for User Trig Functions
	I50 Rapid Move Mode Control
	I52 \ Program Hold Slew Rate
	I53 Program Step Mode Control

	Motor Definition I-Variables
	Ix00Motor x Activate
	Ix01 Motor x PMAC-Commutation Enable
	Ix02 Motor x Command Output (DAC) Address
	Ix03Motor x Position Loop Feedback Address
	Ix04Motor x Velocity Loop Feedback Address
	Ix05 Motor x Master (Handwheel) Position Address
	Ix06 Motor x Master (Handwheel) Following Enable
	Ix07 Motor x Master (Handwheel) Scale Factor
	Ix08 Motor x Position Scale Factor
	Ix09 Motor x Velocity Loop Scale Factor

	Motor Safety I-Variables
	Ix11 Motor x Fatal (Shutdown) Following Error Limit
	Ix12 Motor x Warning Following Error Limit
	Ix13 Motor x Positive Software Position Limit
	Ix14 Motor x Negative Software Position Limit
	Ix15 Motor x Deceleration Rate on Position Limit or Abort
	Ix16 Motor x Maximum Permitted Motor Program Velocity
	Ix17 Motor x Maximum Permitted Motor Program Acceleration
	Ix19 Motor x Maximum Permitted Motor Jog/Home Acceleration

	Motor Movement I-Variables
	Ix20 Motor x Jog/Home Acceleration Time
	Ix21 Motor x Jog/Home S-Curve Time
	Ix22 Motor x Jog Speed
	Ix23 Motor x Homing Speed and Direction
	Ix25 Motor x Limit/Home Flag/Amp Flag Address
	Ix26 Motor x Home Offset
	Ix27 Motor x Position Rollover Range
	Ix28 Motor x In-position Band
	Ix29 Motor x Output - or First Phase - DAC Bias

	Servo Control I-Variables
	Ix30 Motor x PID Proportional Gain
	Ix31 Motor x PID Derivative Gain
	Ix32 Motor x PID Velocity Feedforward Gain
	Ix33 Motor x PID Integral Gain
	Ix34 Motor x PID Integration Mode
	Ix35 Motor x PID Acceleration Feedforward Gain
	Ix68 Motor x Friction Feedforward
	Ix69 Motor x Output Command (DAC) Limit
	Ix80 Motor x Power-Up Mode

	Coordinate System I-Variables
	Ix87 Coordinate System x Default Program Acceleration Time
	Ix88 Coordinate System x Default Program S-Curve Time
	Ix89 Coordinate System x Default Program Feedrate/Move Time
	Ix90 Coordinate System x Feedrate Time Units
	Ix91 Coordinate System x Default Working Program Number
	Ix92 Coordinate System x Move Blend Disable
	Ix94 Coordinate System x Time Base Slew Rate (and Limit)
	Ix95 Coordinate System x Feed Hold Deceleration Rate
	Ix96 Coordinate System x Circle Error Limit

	Encoder/Flag Setup I-Variables
	I900, I905, ... I975 Encoder n Decode Control Encoder I-Variable 0
	I902, I907, ... I977 Encoder n Position Capture Control Encoder I-Variable 2
	I903, I908, ... I978 Encoder n Flag Select Control Encoder I-Variable 3

	<CONTROL-A>
	<CONTROL-B>
	<CONTROL-C>
	<CONTROL-D>
	<CONTROL-F>
	<CONTROL-G>
	<CONTROL-H>
	<CONTROL-I>
	<CONTROL-K>
	<CONTROL-M>
	<CONTROL-O>
	<CONTROL-P>
	<CONTROL-Q>
	<CONTROL-R>
	<CONTROL-S>
	<CONTROL-V>
	<CONTROL-X>
	<CONTROL-Y>
	<CONTROL-Z>
	#
	#{constant}
	#{constant}->
	#{constant}->0
	#{constant}->{axis definition}
	$
	$$$
	$$$ ***
	%
	%{constant}
	&{constant}
	&
	/
	?
	First Word Returned (X:$003D, X:$0079, etc.)
	Second Word Returned (Y:$0814, Y:$08D4, etc.)

	??
	First Word Returned (X:$0818, X:$08D8, etc.)
	Second Word Returned (Y:$0817, Y:$08D7, etc.)
	Second Word Returned (Y:$0817, Y:$08D7, etc.)

	???
	First Word Returned (X:$0003)
	Second Word Returned (Y:$0003)

	
	A
	ABS
	{axis}={constant}
	B{constant}
	CLEAR
	CLOSE
	{constant}
	DATE
	DEFINE TBUF
	DELETE GATHER
	DELETE TBUF
	DISABLE PLC
	ENABLE PLC
	F
	FRAX
	H
	HOME
	HOMEZ
	I{constant}
	I{constant}={expression}
	I{constant}=*
	INC
	J!
	J+
	J-
	J/
	J:{constant}
	J:*
	J=
	J={constant}
	J=*
	J=={constant}
	J^{constant}
	J^*
	{jog command}^{constant}
	K
	LEARN
	LIST
	LIST PC
	LIST PE
	LIST PLC
	LIST PROGRAM
	M{constant}
	M{constant}={expression}
	M{constant}->
	M{constant}->*
	M{constant}->D:{address}
	M{constant}->L:{address}
	M{constant}->X/Y:{address}
	MFLUSH
	O{constant}
	OPEN PLC
	OPEN PROGRAM
	P
	P{constant}
	P{constant}={expression}
	PASSWORD={string}
	PC
	PE
	PMATCH
	Q
	Q{constant}
	Q{constant}={expression}
	R
	R[H]{address}
	S
	SAVE
	SIZE
	TYPE
	UNDEFINE
	UNDEFINE ALL
	V
	VERSION
	W{address}
	Z
	{axis}{data}[{axis}{data}...]
	{axis}{data}:{data} [{axis}{data}:{data}...]
	{axis}{data}^{data}[{axis}{data}^{data}...]
	{axis}{data} [{axis}{data}...] {vector}{data} [{vector}{data}...]
	A{data}
	ABS
	ADDRESS
	ADIS{constant}
	AND ({condition})
	AROT{constant}
	B{data}
	BLOCKSTART
	BLOCKSTOP
	C{data}
	CALL
	CIRCLE1
	CIRCLE2
	COMMAND"{command}"
	COMMAND^{letter}
	DELAY{data}
	DISABLE PLC {constant}[,{constant}...]
	DISPLAY [{constant}] "{message}"
	DISPLAY ... {variable}
	DWELL
	ELSE
	ENABLE PLC
	ENDIF
	ENDWHILE
	F{data}
	FRAX
	GOSUB
	GOTO
	HOME
	HOMEZ
	I{data}
	I{constant}={expression}
	IDIS{constant}
	IF ({condition})
	INC
	IROT{constant}
	J{data}
	K{data}
	LINEAR
	M{constant}={expression}
	M{constant}=={expression}
	M{constant}&={expression}
	M{constant}|={expression}
	M{constant}^={expression}
	N{constant}
	NORMAL
	O{constant}
	OR({condition})
	P{constant}={expression}
	PSET
	PVT{data}
	Q{constant}={expression}
	R{data}
	RAPID
	READ
	RETURN
	SEND
	SEND^{letter}
	SPLINE1
	SPLINE2
	STOP
	TA{data}
	TINIT
	TM{data}
	TS{data}
	TSELECT{constant}
	U{data}
	V{data}
	W{data}
	WAIT
	WHILE({condition})
	X{data}
	Y{data}
	Z{data}

